中考数学化简求值专项训练知识讲解

合集下载

化简求值知识点总结

化简求值知识点总结

化简求值知识点总结一、化简求值的基本概念1.1 代数式的化简代数式的化简是指通过运用代数运算的法则,将一个较为复杂的代数式简化为形式更加简洁的表达式。

代数式的化简涉及到多种代数运算,如加法、减法、乘法、除法、乘方等,需要根据代数运算的规则进行推导和计算。

在代数式的化简中,常用的方法有合并同类项、提取公因式、分配法则等。

例如,对于代数式2x+3x,可以合并同类项得到5x;对于代数式3(x+2),可以使用分配法则得到3x+6。

1.2 算术式的化简算术式的化简是指根据加减乘除的运算规则,将一个复杂的算术式计算得到具体的数值。

在化简求值的过程中,需要注意运算的次序、优先级等问题,以确保计算的准确性。

例如,对于算术式3+5*2,根据乘法优先原则,首先计算5*2的值为10,然后再加上3得到最终的结果13。

1.3 化简与求值的关系化简和求值是密切相关的概念。

在化简的过程中,常常需要将代数式或算术式化简为最简形式,然后再求出具体的数值。

因此,在进行化简求值的过程中,需要注意两者之间的相互关系,并综合运用代数知识和运算规则进行计算。

二、化简求值的常见方法2.1 合并同类项合并同类项是代数式化简中常用的方法之一。

所谓同类项是指具有相同的字母部分及其指数,并且常数部分也相同的项。

合并同类项的过程是将具有相同字母部分的项相加或相减,得到最终的结果。

例如,对于代数式3x+2x,可以合并同类项得到5x;对于代数式3y-2y,可以合并同类项得到y。

2.2 提取公因式提取公因式是代数式化简中的另一种常用方法。

所谓公因式是指代数式中各项所共有的因式。

提取公因式的方法是将代数式中的各项中公共的因式提取出来,然后进行化简运算。

例如,对于代数式3x+6,可以提取公因式3得到3(x+2);对于代数式6a-9a,可以提取公因式3a得到3a(2-3)。

2.3 分配法则分配法则是代数式化简中的重要方法之一。

分配法则即将一个因子分配到另一个因子的各个部分,然后根据分配法则进行计算。

专题 整式的化简求值(五大题型50题)(解析版)

专题 整式的化简求值(五大题型50题)(解析版)

(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.【分析】先化简整式,再代入求值.【解答】解:原式=2x 2y ﹣(xy 2+3x 2y ﹣xy 2)=2x 2y ﹣3x 2y=﹣x 2y .当x =12,y =2时,原式=﹣(12)2×2=−14×2=−12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.【分析】去括号,合并同类项后代入求值.【解答】解:原式=4x 2﹣2xy +y 2﹣x 2+xy ﹣y 2=3x 2﹣xy ,当x =﹣1,y =−12时,原式=3×(﹣1)2﹣(﹣1)×(−12)=3−12=52.【点评】本题考查了整式的加减—化简求值,掌握去括号法则与合并同类项是解题的关键.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.【分析】先进行整式的化简,再代入求值即可.【解答】解:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2当a=﹣1,b=2时,原式=(﹣1)2×2+8×(﹣1)×22=2﹣32=﹣30.【点评】本题考查了整式的加减,解决本题的关键是先化简.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.【分析】利用整式的加减混合运算化简整式,再代入求值.【解答】解:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2)=2x2﹣2y2﹣4x2y﹣4xy2+4x2y2+4y2=2x2+2y2﹣4x2y﹣4xy2+4x2y2,∵x=﹣1,y=2,∴原式=2×(﹣1)2+2×22﹣4×(﹣1)2×2﹣4×(﹣1)×22+4×(﹣1)2×22=2×1+2×4﹣4×2+4×4+4×4=2+8﹣8+16+16=34.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的加减混合运算.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x+6y2﹣4x﹣6x+3y2=﹣6x+9y2,当x=2,y=﹣2时,原式=﹣6×2+9×(﹣2)2=﹣12+36=24.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a.当a=﹣2,b=2022时,原式=﹣2×(﹣2)2﹣4×(﹣2)=﹣2×4+8=﹣8+8=0.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.【分析】先将原式去括号、合并同类项,再把x=﹣2,y=12代入化简后的式子,计算即可.【解答】解:5x2−[2xy−3(13xy+2)+4x2]=5x2﹣(2xy﹣xy﹣6+4x2)=5x2﹣2xy+xy+6﹣4x2=(5x2﹣4x2)+(﹣2xy+xy)+6=x2﹣xy+6,当x=−2,y=12时,原式=(−2)2−(−2)×12+6=4+1+6=11.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.9.先化简,再求值:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab),其中a=5,b=﹣2.【分析】先化简整式,再代入求值.【解答】解:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab)=2ab﹣3a2+2a﹣2b2﹣3a+3a2﹣2ab=﹣a﹣2b2.当a=5,b=﹣2时,原式=﹣5﹣2×(﹣2)2=﹣5﹣2×4=﹣5﹣8=﹣13.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.【分析】先化简,再代入求值即可.【解答】解:原式=2mn ﹣8m 2﹣2﹣3m 2+2mn=4mn ﹣11m 2﹣2,当m =1,n =﹣2时,原式=4×1×(﹣2)﹣11×12﹣2=﹣21.【点评】本题主要考查了整式的加减,解题的关键是正确的化简.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.【分析】利用去括号法则先去括号再合并同类项,最后代入求值.【解答】解:原式=5xy ﹣4x 2﹣2y ﹣5xy ﹣2x 2=(5xy ﹣5xy )﹣(4x 2+2x 2)﹣2y=﹣6x 2﹣2y当x =3,y =﹣2时原式=﹣6×32﹣2×(﹣2)=﹣50.【点评】本题考查了整式的化简求值,掌握去括号法则和合并同类项法则是解决本题的关键.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.【分析】先去括号,然后合并同类项,再代入求值.【解答】解:原式=12m−2m +23n 2−32m +13n 2=n 2﹣3m ,当m =−14,n =−12时,原式=n 2﹣3m=(−12)2﹣3×(−14)=14+34=1.【点评】本题考查了整式的加减—化简求值,熟悉去括号和合并同类项法则是解题的关键.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.【分析】先去括号再合并同类项,最后代入求值.【解答】解:2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b=2a2b+2ab﹣4a2b+4ab﹣4a2b=﹣6a2b+6ab.当a=3,b=﹣2,原式=﹣6×32×(﹣2)+6×3×(﹣2)=6×9×2﹣6×3×2=108﹣36=72.【点评】本题考查了整式的化简,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:3x2y−2(x2y+14x y2)−2(x y2−xy)=3x2y−2x2y−12x y2−2x y2−2xy=x y2−52x y2+2xy把x=12,y=﹣2代入原式=(12)2×(−2)−52×12×(−2)2+2×12×(−2)=−712.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=5m2﹣(5m2﹣2m2+mn﹣7mn+7)=5m2﹣5m2+2m2﹣mn+7mm﹣7=2m2+6mm﹣7,∵m2+3mn=﹣5,∴原式=2(m2+3mn)﹣7=2×(﹣5)﹣7=﹣10﹣7=﹣17.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=7a2+3ab+3b2﹣8a2﹣6ab﹣4b2=﹣a2﹣3ab﹣b2;当a2+b2=3,ab=﹣2时,原式=﹣(a2+b2)﹣3ab=﹣3﹣3×(﹣2)=﹣3+6=3,∴原代数式的值为3.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想解题是关键.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6x2﹣2x+4y﹣2xy﹣6x2+9x+3y﹣3xy=7x+7y﹣5xy,当x+y=67,xy=﹣2时,原式=7(x+y)﹣5xy=7×67−5×(﹣2)=6+10=16.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想代入求值是解题关键.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据阅读材料,直接合并同类项即可;(2)根据等式性质可得3x2﹣6y=12,然后整体代入即可求值;(3)先根据已知3个等式可得a﹣c=8,2b﹣d=5,再整体代入即可求值.【解答】解:(1)3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴3x2﹣6y=12,∴3x2﹣6y﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,∴①+②得,a﹣c=﹣2,②+③得,2b﹣d=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减﹣化简求值,解决本题的关键是掌握整式的加减.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.【分析】(1)把(a﹣b)看成一个整体,先变形要求值代数式,再整体代入;(2)可变形已知,整体代入求值.【解答】解:(1)3(a﹣b)﹣a+b+1=3(a﹣b)﹣(a﹣b)+1=2(a﹣b)+1.当a﹣b=﹣3时,原式=2×(﹣3)+1=﹣6+1=﹣5.(2)法一、∵a2+2ab=2,ab﹣b2=1,∴2a2+4ab=4,∴2a2+4ab+ab﹣b2=5.即2a2+5ab﹣b2=5.法二、∵a2+2ab=2,ab﹣b2=1,∴a2=2﹣2ab,﹣b2=1﹣ab.∴2a2+5ab﹣b2=2(2﹣2ab)+5ab+1﹣ab=4﹣4ab+5ab+1﹣ab=5.【点评】本题主要考查了整式的化简求值,掌握整式的运算法则和整体的思想方法是解决本题的关键.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.【分析】(1)根据题意得出x2﹣2x+3=5,求出x2﹣2x=2,变形后代入,即可求出答案;(2)根据题意求出a+b+5=8,求出a+b=3,再把x=﹣1代入代数式,最后整体代入,即可求出答案;(3)代数式x2﹣2xy+y2=20减去代数式xy﹣y2=6,即可得出答案.【解答】解:(1)根据题意得:x2﹣2x+3=5,即x2﹣2x=2,所以3x2﹣6x﹣1=3(x2﹣2x)﹣1=3×2﹣1=6﹣1=5;(2)∵当x=1时,代数式ax3+bx+5的值为8,∴a+b+5=8,∴a+b=3,当x=﹣1时,ax3+bx﹣6=a×(﹣1)3+b×(﹣1)﹣6=﹣a﹣b﹣6=﹣(a+b)﹣6=﹣3﹣6=﹣9;(3)∵①x2﹣2xy+y2=20,②xy﹣y2=6,∴①﹣②,得x2﹣2xy+y2﹣(xy﹣y2)=20﹣6,整理得:x2﹣3xy+2y2=14.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.【分析】由非负数的和为0得非负数为0,解出x,y的值,代入化简后的代数式求值即可.【解答】解:∵(x+1)2+|y﹣2|=0.∴x+1=0,y﹣2=0,∴x=﹣1,y=2.−12(5xy﹣2x2+3y2)+3(−12xy+23x2+y26)=−52xy+x2−32y2−32xy+2x2+y22=﹣4xy+3x2﹣y2.当x=﹣1,y=2时,原式=﹣4×(﹣1)×2+3×(﹣1)2﹣22=8+3﹣4=7.【点评】本题考查的是整式的化简和非负数的性质,解题的关键是利用非负数的性质求出x,y的值.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.【分析】首先去括号进而合并同类项,再把a,b的值代入计算求出答案即可.【解答】解:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab =4a2b﹣(﹣2ab2﹣2ab+2ab2+a2b)﹣3ab=4a2b+2ab﹣a2b﹣3ab=3a2b﹣ab;当a=12,b=﹣4时,原式=3×(12)2×(−4)−12×(−4)=−3+2=−1.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.【分析】先去括号,然后合并同类项进行化简,根据非负数的性质求出a、b的值代入化简后的结果进行计算即可.【解答】解:原式=12a+2a+6ab−23b2−92a−6ab+b2=−2a+13b2,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,当a=2,b=﹣3时,原式=﹣2×2+13(﹣3)2=﹣4+3=﹣1.【点评】本题考查了整式的加减——化简求值,涉及了去括号法则,合并同类项法则,非负数的性质等,熟练掌握各运算的运算法则以及非负数的性质是解题的关键.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=32a2b﹣2ab2﹣2−32a2b+12ab2﹣2=−32a b2−4.∵2(a−3)2022+|b+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,b+23=0,∴a=3,b=−2 3.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:原式=2xy2+2x2y﹣(2xy2﹣3+3x2y)+2=2xy2+2x2y﹣2xy2+3﹣3x2y+2=(2﹣2)xy2+(2﹣3)x2y+(3+2)=﹣x2y+5;∵(x+2)2≥0,|y−12|≥0,又∵(x−2)2+|y+12|=0,∴x﹣2=0,y+12=0,∴x=2,y=−1 2,∴原式=﹣22×(−12)+5=2+5=7.【点评】本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x 是最大的负整数,y 是绝对值最小的正整数,∴x =﹣1,y =1,∴2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)]=2x 2y ﹣4xy 2﹣(﹣x 2y 2+4x 2y ﹣2xy 2+x 2y 2)=2x 2y ﹣4xy 2+x 2y 2﹣4x 2y +2xy 2﹣x 2y 2=﹣2x 2y ﹣2xy 2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x 2y ﹣2xy 2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.【分析】(1)直接利用去括号,进而合并同类项即可得出答案;(2)结合非负数的性质得出a ,b 的值,代入a ,b 的值得出答案.【解答】解:(1)M =2a 2+ab ﹣4﹣4ab ﹣2a 2﹣2=﹣3ab ﹣6;(2)∵(a ﹣2)2+|b +3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故M=﹣3×2×(﹣3)﹣6=18﹣6=12.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.【分析】先去括号、合并同类项,再根据非负数的性质求出a、b,最后代入化简后的整式求值.【解答】解:3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}=3ab2﹣[2a2b﹣(5ab2﹣6ab2+2a2b)]=3ab2﹣(2a2b﹣5ab2+6ab2﹣2a2b)=3ab2﹣2a2b+5ab2﹣6ab2+2a2b=2ab2.∵(a+3)2+|b﹣2|=0,又∵(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0.∴a=﹣3,b=2.当a=﹣3,b=2时,原式=2×(﹣3)×22=2×(﹣3)×4=﹣24.【点评】本题考查了整式的化简﹣求值,掌握去括号法则、合并同类项法则、非负数的性质及有理数的混合运算是解决本题的关键.36.(2022秋•江都区期末)已知代数式A=x2+xy﹣12,B=2x2﹣2xy﹣1.当x=﹣1,y=﹣2时,求2A﹣B 的值.【分析】将x=﹣1,y=﹣2代入求出A、B的值,再代入到2A﹣B即可.【解答】解:当x=﹣1,y=﹣2时,A=1+2﹣12=﹣9,B=2﹣4﹣1=﹣3,∴2A﹣B=﹣18+3=﹣15.【点评】本题考查整式的加减以及代数式求值,掌握去括号、合并同类项分组是正确解答的前提.37.已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x−12y+2,B=x﹣y﹣1,∴A﹣2B=x−12y+2﹣2(x﹣y﹣1)=x−12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.A﹣2B=﹣x+32y+4=1+4=5.【点评】本题考查了整式的加减、整体代入的思想方法,掌握去括号、合并同类项法则是解决本题的关键.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.【分析】利用整式的混合运算化简整式,再根据非负数的性质判断x ,y 的值,代入求值即可.【解答】解:∵A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy) =xy 2﹣3xy 2+xy=﹣2xy 2+xy ,∴A ﹣B=5xy 2﹣xy ﹣(﹣2xy 2+xy )=5xy 2﹣xy +2xy 2﹣xy=7xy 2﹣2xy ,∵(x +1)2+|3﹣y |=0,∴x +1=0,3﹣y =0,∴x =﹣1,y =3,∴原式=7xy 2﹣2xy=7×(﹣1)×32﹣2×(﹣1)×3=﹣7×9+6=﹣63+6=﹣57.【点评】本题考查了整式的混合运算化简求值,非负数的性质,解题的关键是掌握整式的混合运算,非负数的性质.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.【分析】(1)先把A 、B 表示的代数式代入,然后化简求值;(2)把a 、b 的值代入化简的代数式,计算得结果.【解答】解:(1)∵A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a ,∴A﹣3B=2a2b﹣5ab2﹣3(a2b﹣2ab2﹣a)=2a2b﹣5ab2﹣3a2b+6ab2+3a=﹣a2b+ab2+3a.(2)当a=2,b=﹣1时,A﹣3B=﹣22×(﹣1)+2×(﹣1)2+3×2=4+2+6=12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=1 5.当x=2,y=15时,原式=﹣5×2﹣5×1 5=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.【分析】先根据代数式的差与字母x 无关,求出a 、b 的值,再化简代数式,代入计算.【解答】解:x 2+ax ﹣y +b ﹣(bx 2﹣3x +6y ﹣3)=x 2+ax ﹣y +b ﹣bx 2+3x ﹣6y +3=(1﹣b )x 2+(a +3)x ﹣7y +b +3.∵多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,∴1﹣b =0,a +3=0.∴b =1,a =﹣3.3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)=3a 2﹣6ab ﹣3b 2﹣4a 2﹣4ab ﹣4b 2=﹣a 2﹣10ab ﹣7b 2.当b =1,a =﹣3时.原式=﹣(﹣3)2﹣10×(﹣3)×1﹣7×12=﹣9+30﹣7=14.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及绝对值的意义是解决本题的关键.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.【分析】首先对题中前一个代数式合并同类项,由代数式的值与字母x 无关求得a 、b 的值,再把a 、b 的值代入后一个代数式计算即可.注意第二个代数式先进行合并同类项,可简化运算.【解答】解:x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6=(1﹣2b )x 2+(a +3)x ﹣6y +5,因为此代数式的值与字母x 无关,所以1﹣2b =0,a +3=0;解得a =﹣3,b =12,13a 3−2b 2−14a 3+3b 2 =112a 3+b 2,当a=﹣3,b=12时,上式=112×(﹣3)3+(12)2=−2.【点评】此题考查的知识点是整式的加减﹣化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为0.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.【分析】原式去括号合并后,根据结果与x取值无关求出a与b的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=5ab2﹣a2b﹣2a2b+6ab2=11ab2﹣3a2b=﹣33﹣27=﹣60.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以y=2 5.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−1 2;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b =3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。

[真题]初三数学中考化简求值专项练习题及答案解析

[真题]初三数学中考化简求值专项练习题及答案解析

本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除数学中考化简求值专项练习题注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1.化简,求值:111(11222+---÷-+-m m m m m m ), 其中m =3.2.先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4503.化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x4.计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a .5.6、先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6.7.先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8.先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9.先化简,再求值:222211y xy x xy x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .10.先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =.11.先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)12.22221(1)121a a a a a a +-÷+---+.13.先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.14.先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

福建中考数学化简求值

福建中考数学化简求值

福建中考数学化简求值在福建中考数学考试中,化简求值是一个常见的题型。

化简是指将一个复杂的式子简化成一个简单的形式,求值是指计算出式子的具体数值。

化简求值题通常是通过一系列的运算步骤和性质转换,将复杂的式子逐步还原为简单的形式,最后求得结果。

在解决化简求值题时,我们通常要运用一些基本的数学性质,例如整数的加减乘除运算法则、分数的加减乘除运算法则、方幂运算法则、根式的运算法则等等。

同时,我们还需要灵活运用各种计算技巧,如因式分解、配方法、同底数运算等,以简化式子并快速求得结果。

首先,化简求值题中常见的一个情况是分式的化简。

在分式的化简中,我们需要运用到分式的加减乘除运算法则,通过将分子分母进行合并、约分等操作,将复杂的分式化简为简单的分式,从而便于求值。

同时,我们还需要注意辅助运算的顺序,以确保计算的正确性。

其次,方幂和根式的化简也是化简求值题中常见的情况。

在方幂的化简中,我们需要运用到方幂运算法则,通过合并同底数的幂、分解乘幂等操作,将复杂的方幂化简为简单的形式。

而在根式的化简中,我们需要运用到根式的乘方、除法等运算法则,通过化简根号下的数为最简形式,进而方便计算。

最后,化简求值题可能还涉及到其他一些数学知识点的运用,如代数式的化简、三角函数的化简等。

在这些情况下,我们需要根据具体的题目要求,灵活运用相关的数学理论和方法,将复杂的式子逐步简化,并最终求出具体的数值。

总而言之,在解决福建中考数学化简求值题时,我们需要熟练掌握基本的数学性质和运算规则,善于灵活运用各种计算技巧,同时要注意运算的顺序和细节处理。

只有这样,我们才能准确、高效地完成化简求值题,并在考试中取得好成绩。

希望通过本文的介绍,能够帮助大家更好地理解和应对福建中考数学化简求值题。

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。

2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。

九年级化简题知识点

九年级化简题知识点

九年级化简题知识点化简题是数学中的一种常见题型,通过对给定的数式或表达式进行简化,得出一个更简洁的形式。

在九年级数学学习中,掌握化简题的解题方法和相关知识点是非常重要的。

本文将介绍九年级化简题的几个主要知识点。

一、化简表达式化简表达式是化简题中常见的一种形式。

化简表达式的目的是使得数学表达式更简洁,方便计算和理解。

在化简表达式的过程中,我们主要运用以下几个知识点:1. 合并同类项:合并同类项是化简表达式的常用方法,即将具有相同的字母指数的项进行合并。

例如,化简表达式3x + 2x - 5x,我们可以合并前面三项得到(x)。

2. 因式分解:因式分解是将表达式拆分成更简单的因式相乘的形式。

例如,因式分解表达式 x^2 - y^2,我们可以得到(x - y)(x + y)。

3. 去括号:去括号也是化简表达式的一种方法,在计算过程中,可以去掉不必要的括号。

例如,化简表达式 3(2x + 5),我们可以去括号得到 6x + 15。

二、化简方程化简方程是另一种常见的化简题形式。

化简方程的目的是将方程简化成更简单的形式,以便于求解。

在化简方程的过程中,我们主要运用以下几个知识点:1. 合并同类项:合并同类项是化简方程的常用方法,即将具有相同的字母指数的项进行合并。

例如,化简方程 3x + 2x = 10,我们可以合并前面两项得到 5x = 10。

2. 移项:移项是将方程中的项移到等号的另一边,以便于解出未知数。

例如,移项解方程 2x + 5 = 10,我们可以将5移到等号的右边得到 2x = 10 - 5。

3. 去括号:去括号也是化简方程的一种方法,在计算过程中,可以去掉不必要的括号。

例如,化简方程 2(x + 3) = 10,我们可以去括号得到 2x + 6 = 10。

三、化简分式化简分式是九年级数学中常见的一种题型。

化简分式的目的是将分式表达式简化成更简单的形式,以便于计算和理解。

在化简分式的过程中,我们主要运用以下几个知识点:1. 约分:约分是将分子和分母的公因数约去的过程。

专题13 整式的化简求值(解析版)

专题13 整式的化简求值(解析版)

专题13 整式的化简求值【直击考点】【典例分析】类型一先化简,再直接代入求值【例1】(2021•广东模拟)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【答案】-6【解答】解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.【练1】(2019秋•新华区校级月考)先化简再求值[(3x+2)(3x﹣2)﹣(x+2)(5x﹣2)]÷4x,其中x=1.【答案】-1【解答】解:原式=[9x2﹣4﹣(5x2+8x﹣4)]÷4x=(9x2﹣4﹣5x2﹣8x+4)÷4x=(4x2﹣8x)÷4x=x﹣2.当x=1时,原式=1﹣2=﹣1.【练2】(2020秋•紫阳县期末)先化简,再求值:(﹣x﹣2y)(2y﹣x)+(x+2y)2﹣x(2y﹣x),其中x=﹣,y=2.【答案】﹣.【解答】解:原式=x2﹣4y2+x2+4xy+4y2﹣2xy+x2=3x2+2xy,当时,原式=3×(﹣)2+2×(﹣)×2=﹣.类型二先化简,再整体代入求值【例2】(2020秋•东城区期末)已知x2﹣x+1=0,求代数式(x+1)2﹣(x+1)(2x﹣1)的值.【答案】3【解答】解:原式=x2+2x+1﹣2x2+x﹣2x+1=﹣x2+x+2,当x2﹣x+1=0,即﹣x2+x=1时,原式=1+2=3.【练1】(2019秋•古丈县期末)已知a﹣b=3,求a(a﹣2b)+b2的值.【答案】9【解答】解:原式=a2﹣2ab+b2=(a﹣b)2,当a﹣b=3时,原式=32=9.【练2】(2019•雨花区校级一模)先化简,再求值:(a+b)(a﹣b)+(a+b)2﹣2a2,其中ab=﹣1.【答案】-2【解答】解:原式=a2﹣b2+a2+2ab+b2﹣2a2=2ab,当ab=﹣1时,原式=﹣2.类型三先化简,再利用特殊条件带入求值【例3】(2020秋•富顺县校级期中)先化简,再求值:4x2﹣xy﹣(y2+2x2)+2(3xy﹣y2),其中x、y满足(x+1)2+|y﹣|=0.【答案】-1【解答】解:原式=4x2﹣xy﹣y2﹣2x2+6xy﹣y2=2x2+5xy﹣2y2;∵(x+1)2+|y﹣|=0,且(x+1)2≥0,|y﹣|≥0,∴x+1=0,y﹣=0,∴x=﹣1,y=∴原式=2×(﹣1)2+5×(﹣1)×﹣2×()2=2×1﹣﹣2×=2﹣﹣=﹣1.【练1】(2021春•昭通期末)先化简,再求值:,其中(x+1)2+|3﹣2y|=0.【答案】-2【解答】解:原式=y+12x﹣4y2﹣9x+4y2=y+3x;∵(x+1)2+|3﹣2y|=0,∴x+1=0,3﹣2y=0,解得x=﹣1,y=,∴原式=+3×(﹣1)=1﹣3=﹣2.【练2】(2020秋•江阴市期中)先化简,再求值:3(2x2y+xy2)﹣(5x2y+3xy2),其中.【答案】﹣【解答】解:3(2x2y+xy2)﹣(5x2y+3xy2)=6x2y+3xy2﹣5x2y﹣3xy2=x2y;∵,又∵|x﹣1|≥0.(y+)2≥0,∴x﹣1=0,y+=0.∴x=1,y=﹣.当x=1,y=﹣时,原式=x2y=12×(﹣)=﹣.【例4】(2020秋•淅川县期末)已知(x2+mx+n)(x﹣1)的结果中不含x2项和x项,求m、n的值.【答案】m=1,n=1.【解答】解:(x2+mx+n)(x﹣1)=x3+(m﹣1)x2+(n﹣m)x﹣n.∵结果中不含x2的项和x项,∴m﹣1=0且n﹣m=0,解得:m=1,n=1.【练1】(2021春•江阴市校级月考)若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2019q2020的值.【答案】(1)p=,q=3 (2)3【解答】解:(1)(x+3p)(x2﹣x+q)=x3﹣x2+qx+3px2﹣3px+pq=x3+(3p﹣1)x2+(q﹣3p)x+pq,∵不含x项与x2项,∴3p﹣1=0,q﹣3p=0,∴p=,q=3;(2)当p=,q=3时,原式=()2019×32020=()2019×32019×3=(×3)2019×3=12019×3=1×3=3.【跟踪训练】1.(2019秋•芙蓉区校级月考)整式的化简求值:(1)(a+2b)(a﹣2b)+(a﹣2b)2+4ab,其中a=1,;(2)(﹣a2b+2ab﹣b2)÷b+(a+b)(a﹣2b),其中,b=﹣1.【答案】(1)2 (2)【解答】解:(1)原式=(a+2b)(a﹣2b)+(a﹣2b)2+4ab=a2﹣4b2+a2﹣4ab+4b2+4ab=2a2,当a=1,,∴原式=2×1=2.(2)原式=(﹣a2b+2ab﹣b2)÷b+(a+b)(a﹣2b)=﹣a2+2a﹣b+a2﹣ab﹣2b2=2a﹣b﹣ab﹣2b2,其中,b=﹣1.原式=1﹣(﹣1)﹣×(﹣1)﹣2×1=2+﹣2=.2.(2020秋•崇川区校级期中)先化简,再求值:(1)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=2(2)已知:(x﹣3)2+|y+|=0,求3x2y﹣[2xy2﹣2(xy﹣x2y)+3xy]+5xy2的值【答案】(1)0 (2)2【解答】解:(1)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5xy+5y,当x=1,y=2时,原式=﹣5×(﹣2)+5×(﹣2)=0;(2)∵(x﹣3)2+|y+|=0且(x﹣3)2≥0,|y+|≥0∴(x﹣3)2=0,|y+|=0∴x﹣3=0,y+=0∴x=3,y=﹣,原式=3x2y﹣2xy2+2(xy﹣x2y)﹣3xy+5xy2=3x2y﹣2xy2+2xy﹣3x2y﹣3xy+5xy2=3xy2﹣xy=3×3×(﹣)2﹣3×(﹣)=2.3.利用整式的乘法化简求值若x﹣y=﹣1.xy=2,求(x﹣1)(y+1)的值.【答案】0【解答】解:原式=xy+x﹣y﹣1,当x﹣y=﹣1,xy=2时,原式=2﹣1﹣1=0.4.(2021春•泰兴市月考)已知(x﹣2)(x2﹣mx+n)的结果中不含x2项和x的项,求(m+n)(m2﹣mn+n2)的值.【答案】56【解答】解:原式=x3﹣mx2+nx﹣2x2+2mx﹣2n=x3+(﹣m﹣2)x2+(n+2m)x﹣2n,由结果不含x2项和x项,得到﹣m﹣2=0,n+2m=0,解得:m=﹣2,n=4,∴(m+n)(m2﹣mn+n2)=(﹣2+4)[(﹣2)2﹣(﹣2)×4+42]=2×28=56.5.(2020秋•洮北区期末)已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含x2项和常数项.求a,b的值【答案】-12【解答】解:原式=2ax2+4ax﹣6x﹣12﹣x2﹣b =(2a﹣1)x2+(4a﹣6)x+(﹣12﹣b),∵不含x2项和常数项,∴2a﹣1=0,﹣12﹣b=0,∴a=,b=﹣12.。

专项 整式和分式化简求值 中考数学

专项  整式和分式化简求值 中考数学

抢分通关03 整式和分式化简求值目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!易错点一 整式化简中整体代入求值【例1】(23-24八年级上·四川巴中·期末)先化简,再求值:()()()22262a a b a b a b b b -++-+-÷⎡⎤⎣⎦,其中210a b -+=.【例2】(2024·江苏盐城·模拟预测)已知2230x x --=,求代数式()()()2(1)433x x x x x -+-+-+的值.【例3】(2024·浙江宁波·模拟预测)(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭(2)已知2410x x --=,求代数式()()()22311x x x --+-的值.利用整式的运算法则,乘法公式进行化简,再整体代入求值.易错点二 分式化简后取值要使分式有意义【例1】(2024·陕西榆林·一模)先化简:21221121x x x x x ++⎛⎫-÷ ⎪--+⎝⎭,再在1-,1,2中选择一个合适的数代入求值.【例2】(2024·浙江宁波·模拟预测)先化简,再求值:211121m m m m ⎛⎫-÷ ⎪+++⎝⎭,并从1-,0,1选一个合适的数代再求值.【例3】(2024·湖北黄冈·模拟预测)先化简,再求值:()()21111a a a ⎡⎤+÷⎢⎥--⎢⎥⎣⎦,化简后从23a -<<的范围内选一个你喜欢的数作为a 的值代入求值.题型一 整式的运算【例1】(2024·江苏宿迁·一模)计算:()1012024tan 302π-⎛⎫+-︒ ⎪⎝⎭.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,选择自己喜欢的数代入求值事,一定要注意使分式有意义.【例2】(2024·广东深圳·()101220246cos304π-⎛⎫--+--︒ ⎪⎝⎭.1.(2024·四川内江·一模)计算:2202501(1)3tan 30(2024)2022|2π-⎛⎫-++︒--+ ⎪⎝⎭.2.(2024·甘肃白银·一模)计算:()21sin 45202412-︒---⎛⎫⎪⎝⎭-.题型二 整式化简后直接代入求值【例1】(2024·广西·一模)先化简,再求值:()()()23332x x x x x +-+-÷,其中4x =.【例2】(2024·广西南宁·一模)先化简,再求值:()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦,其中1x =,1y =-.负指数幂,零次幂,立方根,特殊角的三角函数值,再算乘法,最后算加减即可求解.整式的混合运算,正确掌握相关运算法则是解题关键.根据平方差公式及多项式除以单项式法则分别计算乘除,再相加求解.1.(2024·湖南长沙·一模)先化简,再求值:()()()()222a b a b a b a a b -++---,其中20241a b ==-,.2.(2024·湖南娄底·一模)先化简,再求值:()()()()22224x y x y x y x x y -+-+--,其中=1x -,2y =.题型三 分式中化简后直接代入求值【例1】(2024·广东湛江·一模)先化简,再求值:22692333x x x x x x x ⎛⎫-+++÷- ⎪-+⎝⎭,其中3x =.【例2】(2024·安徽合肥·一模)先化简,再求值: 22111x x x x x +-⎛⎫-÷ ⎪+⎝⎭,其中2x =-.1.(2024·湖北孝感·一模)先化简,再求值:526222m m m m -⎛⎫+-÷⎪--⎝⎭,其中3m =-+.2.(2024·江苏淮安·模拟预测)先化简,再求值:22469111x x x x -+⎛⎫-÷⎪+-⎝⎭,其中3x =+利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再把x 值代入求值.题型四 分式中化简后整体代入求值【例1】(2024·江苏宿迁·一模)先化简,再求值:223x x xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足210x y +-=.【例2】(2024·广东东莞·一模)先化简,再求值:232()121x x x x x x --÷+++,其中x 满足220180x x +-=.1.(2024·浙江宁波·一模)(1()045tan 602cos30tan 303π︒+︒-︒︒+-(2)已知11a a -=,求()2225161122444a a a a a a a a -⎡⎤---÷-⎢⎥--++⎣⎦的值.题型五 分式中化简与三角函数值求值【例1】(新考法,拓视野)(2024·辽宁盘锦·模拟预测)先化简,再求值:22931693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中112cos 603x -⎛⎫=+︒ ⎪⎝⎭.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,整体代入求值.【例2】(2024·新疆伊犁·一模)先化简,再求值:2211211mm m m⎛⎫÷+⎪-+-⎝⎭,其中3tan301m=︒+.1.(2024·黑龙江哈尔滨·一模)先化简,再求代数式24211339a aa a-+⎛⎫-÷⎪++⎝⎭的值,其中2cos301a=︒+.题型六分式中化简与不等式(方程)组求值【例1】(新考法,拓视野)(2024四川达州·模拟预测)先化简,再求值:222221211a a aa a a a+++⎛⎫-÷⎪-+⎝⎭,从不等式组31511325134x xx x-+⎧-≤⎪⎨⎪-+⎩<的整数解中选择一个适当的数作为a的值代入求值.【例2】(2024·四川达州·一模)先化简,再求值:2222222⎫⎛-÷+⎪--+-⎝⎭b a b aa ab a ab b b a,其中a,b满足()230a b+-=,利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再根据负指数幂,零次幂,立方根,特殊角的三角函数值,代入求值.利用分式运算法则进行化简,注意分式最后要约分得到最简结果,再求出新的数值,代入求值.1.先化简,再求值:28213331a a a a a a a ++⎛⎫+-÷- ⎪+++⎝⎭,其中a 为不等式组121224a a -≤-⎧⎪⎨-≤-⎪⎩的整数解.题型七 分式中化简过程正误的问题【例1】(新考法,拓视野)(2024·浙江宁波·一模)先化简,再求值:21424a a ++-,其中2a .小明解答过程如下,请指出其中错误步骤的序号,并写出正确的解答过程.原式=()()222114424a a a a ⋅-+⋅-+-……①24a =-+……②2a =+……③当2a =时,原式=【例2】(2024·山西临汾·一模)(1)计算:()21183522-⎛⎫-⨯---+⨯ ⎪⎝⎭;(2)下面是小明同学化简分式2239211933a a a a a a a ⎛⎫-++-÷⎪-++⎝⎭的过程,请认真阅读.完成下列任务:解:原式()()()332113333a a a a a a a a ⎡⎤-++=-÷⎢⎥+-++⎣⎦……第一步3211333aa a a a a ++⎛⎫=-÷ ⎪+++⎝⎭……第二步1331a a a a ++=⋅++……第三步利用分式运算法则进行化简,注意分式最后要约分得到最简结果.1=.……第四步任务:①第一步变形用的数学方法是______;②第二步运算的依据是______;③第______步开始出错,错误的原因是:______;④化简该分式的正确结果是______.1.(2024·山西晋城·一模)(1)计算:12111122225-⎛⎫⎛⎫+⨯--÷⎪ ⎪⎝⎭⎝⎭(2)下面是小宇同学进行分式化简的过程,请认真阅读并完成相应任务.224216926a a a a a -+÷-+++()()()222231(3)2a a a a a -++=⋅-++……第一步()2213a a -=-+……第二步()22333a a a a -+=-++……第三步()()223a a =--+……第四步7a =-……第五步任务一:填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是____________.②第______步开始出现错误.任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请根据平时学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.抢分通关03 整式和分式化简求值 解析目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)化简求值题是全国中考的热点内容,更是全国中考的必考内容。

常考点 化简与求值-中考数学必背知识手册

常考点 化简与求值-中考数学必背知识手册

常考点01 化简与求值一、求代数式的值 求代数式的值的一般方法是先用数值代替代数式中的每个字母,然后计算求得结果.对于特殊的代数式,也可以采用如下方法来解:(1)给出代数式中所有字母的值.该类题一般是先化简代数 式,再代入字母的值,然后进行计算.(2)给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化为可以用已知关系表示的形式,再代入计算【例】(2021·广东中考真题)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【分析】 根据1136x x +=,利用完全平方公式可得2125(36x x -=,根据x 的取值范围可得1x x -的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∴2211125()(436x x x x x x -=+-⋅=, ∵01x <<, ∴1x x <, ∴1x x -=56-, ∴221x x -=11()(x x x x +-=135(66⨯-=6536-, 故答案为:6536-二、整式的运算及求值在运用公式或运算法则进行运算时,要先判断式子的结构特征,再确定解题思路,使解题更加方便、快捷.题型归纳【例】(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题.【详解】()()()221a a a a +-+-224a a a =-+-4a =-当4a =时,原式44-=. 三、分解因式的常用方法分解因式的题目一般采用“一提取、二公式”的方法进行综合分解,即如果整式中含有公因式,要先提取公因式,再看余下的式子能否用公式法继续分解,直至不能再分解为止.选公式常根据项数 选取,“二项”考虑平方差公式,“三项”考虑完全平方公式.【例】(2021·山东威海市·中考真题)分解因式:32218x xy -=________________.【答案】()()233x x y x y +-【分析】先提公因式,再利用平方差公式即可分解.【详解】解:()()()322221829=233x xy x x y x x y x y -=-+-.故答案为:()()233x x y x y +-四、分式的化简求值分式是有别于整式的另一类重要代数式,也是中考的必考内容,通常以填空题、选择题、解答题的形式出现。

中考复习分式整式化简求值初三

中考复习分式整式化简求值初三

一.教学目标:1、分式的化简求值,理解分式的化简步骤,以及在化简过程中的注意事项2、整式的化简求值,了解整式化简的步骤,以及在化过程中的注意事项1.教学重难点:1分式的约分和通分化简以及化简过程中的方法技巧2整式幂的运算,合并同类项以及化简过程中的方法技巧分式的化简求值一、分式的概念一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫作分式.分式会AB中A叫作分子,B叫作分母.注意:1判断一个式子是否为分式,关键是看分母中是否有字母.2分式与整式的根本区别:分式的分母中含有字母,如12,2x是整式,而2x是分式.3分式有无意义的条件:①若0B≠,则分式AB有意义;②若0B=,则分式AB无意义.4分式的值为零的条件:若{00A B=≠,则分式A B的值为零,反之也成立.二、分式的基本性质分式的基本性质:分式的分子与分母同乘或除以同一个不等于0的整式,分式的值不变.用式子表示是:A A MB B M⋅=⋅,()0A A MMB B M÷=≠÷,其中A,B,M是整式.课题分式整式的化简求值学生姓名年级初三日期注意:1分式的基本性质可类比分数的基本性质去理解记忆.利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形.2当分式的分子或分母是多项式,运用分式的基本性质时,要先把分式的分子或分母用括号括上.再将分子与分母同乘或除以相同的整式.三、约分、最简分式及通分的概念1.约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分.说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:1当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式.2当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式.约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式.当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.例如2233a x a b x b+=+是错误的. 2.最简分式分子与分母没有公因式的分式叫作最简分式.判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式1除外.分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式.注意:1最简分式与小学学过的最简分数类似.2最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线.形如322x y ++,233ax y ++的分式都不是最简分式. 3.通分根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.通分的关键是确定几个分式的最简公分母.4最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.注意:确定最简公分母的一般方法:1如果各分母都是单项式,确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母,连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的.这样得到的积就是最简公分母.学科网2如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求.方法技巧归纳方法技巧 一应用分式概念解题的规律1.分式的判别方法 根据定义判定式子A B 是否为分式要注意两点:一是A ,B 都是整式,二是B 中含字母且0B ≠.判断一个代数式是否为分式,还应注意不能把原式变形如约分等,而只能根据它的最初形式进行判断.如根据()()()()22222a b a b a b a b a b a b +---==++,判定()222a b a b -+不是分式,这是错误的. 2.对分式有无意义或值为0的条件判断二分式基本性质的应用分式的基本性质是分式恒等变形和分式运算的理论依据,正确理解和熟练掌握这一性质是学好分式的关键.利用分式的基本性质可将分式恒等变形,化简分式,简化计算等.1.约分参考三12.通分参考三3三分式值的特殊情况拓展1.分式的值为1或1-的讨论 若分成()10A B B =≠,则A B =,反之也成立;若分式()10A B B=-≠,则A 与B 互为相反数,反之也成立.2.分式的值为正数的讨论分式的值为正数时,分式的分子与分母同号,利用这一关系构造不等式组可求出待定字母的取值范围.3.分式的值为负数的讨论分式的值为负数时,分式的分子与分母异号,利用这一关系构造不等式组可求出待定字母的取值范范围.4.分式的值为整数的讨论若分式的值为整数,则分母必为分子的约数,利用这一关系可对分母进行讨论.四、分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:1乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:a c a c b d b d⋅⋅=⋅. 2除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:ac ad a d b d b c b c⋅÷=⋅=⋅. 3分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:n n n a a b b ⎛⎫= ⎪⎝⎭n 是正整数.注意:1法则中的字母a ,b ,c ,d 所代表的可以是单项式,也可以是多项式. 2运算的结果必须是最简分式或整式.五、分式的加减法1.同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减. 用式子表示是:a b a b c c c ±±=. 注意:1“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,2运算结果必须化为最简分式或整式.2.异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减. 用式子表示是:ac ad bc ad bc b d bd bd bd±±=±=. 六、分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行.注意:1实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度.2结果必须化为最简分式或整式.3分子或分母的系数是负数时,要把“-”提到分数线的前边.4对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘.方法技巧归纳方法技巧 一分式的乘除法及乘方运算的解题技巧1.分式的乘除法分式的乘除运算可以统一成乘法运算,分式的乘法一般情况下是先约分再相乘,这样做省时简单易行,又不易出错;当除式或被除式是整式时,可以看作分母是1的式子,然后再按分式的乘除法则计算.2.分式的乘方做分式乘方时,一是注意养成先确定结果的符号,再做其他运算的良好习惯;二是注意运算顺序,先乘方,再乘除,最后加减.二分式加减运算的解题技巧 分式的加减法与分数的加减法的运算法则实质是相同的,分为同分母加减法和异分母加减法,所不同的是分式的加减运算比分数的加减运算要复杂得多,它是整式运算、因式分解和分式运算的综合运用.分式加减运算需要运用较多的基础知识,运算步骤增多,符号变换复杂,解题方法灵活多样.三分式化简、求值的解题技巧分式的化简、求值问题,一是化简要求值的分式,只要能化简就考虑化简;二是化简已知条件,化到最简后,再考虑代入求值. 四分式混合运算的解题技巧分式的混合运算,除了掌握运算顺序外,在运算过程中,可灵活运用交换律、结合律、分配律使运算简化,值得提醒的是最后结果必须是最简分式或整式.五分式通分的解题技巧分式的加减运算,分同分母分式相加减和异分母分式相加减,对于异分母分式的加减法,有时直接通分会很繁琐,我们可以根据式子的特点,灵活的采用不同的方法通分,从而起到事半功倍的效果.1.分组通分2.逐项通分3.公式()11111n n n n =-++的运用 核心考点 分式的化简求值分式化简求值是中考的热点,常以解答题的题型进行考查,主要考查分式的运算能力.在考查时经常运用分式的基本性质进行运算,解题时要充分运用分式运算法则进行求解.经典示例化简分式:2223442x x x x x ---+-÷234x x --,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.答题模板第一步,化简:化简运算过程中要注意约分、通分时分式的值保持不变.第二步,运算:由已知条件,根据分式的基本性质,适当把分式进行变形,使变形后的分式出现已知条件的形式,然后把已知条件代入变形后的分式,来求分式的值. 第三步,求解:分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.四步,反思:查看关键点、易错点,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算..模拟训练先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中011(3)()2a -=π+. 1.2017·湖南常德先化简,再求值:243133x x x x -+---22212322x x x x x -+--+-,其中x =4. 2.2017·湖北襄阳先化简,再求值:2111()x y x y xy y +÷+-+,其中x 52,y 5-2.3.2017·吉林某学生化简分式21211x x ++-出现了错误,解答过程如下: 原式=12(1)(1)(1)(1)x x x x ++-+-第一步 =12(1)(1)x x ++-第二步 =231x -.第三步 1该学生解答过程是从 步开始出错的,其错误原因是 ; 2请写出此题正确的解答过程.4.先化简,再求值:22124)(1)442a a a a a a a -+-÷--+-,其中a 满足不等式组7223a a ->⎧⎨>⎩的整数解.5.先化简,再求值:221a a +-2142a a +÷1-2414a a +,其中a 是不等式x -413x ->1的最大整数解.6.已知1A x +-3B x -=5(1)(3)x x x ++- 其中A ,B 为常数,求A 2 018B 的值. 整式的化简求值一、整式的概念1.单项式和多项式1单项式的概念:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,1,a …2单项式的系数:单项式中的数字因数叫做这个单项式的系数;3单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 注①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或1,如ab 的系数是1,a 3b 的系数是1. 4多项式的概念:由几个单项式相加组成的代数式叫做多项式;5多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项;6多项式的次数:次数最高的项的次数就是这个多项式的次数;学科网 7常数项:代数式中不含字母的项叫做常数项,如6x 22x 7中的常数项是7. 2. 同类项多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项所有常数项也看做同类项.3.合并同类项1定义:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 2理论依据:逆用乘法分配律.3法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.注①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式.(4)合并同类项的步骤:第一步:观察多项式中各项,准确找出同类项,项数比较多时,不同的同类项可以给出不同的标记;第二步:利用乘法的分配律,把同类项的系数加在一起用小括号,字母和字母的指数不变;第三步:写出合并后的结果.4.去括号法则去括号规律要准确理解,去括号应对括号的每一项的符号都予以考虑,做到要变都变;要不变,则谁也不变;法则顺口溜:去括号,看符号,是“+”号,不变号;是“-”号,全变号.另外,括号内原有几项去掉括号后仍有几项.注如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.二、整式的计算1.整式的加减法整式的加减实质上就是合并同类项,若有括号,要先用“去括号法则”去掉括号,然后合并同类项.注1两个整式相减时,减数一定要先用括号括起来;2整式加减的最后结果中:不能含有同类项;一般按照某一字母的降幂或升幂排列;不能出现带分数,带分数要化成假分数.2.幂的运算1同底数幂的乘法同底数幂运算法则:同底数幂相乘,底数不变,指数相加,即()m n m n a a a m n +⋅=、为正整数m 、n 均为正整数.学科网推导公式:同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 ()m n p m n p a a a a m n p ++⋅⋅=、、为正整数.底数互换关系 22()()n n a b b a -=- ,2121()()n n b a a b ++-=--注同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.2幂的乘方的运算性质运算性质: 幂的乘方,底数不变,指数相乘,即()m n mn a a =m 、n 均为正整数. 注幂的乘方的底数是指幂的底数,而不是指乘方的底数.指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.3积的乘方的运算性质运算性质:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘,即:()n n n ab a b =n 为正整数.补充:()p m n mp np a b a b = m 、n 、p 是正整数.注运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.3.整式的乘除1 单项式乘单项式法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里的字母,则连同它的指数作为积的一个因式.注计算时要运用乘法交换律,乘法结合律2单项式乘多项式法则:单项式与多项式相乘,因单项式乘多项式的每一项,再把所得的积相加注运用乘法分配律转化成单项式乘单项式3多项式乘多项式法则:多项式与多项式相乘,先用多项式的每一项乘里一个多项式的每一项,再把所得的积相加.4.乘法公式1完全平方公式:a+b2=a2+2ab+b2, ab2=a22ab+b2解读:()222首尾首首尾尾,公式中的a、b可以是单独的数字,字母,单+=+⨯⨯+2项式或多项式2平方差公式:a+bab=a2b2核心考点整式的化简求值1.整式化简求值在广东省中考中,在解答题部分,大多以先化简再求值的题型出现,要求熟悉乘法公式的特点,看清项数及公式形式中的a、b,准确进行计算;2.要准确认识平方差和完全平方公式,可以结合面积法证明这两个公式,这种证明方法在初中数学中体现了数形结合的思想;3.在化简求值时要注意:当字母是负数时,代入后应加上括号;当字母是分数时,遇到乘方也要加括号.经典示例先化简,再求值:2()()2a b a b a +-+,其中1a =,2b =.答题模板第一步,计算:利用整式乘法和除法法则或乘法公式进行展开.第二步,化简:利用整式的加减法法则合并同类项化简. 第三步,求值:把字母的值代入化简结果计算.第四步,反思:反思回顾,查看关键点、易错点,对结果进行估算,检查规范性. 模拟训练1.计算:(3)(1)(2)a a a a +-+-.2. 先化简,再求值.()()223234(1)(2)x x x x x +---+-,其中3x =-.1.2017·浙江宁波先化简,再求值:2215x xx x ,其中32x . 2.2017·湖南怀化先化简,再求值:2212112a a a a a ,其中21a .3.2017·江苏无锡计算:a +ba ﹣b ﹣aa ﹣b4.2017·浙江嘉兴化简:(2)(2)33m m m m +--⨯. 5.2017·河南先化简,再求值: 2(2)()()5()x y x y x y x x y ++-+--,其中21x =,21y =.。

(名师整理)最新数学中考复习《化简求值》考点精讲课件

(名师整理)最新数学中考复习《化简求值》考点精讲课件

学习了本课后,你有哪些收获和感想? 告诉大家好吗?
曾经以为是艰难困苦的关头,却 成了中国人干得最欢、最带劲、最舒 坦的黄金时代。
——钱三强
3x 6 x,
4x 10
5
x
1, 2
x
2
x
3 2x
g( 1
x
x
3
x x2
3 9
)
【自主解答】解不等式3x-6≤x,得x≤3,
解不等式
,得x>0,
则不等式组的解集为0<x≤3,
所以不等式组的整数解为1,2,3,
4x 5 x 1 10 2
x
2
x
3 2x
g( 1
x
x
3
x x2
3 9
【解析】原式=
[
x
x2
x 2
x 1
x 22
]
4
x
x
取x=1,得原式=-
x2 x
2
[ xx 22
xx 1 xx 22
]
4
x
x
x
1
22

1
1 22
1. 9
3.(2019·天水中考)先化简,再求值:
,
其中x的值从不等式组 的整数解中选取.

x 1, 2x 1<5
x
x2 1
( x2 x 1) x2 2x 1
)
∵x≠±3,1,∴x=2,∴原式=1.
x 3 x2 3x
x3
x 12 g[x 3x 3 x 3x 3]
x x
3
12
x g x
1x 3x
3 3
x
1, 1
类型三 分式化简后,自选字母的值代入求值 【例3】(2018·遵义中考)化简分式

初中数学专题1:数与式分式化简求值

初中数学专题1:数与式分式化简求值

数学中考专题一:分式化简求值一、考纲要求(分值范围17-20分)(一)、有理数部分1.了解部分:|a|的含义。

2.理解部分:有理数的概念、相反数、绝对值、乘方的意义、有理数的混合运算、有理数的运算律。

3.掌握部分:用数轴上的点表示有理数、比较有理数的大小、相反数、绝对值、有理数的加减乘除乘方运算、有理数的混合运算、有理数的运算律。

4.运用部分:相反数、绝对值、理数的混合运算、有理数的运算律。

(二)、实数部分1.了解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根、无理数和实数的概念及其与数轴上的点的对应关系、近似数的概念、二次根式及最简二次根式的概念、二次根式(根号下仅限于数)加减乘除及四则运算法则。

2.理解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根。

3.掌握部分:求实数的相反数与绝对值、用有理数估计一个无理数的大致范围、用计算机进行近似计算。

4.运用部分:二次根式(根号下仅限于数)加减乘除及四则运算法则(三)、代数式1.了解部分:无。

2.理解部分:用字母表示数的意义、求代数式的值。

3.掌握部分:简单数量关系的分析与表示、求代数式的值。

4.运用部分:求代数式的值。

(四)、整式与分式1.了解部分:整数指数幂的意义和基本性质、分式和最简分式的概念。

2.理解部分:科学记数法、整式的概念、乘法公式(平方差和完全平方公式)3.掌握部分:整式的加减乘法(多项式限一次与二次式)运算、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质、约分和通分、分式的加减乘除运算。

4.运用部分:科学记数法、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质。

5.经历部分:乘法公式(平方差和完全平方公式)。

6.探索部分:乘法公式(平方差和完全平方公式)。

中考复习——化简求值问题(整体代入法)(解析版)

中考复习——化简求值问题(整体代入法)(解析版)

中考复习——化简求值问题(整体代入法)一、选择题1、已知a2+3a=1,则代数式2a2+6a-1的值为().A. 0B. 1C. 2D. 3答案:B解答:∵a2+3a=1,∴2a2+6a-1=2(a2+3a)-1=2×1-1=1.2、已知a-b=2,则代数式2a-2b-3的值是().A. 1B. 2C. 5D. 7答案:A解答:∵a-b=2,∴2a-2b-3=2(a-b)-3=2×2-3=1.3、已知x2-2x-3=0,则2x2-4x的值为().A. -6B. 6C. -2或6D. -2或30答案:B解答:∵x2-2x-3=0,∴x2-2x=3,∴2x2-4x=2(x2-2x)=2×3=6.选B.4、已知a+b=12,则代数式2a+2b-3的值是().A. 2B. -2C. -4D. -31 2答案:B解答:∵2a+2b-3=2(a+b)-3,∴将a+b=12代入得:2×12-3=-2.选B.5、若2a-3b=-1,则代数式4a2-6ab+3b的值为().A. -1B. 1C. 2D. 3答案:B解答:4a2-6ab+3b=2a(2a-3b)+3b =-2a+3b=-(2a-3b)=1.选B.6、如果a2+2a-1=0,那么代数式(a-4a)·22aa-的值是().A. -3B. -1C. 1D. 3答案:C解答:(a-4a)·22aa-=24aa-·22aa-=()()22a aa+-·22aa-=a(a+2).=a2+2a,∵a2+2a-1=0,∴a2+2a=1,∴原式=1,选C.7、已知:11a b-=13,则abb a-的值是().A. 13B. -13C. 3D. -3答案:C解答:∵11a b-=13,∴b aab-=13,则abb a-=3.选C.8、已知11x y -=3,则代数式232x xy y x xy y +---的值是( ).A. -72B. -112C.92D.34答案:D 解答:∵11x y-=3, ∴y xxy-=3, ∴x -y =-3xy , 则原式=()()23x y xyx y xy-+--=633xy xyxy xy-+--=34xyxy -- =34. 选D.9、若2a =3b =4c ,且abc ≠0,则2a bc b+-的值是( ).A. 2B. -2C. 3D. -3答案:B解答:令2a =3b =4c =12k ,则a =6k ,b =4k ,c =3k , ∴2a b c b +-=64324k kk k+-⨯=-2.10、已知x +y x -y x -y +4xy x y -)(x +y -4xyx y+)的值是( ).A. 48B. C. 16D. 12答案:D 解答:(x -y +4xy x y -)(x +y -4xyx y+)=()24x y xyx y-+-·()24x y xyx y+-+=()2x yx y+-·()2x yx y-+=(x+y)(x-y),当x+y x-y时,原式.二、填空题11、已知a2+a=1,则代数式3-a-a2的值为______.答案:2解答:∵a2+a=1,∴3-a-a2=3-(a2+a)=3-1=2.12、若mn=m+3,则2mn+3m-5 nm+10=______.答案:1解答:由mn=m+3可得mn-m=3,∴2mn+3m-5 nm+10=3m-3mn+10=3(m-mn)+10=1.13、若x2+x=1,则3x4+3x3+3x+1的值为______.答案:4解答:∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4.14、若m -1m =3,则m 2+21m=______. 答案:11解答:∵(m -1m )2=m 2-2+21m=9, ∴m 2+21m =11, 故答案为:11.15、如果a +b =2,那么代数式(a -2b a )·aa b-的值是______. 答案:2解答:(a -2b a )·aa b -=22a b a -·aa b-=a +b =2.16、若a 2+5ab -b 2=0,则b aa b-的值为______. 答案:5解答:∵a 2+5ab -b 2=0,∴b a a b -=22b a ab -=5ab ab=5.17、若x 2-2x =3,则代数式2x 2-4x +3的值为______. 答案:9解答:∵x 2-2x =3,∴2x 2-4x +3=2(x 2-2x )+3=6+3=9.18、若a +b =4,a -b =1,则(a +1)2-(b -1)2的值为______. 答案:12解答:∵a +b =4,a -b =1, ∴(a +1)2-(b -1)2 =(a +1+b -1)(a +1-b +1)=(a +b )(a -b +2) =4×(1+2) =12.19、已知实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式m 2-n 2的值为______.答案:3解答:∵实数m ,n 满足13m n m n -=⎧⎨+=⎩,则代数式m 2-n 2=(m -n )(m +n )=3. 故答案为:3.20、若实数x 满足x 2-2x -1=0,则2x 3-7x 2+4x -2017=______. 答案:-2020 解答:∵x 2-2x -1=0, ∴x 2-2x =1, 2x 3-7x 2+4x -2017 =2x 3-4x 2-3x 2+4x -2017 =2x (x 2-2x )-3x 2+4x -2017 =6x -3x 2-2017 =-3(x 2-2x )-2017 =-3-2017 =-2020. 三、解答题21、已知实数a 满足a 2+2a -13=0,求21211a a a +-+-÷()()21221a a a a ++-+的值. 答案:17. 解答:21211a a a +-+-÷()()21221a a a a ++-+=21211a a a +-+-÷12/12a a a ++-(()))(())=()()12111a a a a +-++-·()()()2112a a a -++=()21111a a a --++=()()221111a a a a +--++=()221a +=2221a a ++.∵a 2+2a -13=0,∴a 2+2a =13.∴原式=2131+=1722、已知a 2=19,求22211118a a a --+-的值.答案:-16.解答:原式=()22121118a a a ---- =221118a ---, ∵a 2=19, ∴原式=2119118--- =-318 =-16.23、已知1a +1ba ≠b ),求()()a b b a b a a b ---的值.解答:∵1a +1b a b ab+()()a b b a b a a b ---=()()22a b ab a b ab a b ---=()22a b ab a b --=()()()a b a b ab a b -+-=a b ab + 24、已知x 2-4x -1=0,求代数式(2x -3)2-(x +y )(x -y )-y 2的值. 答案:12.解答:原式=4x 2-12x +9-x 2+y 2-y 2 =3x 2-12x +9 =3(x 2-4x +3)∵x 2-4x -1=0,即x 2-4x =1, ∴原式=12.25、实数x 满足x 2-2x -1=0,求代数式(2x -1)2-x (x +4)+(x -2)(x +2)的值. 答案:1.解答:∵x 2-2x -1=0,∴x2-2x=1,∴原式=4x2-4x+1-x2-4x+x2-4=4x2-8x-3=4(x2-2x)-3=4-3=1.26、阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x-y=5①,2x+3y=7②,求x-4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x-4y=-2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x yx y+=⎧⎨+=⎩.,则x-y=______,x+y=______.(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=______.答案:(1)-1;5(2)购买5支铅笔、5块橡皮、5本日记本共需30元.(3)-11解答:(1)①②2728x yx y+=⎧⎨+=⎩①②.①-②,得x-y=-1.①+②,得3x+3y=15.∴x+y=5.(2)设每支铅笔x元,每块橡皮y元,每本日记本z元,则①②203232 395358x y zx y z++=⎧⎨++=⎩①②.①×2,得40x+6y+4z=64③③-②,得x+y+z=6.∴5(x+y+z)=30.∴购买5支铅笔、5块橡皮、5本日记本共需30元.(3)∵x*y=ax+by+c.∴3*5=3a+5b+c=15①,4*7=4a+7b+c=28②,1*1=a+b+c,∴②-①,得a+2b=13③∴5a+10b=65④①+②,得7a+12b+2c=43⑤⑤-④,得2a+2b+2c=-22.∴a+b+c=-11.27、先化简,再求值:(a-1a)÷()2111aa-+-,其中a满足a2+3a-1=0.答案:3.解答:∵a2+3a-1=0,∴a2+3a=1.原式=()()11a aa+-×()21a aa+-=(a+1)(a+2)=a2+3a+2=3.28、先化简,再求值:2221a aa a+-+÷(211a a--),其中a是方程2x2+x-3=0的解.答案:-9 10.解答:原式=()()211a aa+-÷()()211a aa a---,=()()211a aa+-·()11a aa-+,=21 aa-.由2x2+x-3=0得到:x1=1,x2=-32,又a-1≠0即a≠1,所以a=-32,所以原式=232312⎛⎫- ⎪⎝⎭--=-910.29、先化简再求值:(x-31xx+)÷2221xx x-++,其中x满足x2+x-2=0.答案:2.解答:原式=()131x x xx+-+·()212xx+-=()21x xx-+·()212xx+-=x(x+1)=x2+x,∵x2+x-2=0,∴x2+x=2,则原式=2.30、已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.答案:0.解答:原式=x2-4xy+4y2-(x2-y2)-2y2=3y2-4xy=y(3y-4x).∵4x=3y,∴3y-4x=0.∴原式=0.31、已知ab=-3,a+b=2.求代数式a3b+ab3的值.答案:-30.解答:∵a+b=2.∴(a+b)2=4.∴a2+2ab+b2=4.又∵ab=-3.∴a2-6+b2=4.∴a2+b2=10.∴(a2+b2)ab=a3b+ab3=-30.32、已知a+b,求代数式(a-1)2+b(2a+b)+2a的值.答案:3.解答:原式=a2-2a+1+2ab+b2+2a=(a+b)2+1.把a+b=2+1=3.。

数学化简求值知识点总结

数学化简求值知识点总结

数学化简求值知识点总结一、代数知识点1. 代数表达式代数表达式是由数字、字母、常数、运算符号和括号组成的符号集合,代数表达式中包含着多项式、有理式、根式等多种形式。

在化简求值的过程中,我们需要运用代数表达式的相关性质和规律,如合并同类项、提取公因子、分解因式等,化简复杂的表达式。

2. 方程方程是表示两个代数式相等的数学语句,包括一元方程、二元方程、多元方程等。

在化简求值的过程中,我们经常需要解方程来得到未知数的具体值,求解方程的方法有分式消元、配方法、整理等,从中得到方程的解。

3. 不等式不等式是表示两个代数式之间大小关系的数学语句,包括一元不等式、二元不等式、多元不等式等。

在化简求值的过程中,我们需要通过求解不等式来确定未知数的取值范围,求解不等式的方法有分析法、试验法、绘图法等。

4. 多项式多项式是由若干项组成的代数表达式,每一项中包含了一个系数和一个指数的乘积,多项式的次数是指数的最大值。

在化简求值的过程中,我们需要对多项式进行合并同类项、因式分解、除法等运算,化简复杂的多项式表达式。

二、函数知识点1. 函数的概念函数是自变量与因变量之间的一种对应关系,其表达式中包含了变量、常数、运算符号和括号。

在化简求值的过程中,我们需要对函数进行化简、求导、积分等运算,从中得到具体的函数值或导数值。

2. 反函数反函数是指与原函数相反的函数,其自变量与因变量的对应关系与原函数相反。

在化简求值的过程中,我们需要通过反函数来求解方程或不等式,获取未知数的具体值。

3. 复合函数复合函数是由多个函数组成的函数,通过复合函数的运算可以得到具体的函数值。

在化简求值的过程中,我们需要对复合函数进行合并、分解、化简等运算,获得最终的函数值。

三、数列知识点1. 等差数列等差数列是指数列中相邻两项的差相等的数列,其通项公式为an=a1+(n-1)d。

在化简求值的过程中,我们需要对等差数列进行求和、求通项、求和差法等运算,获得数列的具体数值结果。

完成这道初中数学化简求值题目分析此题考查了哪些知识点

完成这道初中数学化简求值题目分析此题考查了哪些知识点

完成这道初中数学化简求值题目分析此题考查了哪些
知识点
这道初中数学求值题目是:√136•3 - √144•2 = ?
此题考查的知识点主要有:认识数字根的概念、介绍数的平方根的运算,表达式化简等。

首先,认识数字根的概念也就是指开平方,将一个数字拆成两个在乘
积中唯一确定的数字,即其平方根。

数字根又称为两数乘积的平方根,可用来表示开根号中的那个数字,即:a√x = √ax。

其次,结合数字根的概念,对表达式进行简单的拆分,将式子拆分为
多个包含相同数字根的表达式:√136•3 - √144•2 = 3√136 - 2√144。

由于136、144的最大公约数为12,故可化简为:3√(11•12) - 2√(12•12) =
3√132 - 2√144。

综上所述,由于有相同的数字根,两式都可以进行简化,得出最终结果:√136•3 - √144•2 = 3√7 - 2√6 = 6 - 4 = 2。

因此,此题考查了:认识数字根的概念、介绍数的平方根的运算,表
达式化简等知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学化简求值专
项训练
中考数学化简求值专项训练
注意:此类题目的要求,如果没有化简,直接代入求值一分不得!!
考点:①分式的加减乘除运算(注意去括号,添括号时要变号,分子相减时要看做整体)
②因式分解(十字相乘法,完全平方式,平方差公式,提公因式)
③二次根式的简单计算(分母有理化,一定要是最简根式)
类型一:化简之后直接带值,有两种基本形式:
1.含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式
2.常规形,不含根式,化简之后直接带值
1. 化简,求值: 111(1
1222+---÷-+-m m m m m m ), 其中m =3.
2. 化简,求值:13x -·32269122x x x x x x x
-+----,其中x =-6.
3. 化简,求值:222211y xy x x y x y x ++÷⎪⎪⎭

⎝⎛++-,其中1=x ,2-=y
4. 化简,求值:2222(2)42x x x x x x -÷++-+,其中12x =.
5. 化简,求值:)11(x -÷1
1222-+-x x x ,其中x =2
6. 化简,求值:2224441x x x x x x x --+÷-+-,其中32
x =.
7. 化简,求值:6
2296422+-÷++-a a a a a ,其中5-=a .
8. 化简,求值:232()111x x x
x x x --÷+--,其中x =
类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点
1.含有三角函数的计算。

需要注意三角函数特殊角所对应的值.需要识记,熟悉三角函数
例题
1. 化简,再求代数式2221111
x x x x -+---的值,其中x=tan600-tan450
2. 先化简222112()2442x x x x x x
-÷--+-,其中2x =(tan45°-cos30°)
3. 222112(
)2442x x x x x x
-÷--+-,其中2x =(tan45°-cos30°)
2.带值为一个式子,注意全面性,切记不要带一半。

1. 化简:x x x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x
2 . 化简,再求值:
,其中a=﹣1.
3. 化简:再求值:⎝ ⎛⎭
⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .
4. 先化简,再求值:(x x -2-2)÷x 2-16x 2-2x
,其中x =3-4.
5. 化简,再求值:232()224
x x x x x x -÷-+-,其中34x =.
6 化简,再求值:x
x x x +++2212÷(2x — x x 2
1+)其中,x =2+1
3.带值不确定性。

为一个方程或者方程组,或者几个选项,需要有扎实的解方程功底,
需要注意的是:一般来说只有一个值适合要求,所以,求值后要看看所求的值是否能使前面的式子有意义,即注意增根的出现.若是出现一个方程,先不要解方程,考虑用整体法带入试试
1. 化简,求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1
,其中a 为整数且-3<a <2.
2. 化简,求值:1
112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.
3. (2011山东烟台)先化简再计算:
22121x x x x x x --⎛⎫÷- ⎪+⎝⎭
, 其中x 是一元二次方程2220x x --=的正数根.
4 .先化简:1
44)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

5. 先化简22144(1)11
x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.
6. 化简,再求值:232244()()442x y y xy x x xy y x y -⋅+++-
,其中11
x y ⎧=⎪⎨=⎪⎩
7. 已知x 、y 满足方程组33814
x y x y -=⎧⎨-=⎩,先将2x xy xy x y x y +÷--化简,再求值。

8. 化简22()5525x x x x x x -÷---,然后从不等组23212
x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.
9. 先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.
.。

相关文档
最新文档