线性代数期末模拟试题H(参考答案)
线性代数模试题试题库(带答案)
![线性代数模试题试题库(带答案)](https://img.taocdn.com/s3/m/a034d766b4daa58da0114a65.png)
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫= ⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫====⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555nn A A +==。
5、A 为n 阶方阵,T AA E =且=+<E A A 则,0 0 。
由已知条件:211,1TTTAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0T T A E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分)7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。
A .M 8B .M 2C .M 2-D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
(完整版)线性代数期末测试题及其答案.doc
![(完整版)线性代数期末测试题及其答案.doc](https://img.taocdn.com/s3/m/d937111101f69e3143329494.png)
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末考试题及答案
![线性代数期末考试题及答案](https://img.taocdn.com/s3/m/b223ed886037ee06eff9aef8941ea76e58fa4a2b.png)
线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
线性代数期末考试试题及答案
![线性代数期末考试试题及答案](https://img.taocdn.com/s3/m/29c6e735f4335a8102d276a20029bd64793e626c.png)
线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。
7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。
8. 一个向量空间的一组基的向量数量至少是_________。
9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。
10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。
三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。
12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。
四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。
14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。
线性代数期末考试试卷+答案
![线性代数期末考试试卷+答案](https://img.taocdn.com/s3/m/c4f70b96b4daa58da1114a88.png)
×××大学线性代数期末考试题、填空题(将正确答案填在题中横线上。
每小题 2分,共10分)1 -3 1P X IX 2 X 3 =02 .若齐次线性方程组 J x 1+χx 2+x 3=0只有零解,则 扎应满足X 1亠 X 2亠 X 3= 05. n 阶方阵 A 满足 A 2-3A-E = 0 ,贝U A J = _____________________ 。
、判断正误(正确的在括号内填“√”,错误的在括号内填“X” 。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则D 0。
()2. 零向量一定可以表示成任意一组向量的线性组合。
()3. 向量组a 1, a 2,…,a m中,如果a 1与a m对应的分量成比例,则向量组 a 1, a 2,…,a s线性相关。
■为可逆矩阵A 的特征值,贝U A J 的特征值为’。
()若三、单项选择题(每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题1.设A 为n 阶矩阵,且A = 2 ,则I AA T =( )。
①2n②2n'③2n1④42. n 维向量组:∙1,:-2, , :■ S ( 3 < S < n )线性无关的充要条件是()。
-0 11 0 0 0 0 04. A =0 0 0 10 1 0①:'1, :'2 ,':'S 中任意两个向量都线性无关②>1,-::S 中存在一个向量不能用其余向量线性表示③:'1, -'2 ,-■ S中任一个向量都不能用其余向量线性表示1.若0 5 -12x =0,则= —23•已知矩阵A ,B ,C = (C ij )s n ,满足AC =CB ,则A 与B 分别是 _____________ 阶矩阵。
a124 .矩阵 A= a21a 22的行向量组线性31a32丿2分,共10分)11,贝U A A =A 。
线性代数期末试题
![线性代数期末试题](https://img.taocdn.com/s3/m/6bb0bd9a650e52ea54189871.png)
线性代数试题(附答案)一、填空题(每题2分,共20分)1.行列式0005002304324321= 。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。
3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。
4.A 为n n ⨯阶矩阵,且ο=+-E A A 232,则1-A 。
5. 321,,ξξξ和321,,ηηη是3R 的两组基,且32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。
7.设=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(,111012111,321212113AB tr AB B A 之迹则 。
8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--⨯A A 。
9.二次型x x x x x x f 23222132123),,(--=的正惯性指数为 。
10.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1042024λλA 为正定矩阵,则λ的取值范围是 。
二、单项选择(每小题2分,共12分)1.矩阵()==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。
A 、1B 、2C 、3D 、4 2. 齐次线性方程组⎩⎨⎧=--=++-02023214321x x x x x x x 的基础解系中含有解向量的个数是( )A 、1B 、2C 、3D 、43.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )A 、-1B 、-2C 、0D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( )A 、B=EB 、A=EC 、A=BD 、AB=BA5.已知=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或26.下列矩阵中与矩阵合同的是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5000210002( ) A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200020001 B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-500020003 C 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020002三、计算题(每小题9分,共63分)1.计算行列式),2,1,0(0000002211210n i a a c a c a c b b b a i nnnΛΛΛΛΛΛΛΛΛΛ=≠其中2.当⎪⎪⎩⎪⎪⎨⎧=+++=-++=+++=+++ax x x x x x x x x x x x x x x x a 4321432143214321710535105363132,线性方程组取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。
线性代数期末模拟测试试卷(含答案)
![线性代数期末模拟测试试卷(含答案)](https://img.taocdn.com/s3/m/436a3a9327d3240c8547ef13.png)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t 2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-AC.n A r =)(D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则 111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11 。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 的线性关系是 。
线性代数期末考试试题及答案
![线性代数期末考试试题及答案](https://img.taocdn.com/s3/m/750e174d11a6f524ccbff121dd36a32d7275c768.png)
线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。
左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。
线性代数期末试题及答案
![线性代数期末试题及答案](https://img.taocdn.com/s3/m/1e3532e6b8d528ea81c758f5f61fb7360b4c2bb0.png)
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
2019-2020学年线性代数期末考试题(含答案)
![2019-2020学年线性代数期末考试题(含答案)](https://img.taocdn.com/s3/m/05c2bc52178884868762caaedd3383c4ba4cb456.png)
线性代数2019-2020学年第二学期期末考试试卷一、填空题(本大题共5个小题,每小题3分,共15分。
)1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。
2. 设⎪⎪⎪⎭⎫ ⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫ ⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件.C 充分必要条件 .D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组;B. 321,,ααα的一个等秩向量组;C. 321221,,αααααα+++;D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
线性代数期末考试试题及答案
![线性代数期末考试试题及答案](https://img.taocdn.com/s3/m/30bda2d26429647d27284b73f242336c1fb9305f.png)
线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。
线性代数模拟试卷及答案4套
![线性代数模拟试卷及答案4套](https://img.taocdn.com/s3/m/78a8cec06f1aff00bed51ed0.png)
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数期末考试试题及答案
![线性代数期末考试试题及答案](https://img.taocdn.com/s3/m/17b900ab988fcc22bcd126fff705cc1755275f8d.png)
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
线性代数模拟试题及答案
![线性代数模拟试题及答案](https://img.taocdn.com/s3/m/bbd996a651e79b89680226eb.png)
...《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分) 1.设)det(ij a 为四阶行列式,若23M 表示元素23a 的余子式,23A 表示元素23a 的代数余子式,则23M +23A = 。
2.三阶行列式3331221311000a a a a a 中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对n 阶行列式(填成立或不成立)。
3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。
4.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=458271,131027241,213012C B A ,则=-C B A T2。
5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C 一定可以由矩阵B 经过(填行或列)初等变换而得到。
6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α一定可以由向量唯一的线性表示。
得分阅卷人...7.非齐次线性方程组b Ax =有 唯一的解是对应的齐次方程组0=Ax 只有零解的充分但不必要条件。
8.设3阶矩阵A 的行列式0=A ,则矩阵A 一定有一个特征值。
9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。
10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R 一个规范正交基。
二、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A 为n 阶方阵,则关于非齐次线性方程组b Ax =的解下列说法( )不正确(A ) 若方程组有解,则系数行列式0≠A ; (B ) 若方程组无解,则系数行列式0=A ;(C ) 若方程组有解,则或者有唯一解或者有无穷多解;...(D ) 系数行列式0≠A 是方程组有唯一解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是( ) (A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。
线性代数期末试题及答案
![线性代数期末试题及答案](https://img.taocdn.com/s3/m/dc9d328984868762caaed5e3.png)
8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。
线性代数期末模拟试题参考答案
![线性代数期末模拟试题参考答案](https://img.taocdn.com/s3/m/29628dec700abb68a982fb74.png)
课程模拟考核参考答案及评分标准考试课程:线性代数 学年学期:2014-2015-1 试卷类型:A 考试时间:120分钟适用专业:13级机械设计制造及其自动化师范职教师资本科、13级生物工程非师范本科层次:本科一、选择题(每小题2分,共20分)1. 设0333231232221131211≠=a a a a a a a a a D , ij A 是D 的元素ij a 的代数余子式, 若∑=313i ij i A a ≠0, 则 ( C ) .(A) 1=j (B) 2=j (C) 3=j (D) 1=j 或3=j2. 在函数xxx x x f ----=231112)(中,3x 的系数是( B ) . (A) 1 (B) 2 (C) 3 (D) 4 3. =⎥⎦⎤⎢⎣⎡++++c b b a z y y x ( C ) . (A)⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡00b y c a z x (B)⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡c b z y a x (C)⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡c b z y b a y x (D)⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡b c y z b a y x 4. 设A,B,C 均为n 阶方阵,且|A|≠0, 则必有( B ) .(A) AB=CA ⇒ B=C; (B) AB=AC ⇒ B=C; (C) BC=0 ⇒ C=0; (D) AB=C ⇒ B=E. 5. 向量组α1, α2, … αn 线性无关的充要条件是( D ) . (A) α1, α2, … αn 均不为零向量(B) α1, α2, … αn 中任意两个向量的对应分量不成比例 (C) α1, α2, … αn 中有一个部分向量线性无关(D) α1, α2, … αn 中任意一个向量都不能由其余1-n 个向量线性表示 6. 矩阵A 经行初等行变换化为阶梯形矩阵后( C ) .(A) 秩变大 (B) 秩变小 (C) 秩不变 (D) 化为单位方阵 7. 设A 是2阶可逆矩阵, λ为实数, 如果 |λA|=4|A|, 则 ( A ) . (A) λ=±2; (B) λ=±1; (C) λ=±3; (D) λ=4.8. 设n 元齐次线性方程组Ax=0的系数矩阵A 的秩为r ,则Ax=0有非零解的充分必要条件是( B ) . (A) r=n; (B) r<n; (C) r≥n ; (D) r>n.9. 设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡43503362a ,且矩阵A 的秩R(A)=2, 则a=( B ) . (A) 9; (B) 18; (C) 0; (D) 任何数.10. 若方程组⎪⎩⎪⎨⎧=-=+=++02003131321x x ax x x x ax 仅有零解, 则a ≠ ( A ) .(A) 21-; (B) 21; (C) 41; (D) 41-.二、判断题 (每小题2分,共20分)1. n 阶行列式中, 若0元素多于n 2-n 个, 则行列式的值为0. ( √ )2. n 阶方阵A 可逆的充分必要条件是|A|=0. ( × )3. 设A,B 都是n 阶方阵, 若AB=0, 则B=0. ( × )4. 333333222222111111d c c b b a d c c b b a d c c b b a +++++++++333222111c b a c b a c b a =333222111d c b d c b d c b +. ( × ) 5. 设A 与B 为n 阶方阵,则|AB|=|A||B|. ( √ ) 6. 设A,B 都是m ×n 矩阵, 则A+B=B+A. ( √ ) 7. 两个n 阶可逆矩阵之和一定是可逆矩阵. ( × )8. 元素a ij 的代数余子式A ij 与不仅与a ij 所在有行、列有关, 而且与a ij 的值有关. ( × )9.010100001111010001100111001111100010111100010001d c b a d c b a+++=. ( √ ) 10. 如果A 与B 可交换, 且A 可逆, 则1-A 与B 可交换. ( √ )三、填空题(每小题2分,共20分) 1. 排列36715284的逆序数为 13 .2. 若010100≠---abb a,则a,b 满足的条件是 a≠0 或b≠0 .3. 行列式=cb fe da 0002101030 -3abc . 4. 设|A|=2, 且A 为三阶方阵,则|3A|= 54 . .5. 设行列式96330221a中,余子式321=M ,则=a 5/2 . 6. 设()()TT2,3,1,1,1,221-=-=αα, 若()T5,,13λα=可由21,αα线性表示,则=λ -8 .7. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101010101,10010101B x A , 且A=B, 则x= 1 . 8. 设⎥⎦⎤⎢⎣⎡=101a A ,则=nA ⎥⎦⎤⎢⎣⎡101na .9. 设)0(,≠-⎥⎦⎤⎢⎣⎡=cb ad d c b a A , 则A -1= ⎥⎦⎤⎢⎣⎡---a c b d bc ad 1 . 10. 行列式=-000010020100nn !)1(2)1(n n n -- .四、计算题 (每小题5分共30分)1.计算行列式20031001541121---- 解:原式=4121-0231- (2分) = 6∙6= 36. (3分)2. 解方程 013011132=x x解:按第一列展开, x 2-2x-3=0, (2分) 解为 x= -1, 3. (3分) 3. 计算 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-103110021212321 解:原式=⎥⎦⎤⎢⎣⎡---1341410 (5分)4. k 为何值时,行列式k2002k 0001k 10011≠0. 解:原行列式=(k-1)(k 2-4), (2分) 故 k ≠1且k ≠±2. (3分) 5. 解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+=+-=+-=-+-0x 3x 2x x 0x 8x 14x 40x 4x 7x 20x x 5x x 43214324324321.解:经过初等行变换,原方程的矩阵化为 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-0000000022/71012/301, (2分) 故其解为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=2413212211cx c x c 2c 27x c c 23x . (3分)6. k 为何值时,方程组 ⎪⎩⎪⎨⎧=+-=-+=-+0z y x 20z ky x 0z y kx 仅有0解.解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1121111k k −−−−→−+⨯-...,)3()2(2R⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3210111102k k k k (2分) −−−−−→−+⨯-...,)1()3(3/)1(k R ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----32101103/)2(02k k k k , k 2+k-2≠0即 k≠1, -2. (3分) 五、证明题(每小题5分共10分)1. 设A 可逆, 试证明 (A*)-1 = (A -1)* .证明:∵AA*=|A|E, (2分) ∴(A*)-1 = A/|A|=(A -1)-1/|A| = (A -1)*/(|A -1|·|A|) = (A -1)*. (3分) 2. 证明向量组α1=(1,2,0,1), α2=(1,3,0,−1), α3=(−1,−1,1,0),线性无关。
线性代数期末考试题及答案
![线性代数期末考试题及答案](https://img.taocdn.com/s3/m/63be1647a4e9856a561252d380eb6294dd8822b0.png)
线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。
答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。
答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。
答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。
答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。
线性代数期末附答案 (1)
![线性代数期末附答案 (1)](https://img.taocdn.com/s3/m/848bcfddb9f3f90f76c61b96.png)
《线性代数》模拟试题(一)一、单项选择题(每小题3分,共27分)1. 对于n 阶可逆矩阵A ,B ,则下列等式中( )不成立. (A) ()111---⋅=B A AB (B) ())/1()/1(111---⋅=B A AB (C) ()111---⋅=B AAB (D) ()AB AB /11=-2. 若A 为n 阶矩阵,且0A =3,则矩阵=--1)(A E ( ).(A )2A A E +- (B )2A A E ++ (C )2A A E -+ (D )2A A E -- 3. 设A 是上(下)三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为( ). (A) 全都非负 (B ) 不全为零 (C )全不为零 (D )没有限制4. 设 33)(⨯=ij a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a aa a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,那么( ).(A )B P AP =21 (B )B P AP =12 (C )B A P P =21 (D )B A P P =12 5. 若向量组m ααα,,,21 线性相关,则向量组内( )可由向量组其余向量线性表示.(A )至少有一个向量 (B )没有一个向量 (C )至多有一个向量 (D )任何一个向量6. 若⎪⎪⎪⎭⎫⎝⎛=210253143212A ,其秩=)(A R ( ).(A )1 (B )2 (C )3 (D) 47. 若方程组b AX =中方程的个数小于未知量的个数,则有( ).(A )b AX =必有无穷多解 (B )0AX =必有非零解 (C )0AX =仅有零解 (D )0AX =一定无解 8. 若A 为正交阵,则下列矩阵中不是正交阵的是( ).(A )1-A (B )A 2 (C )4A (D )TA 9. 若满足条件( ),则n 阶方阵A 与B 相似.(A )B A = (B ))()(B A R R = (C )A 与B 有相同特征多项式 (D )A 与B 有相同的特征值且n 个特征值各不相同 二、填空题(每空格3分,共21分)1. 若向量组321,,ααα线性无关,则向量组321211,,αααααα+++是线性 .2. 设A 为4阶方阵,且3)(=A R ,*A 是A 的伴随阵,则0=*X A 的基础解系所含的解向量的个数是 . 3. 设()2,1,11-=α,()5,,22k =α,()1,6,13-=α线性相关,则=k .4. 设⎪⎪⎪⎭⎫ ⎝⎛=300050004A ,则=--1)2(E A .5. 设三阶方阵A 有特征值4,5,6,则=A ,TA 的特征值为 ,1-A 的特征值为 .三、计算题(共42分) 1. (6分)计算行列式ba b b b b b a b b bb b a b b b b b a ----+----+2. (8分)已知矩阵⎪⎪⎪⎭⎫⎝⎛=200012021A ,求10A .3. (10分)设三阶方阵A 满足i i i αA α= )3,2,1(=i ,其中T )2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α,求A .4.(6分)在向量空间3R 中,取两组基:(I ),110,011,101321⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=ααα (II ),411,222,301321⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=βββ设α在基I 下的坐标为()T3,1,1,求α在基α在基II 下的坐标.5. (12分)λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+1610522321321321x x x x x x x x x λλ (1)有惟一解;(2)无解; (3)有无穷多解,并求其通解.四、证明题(每小题5分,共10分)1. 设A 为n 阶可逆阵,E A A =2. 证明A 的伴随阵A A =*.2. 若A ,B 都是n 阶非零矩阵,且0AB =. 证明A 和B 都是不可逆的.《线性代数》模拟试题(一)参考答案一、单项选择题(每题3分,共27分)1. B2. B3. C4. C5. A6. B7. B8. B9. D 二、填空题(每空3分,共21分)1. 无关;2. 3 ;3. 3 ;4. ⎪⎪⎪⎭⎫ ⎝⎛10000003121; 6. 120; 4,5,6; 615141,, 三、计算题(7+10+10+12=39分)1. 解:b a b b b b b a b b b b b a b b b b b a ----+----+a aa a a ab b bba 000000-+=4000000000a aa ab b b a ==. 2. 解:先求A 的特征值,λλλλ---=-20012021E A =)1)(3)(2(λλλ+--- 1,3,2321-===λλλ ,当21=λ时,由0X E A =-)2(得,A 的对应于2的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=1001ξ,当32=λ时,由0X E A =-)3(得,A 的对应于3的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=0112ξ,当12-=λ时,由0X E A =+)(得,A 的对应于1-的特征向量是⎪⎪⎪⎭⎫ ⎝⎛-=0113ξ,取⎪⎪⎪⎭⎫ ⎝⎛=1001η⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=01121,0112132ηη.令()321,,ηηηP = ,则⎪⎪⎪⎭⎫⎝⎛-==-1321AP P AP P T,所以 T P P A 1010132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+--+=1010211021102110212000)13()13(0)13()13(.3. 解:因为)3,2,1(==i i i i αA α,所以⎪⎪⎪⎭⎫ ⎝⎛=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-⎪⎪⎪⎭⎫ ⎝⎛=ααααααA .又),,(321ααα⎪⎪⎪⎭⎫ ⎝⎛---=212122221,所以1321),,(-ααα⎪⎪⎪⎭⎫⎝⎛---=21212222191,故 =A ⎪⎪⎪⎭⎫ ⎝⎛---212122221⎪⎪⎪⎭⎫ ⎝⎛300020001⎪⎪⎪⎭⎫ ⎝⎛---21212222191⎪⎪⎪⎭⎫ ⎝⎛----=62225020731. 4.解:()()⎪⎪⎪⎭⎫ ⎝⎛--=311211112,,,,321321αααβββ,(),311,,321⎪⎪⎪⎭⎫ ⎝⎛=αααα所以 ()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-311311211112,,1321βββα ()()⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=323532321939192939591939295321,,311,,ββββββ, α在基II 下的坐标为()T 323532,,-.5. 解:)3)(5(61011211-+=---=λλλλD , (1)当0≠D ,即5-≠λ且3≠λ时,方程组有惟一解.(2)当5-=λ时,⎪⎪⎪⎭⎫ ⎝⎛-----==1610155122151)(βA,B −→−r ⎪⎪⎪⎭⎫ ⎝⎛---100013902151 此时3)(,2)(==B A R R ,方程组无解,(3)当3=λ时,⎪⎪⎪⎭⎫ ⎝⎛---==1610153122131)(βA,B −→−r ⎪⎪⎪⎭⎫⎝⎛--00001001717571778, 此时2)()(==B A R R ,方程组有无限多个解.,并且通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10757871717321c x x x )(R c ∈. 四、证明题(5+5=10分) 1. 证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2. 证:假设A 可逆,即1-A 存在,以1-Α左乘0AB =的两边得0B =,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1-B 存在,以1-B 右乘0AB =的两边得0A =,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充分性:若 AB = BA ,则 ( AB ) = B A = BA = AB ,
T T T
即 AB 为对称阵。 必要性:若 ( AB) = AB ,则 AB = ( AB ) = B A = BA ,
T T T T
(4 )
即 A 、 B 可交换。 3.证明:因为 A, B, C 均为正交矩阵,故有
(7)
AT = A−1 , BT = B −1 , C T = C −1
故
(2)
( AT BC −1 )T = (C −1 )T BT ( AT )T = CB −1 A = ( AT BC −1 ) −1
五、综合(共 1 小题,13 分)
(7)
1
解:系数行列式
b
2
1 2b − 1 3 = (b − 1)(b + 1) , 1 b b+3
3 1 1.解: 1 1
1 3 1 1
1 1 3 1
1 1 0 1 1 2 =6 1 1 0 3 1 0
τ ( n , n −1, 2,1)
0 0 2 0
0 0 0 2
(5)
= 6 × 8 = 48 。
2.解: Dn = (−1)
(6) (4) (6)
= (−1)
3.解: (法一) 由
n ( n −1) 2
线性代数试卷参考答案及评分标准
一、填空(每小题 3 分,共 15 分) 1.2;2.
1 1 2 2 2 ;3. ;4. y1 + y2 − y3 ;5. β1 + k ( β 2 − β1 ) ( k ∈ R ) 。 8 64
二、单项选择(每小题 3 分,共 15 分) 1. (A) ;2. (B) ;3. (D) ;4. (C) ;5. (D) 。 三、计算(每小题 6 分,共 36 分)
则
1 1 =2 −1 1
(6)
| B |= 2 。
共 4 页,第 1 页
4.解:
x + (−1) + 2 = 1 + y + (−1) xi(−1)i2 = 1i y i(−1) x +1 = y , 2x = y x =1 。 y = 2
(4)
则有
(6)
3 2 1 1 0 0 5.解:矩阵 ( A | E ) = 3 1 5 0 1 0 3 2 3 0 0 1 3 2 1 1 0 0 → 0 −1 4 −1 1 0 0 0 2 −1 0 1 3 0 1 3 2 −4 → 0 −1 0 1 1 −2 0 0 2 −1 0 1
共 4 页,第 2 页
(4)
由于向量 α1 , α 2 , α 3 线性无关,必有
2 0 3 2k1 + 3k3 = 0 k1 + k2 = 0 ,而 1 1 0 = 19 ≠ 0 , 5k + 2k = 0 0 5 2 3 2
从而
k1 = k2 = k3 = 0 。
(7)
2.证明:因为 A 、 B 为对称矩阵,故有 A = A, B = B 。
(4)
单位化:
γ1 = ,γ 2 = 。 0 1
(6)
四、证明(每小题 7 分,共 21 分) 1.证明,设有数 k1 , k2 , k3 ,使得
k1 (2α1 + α 2 ) + k2 (α 2 + 5α 3 ) + k3 (2α 3 + 3α1 ) = 0
整理得
(2k1 + 3k3 )α1 + (k1 + k2 )α 2 + (5k2 + 2k3 )α 3 = 0
(5)
7 1 0 0 6 → 0 1 0 −1 1 0 0 1 − 2
6.解:正交化: β1 = α1 = ,
2 3 − 3 2 −1 2 。 1 0 2
(6)
2 0
β2 = α2 −
2 4 2 0 (α 2 , β1 ) β1 = − = 。 ( β1 , β1 ) 3 4 0 3 1 0
1)当 b ≠ ±1 时,该方程组有唯一解,且解为
x=
−2 5−b 2(b − 1) ,y= ,z = 。 b +1 b +1 b +1
(7)
1 1 2 1 1 1 2 1 2)当 b = 1 时, 1 1 3 1 → 0 0 1 0 , 1 1 4 1 0 0 0 0
系数矩阵的秩为 2,增广矩阵的秩为 3,无解。 (13)
共 4 页,第 4 页
系数矩阵与增广矩阵秩相同,有无穷解,通解为
−1 1 k 1 + 0,k ∈ R 。 0 0
(10)
共 4 页,第 3 页
1 −1 2 1 1 −1 2 1 3)当 b = −1 时, 1 −3 3 1 → 0 −2 1 0 , 1 −1 2 −3 0 0 0 −4
。
( A − E)B = 2E
A − E −1 ) 2
−1
有 B=(
(4)
1 1 = 2 −1 1 1 −1 = 1 1
则 (法二) 有 由于
| B |= 2 。 ( A − E)B = 2E
(6)
| A − E || B |=| 2 |= 4
又
(4)
| A − E |=