扩散工艺知识

合集下载

扩散工艺介绍

扩散工艺介绍
结深方块电阻表面杂质浓度其它退火激活杂质消除晶格损伤钝化表面保护膜合金形成金属与硅的欧姆接触烘焙氧化层质量控制氧化条件的选择
扩散工艺知识介绍
1: 扩散工序简要介绍 2: 扩散工艺控制
扩散工序简要介绍
1: 2: 3: 4: 5: 扩散炉系统 热氧化 掺杂 扩散 其它
扩散炉系统
其它
氮气(HCL)退火和烘焙:工艺的稳定和重复 合金:工艺条件的严格控制
其它
退火 激活杂质 消除晶格损伤 钝化表面保护膜 合金 形成金属与硅的欧姆接触 烘焙
氧化层质量控制
氧化条件的选择: 厚度 质量要求 效率 条件管理 厚度均匀性 表面斑点 氧化膜针孔 反型层(低掺杂P型硅) 热氧化层错
掺杂质量控制
掺杂和扩散是联系在一起的 掺杂薄层的严格控制:条件的选择 气流的稳 定控制是难点 条件管理是关键 掺杂量的表征:表面方块电阻的局限性
扩散质量控制
扩散条件的选择: 满足设计要求 工艺重复性 稳定性(理论结合工艺试验) 条件管理 扩散速度:表面杂质浓度 杂质扩散系数 气氛 硅体内缺陷密度 扩散参数控制 表面质量控制 :合金点 白雾 硅片翘曲 表面 划伤 表面沾污
扩散质量控制
漏电流控制(器件特性异常):沾污 氧化层缺 陷 (表面沟道效应) 硅体内缺陷(管道效应) 表面杂质浓度偏低(复合电流) 氧化扩散与扩散氧化:杂质分凝效应 扩散参数偏差控制:温度分布 气流和排片方 式 进出舟速度和片间距 HFE 控制:综合考虑
Байду номын сангаас杂
其它杂质源 在硅表面淀积一薄的杂质层 优缺点:设备简单,操作方便,工艺简 单.精确掺杂控制能力低而且表面浓度不适 宜做大范围的调整,有污染.

CMOS工艺要点知识讲解

CMOS工艺要点知识讲解
11
隔离技术(续)
随着设计尺寸的不断减小以及器件集成度的日益 提 高,如何减小隔离区的面积也成为一个重要的 课题。 比如在一些低压器件的工艺设计中,往往 通过牺牲 场氧厚度来减小“鸟嘴”的宽度,主要 方法为减薄 场氧厚度或者场氧生长以后通过 ETCHBACK,腐蚀掉 一定的 场氧。还有 一些设 计是采用N+/P-结隔离技 术(例如LVMG工艺)。
14
栅(Gate)的完成(续)
由于多晶条宽和形貌直接影响器件的有效沟长, 影响器件特性,因此其控制的好坏倍受关注。
轻掺杂漏LDD(Light Doping Drain)和侧壁保 护Spacer 结构是1um以下工艺常采取的保护性工 艺步骤。主要为了减小热载流子效应,对于 Salicide工艺,Spacer 结构还 可以预防栅(G) 和源(S)或漏(D)之间发生漏电。
bird beak)和场注入的横向扩散,使LOCOS工艺受 到很大的限制。
10
隔离技术(续)
PBLOCOS 结构可以有效地减少鸟嘴的宽度。 在LOCOS隔离工艺中,以连接晶体管的金属或
多晶硅连线做为栅,以栅两测的N+扩散区做为 源漏将形成一个寄生的场管,为了避免该寄生 MOSFET开启引起的泄露电流等问题, 很多时 候工艺中会通过场注入(channel stop implant) 来提高场寄生管的开启,但是如果场注入剂量太 大,则 会降低源/漏对衬底的单结击穿电压。
双阱的形成一般有两种方式,一种SiN 自对准工艺,另外一种是通过N阱,P 阱两次光刻形成,CMOS工艺中双阱工 艺可以有效地减小闩锁效应。
7
有源区的形成
➢ PAD oxide(buffer oxide):由于SiN和Si之间的应力很大, 为了避免SiN对Si表面的应力损伤,生长一层SiO2作为Si 和SiN之间的应力缓冲层,但是 oxide厚度会影响SiN做为 氧化掩蔽层的能力,0.6um工艺采用200A oxide/1175A SiN 结构。 ➢ LPSiN:O2和H2O很难通过SiN扩散到Si表面生成SiO2, 另外,在相同的条件下,SiN的氧化速率约是Si的三十分 之一,只在SiN表面生长几十埃的SiO2, ➢ 有源区光刻---刻蚀(SEM PROFILE)

热处理基础知识

热处理基础知识

一、热处理1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。

3、固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。

4、时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5、固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。

6、时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。

7、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。

8、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。

9、钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。

习惯上碳氮共渗又称为氰化,以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。

中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。

低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

10、调质处理(quenching and tempering):一般习惯将淬火加高温回火相结合的热处理称为调质处理。

调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。

调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。

它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。

11、钎焊:用钎料将两种工件加热融化粘合在一起的热处理工艺。

扩散工艺知识

扩散工艺知识

第三章 扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散.这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻.除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。

第一节 扩散原理扩散是一种普通的自然现象,有浓度梯度就有扩散。

扩散运动是微观粒子原子或分子热运动的统计结果.在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。

一.扩散定义在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。

二.扩散机构杂质向半导体扩散主要以两种形式进行:1.替位式扩散一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。

其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位".这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。

硼(B )、磷(P )、砷(As )等属此种扩散。

2.间隙式扩散构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进.这种扩散称间隙式扩散.金、铜、银等属此种扩散。

三. 扩散方程扩散运动总是从浓度高处向浓度低处移动。

运动的快慢与温度、浓度梯度等有关。

其运动规律可用扩散方程表示,具体数学表达式为:N D tN 2∇=∂∂ (3—1) 在一维情况下,即为: 22xN D t N ∂∂=∂∂ (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。

四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关.为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。

退火工艺基础知识大全,都总结到了!

退火工艺基础知识大全,都总结到了!

将金属或合金加热到适当温度,保温一定时间,然后缓慢冷却(一般为随炉冷却)的热处理工艺叫做退火。

退火的实质是将钢加热到奥氏体化后进行珠光体转变,退火后的组织是接近平衡后的组织。

退火的目的:(1)降低钢的硬度,提高塑性,便于机加工和冷变形加工。

(2)均匀钢的化学成分及组织,细化晶粒,改善钢的性能或为淬火作组织准备。

(3)消除内应力和加工硬化,以防变形和开裂。

退火和正火主要用于预备热处理,对于受力不大、性能要求不高的零件,退火和正火也可作为最终热处理。

常用的退火方法,按加热温度分为:临界温度(Ac1或Ac3)以上的相变重结晶退火:完全退火、扩散退火、不完全退火、球化退火。

临界温度(Ac1或Ac3)以下的退火:再结晶退火、去应力退火。

1、完全退火工艺:将钢加热到Ac3以上20~30℃,保温一段时间后缓慢冷却(随炉)以获得接近平衡组织的热处理工艺(完全奥氏体化)。

完全退火主要用于亚共析钢(w c=0.3~0.6%),一般是中碳钢及低、中碳合金钢铸件、锻件及热轧型材,有时也用于它们的焊接件。

低碳钢完全退火后硬度偏低,不利于切削加工;过共析钢加热至Ac cm以上奥氏体状态缓慢冷却退火时,Fe3CⅡ会以网状沿晶界析出,使钢的强度、硬度、塑性和韧性显著降低,给最终热处理留下隐患。

目的:细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性。

亚共析钢完全退火后的组织为F+P。

实际生产中,为提高生产率,退火冷却至500℃左右即出炉空冷。

2、等温退火完全退火需要的时间长,尤其是过冷奥氏体化比较稳定的合金钢。

如将奥氏体化后的钢较快地冷至稍低于Ar1温度等温,是A转变为P,再空冷至室温,可大大缩短退火时间,这种退火方法叫等温退火。

工艺:将钢加热到高于Ac3(或Ac1)的温度,保温适当时间后,较快冷却到珠光体区的某一温度,并等温保持,使奥氏体转变为珠光体,然后空冷至室温的热处理工艺。

目的:与完全退火相同,转变较易控制。

热粘合、化学粘合法知识笔记

热粘合、化学粘合法知识笔记

热粘合、化学粘合法知识笔记00一、热粘合加固纤网基本原理高分子聚合物材料大都具有热塑性,即加热到一定温度后会软化熔融,变成具有一定流动性的粘流体,冷却后又重新固化,变成固体。

热粘合非织造工艺就是利用热塑性高分子聚合物材料这一特性,使纤网受热后部分纤维或热熔粉末软化熔融,纤维间产生粘连,冷却后纤网得到加固而成为热粘合非织造材料。

二、热粘合工艺分类热轧粘合:利用一对加热钢辊对纤网进行加热,同时加以一定的压力使纤网得到热粘合。

电加热油加热磁感应加热热熔粘合:利用烘箱加热纤网同时在一定风压条件下使之得到熔融粘合加固。

热风穿透式热风喷射式超声波粘合:将电能通过专用装置转换成高频机械振动,然后传送到纤网上,导致纤网中纤维内部的分子运动加剧而产生热能,使纤维软化、熔融、流动和固化,从而使纤网得到粘合。

热轧粘合与热熔粘合的区别热轧粘合是指利用一对加热辊对纤网进行加热,同时加以一定的压力使纤网得到热粘合加固。

热熔粘合是指利用烘房加热纤网使之得到粘合加固。

热轧粘合和热熔粘合的区别在于,热轧粘合适用于薄型和中厚型产品,产品单位面积质量大多在15~100g/m2,而热熔粘合适合于生产薄型、厚型以及蓬松型产品,产品单位面积质量为15~1000g/m2,两者产品的粘合结构和风格存在较大的差异。

三、热轧粘合工艺过程和机理1、热传递处理:当纤网进入轧辊组成的热轧粘合区域时,由于轧辊具有较高的温度,因此热量将从轧辊表面传向纤网表面,并逐渐传递到纤网的内层。

2、形变过程:向纤网提供热量的另一个重要来源是形变热,两轧辊之间强大的压力使高聚物产生形变而导致纤网温度进一步提高。

3、克莱帕伦效应:高聚物分子受压时熔融所需的热量远比常压下多,这就是所谓的clapeyron效应。

4、流动过程:在热轧粘合过程中,纤网中部分纤维在温度和压力的作用下发生熔融,同时还伴随着熔融的高聚物的流动过程,这也是形成良好粘合结构的条件之一。

轧辊温度升高将有利于熔融高聚物的流动。

扩散工艺知识

扩散工艺知识

扩散工艺知识咱先来说说啥是扩散工艺哈。

就拿生活里常见的事儿打个比方,您要是在房间里喷了香水,那香味是不是会慢慢扩散到整个房间?这其实就有点像扩散工艺的原理。

扩散工艺呢,简单来讲,就是让一种物质从高浓度的地方向低浓度的地方移动,从而实现均匀分布。

这在很多领域都有应用,比如说在半导体制造中,那可是至关重要的一步。

我记得有一次,我去参观一家半导体工厂。

那时候,我就亲眼看到了扩散工艺的神奇之处。

工厂里的工人们穿着那种一尘不染的白色工作服,戴着帽子和口罩,只露出一双眼睛。

他们在一个巨大的车间里忙碌着,里面摆满了各种高科技的设备。

我走到一台正在进行扩散工艺的设备前,隔着玻璃仔细观察。

只见一片片小小的硅片被小心地放进一个像烤箱一样的设备里,然后设备开始运作,里面的温度和压力都被精确地控制着。

我就好奇地问旁边的工作人员:“这到底是咋回事呀?”工作人员特别耐心地给我解释说:“这就好比是在给这些硅片‘注入灵魂’,通过扩散工艺,把一些特殊的杂质均匀地‘撒’进硅片里,这样才能让硅片具备特定的电学性能,成为有用的半导体器件。

”咱再回到扩散工艺的知识上哈。

在化学领域,扩散工艺也常常被用到。

比如说,把一种溶液滴到另一种溶液里,如果不搅拌,它们也会慢慢地混合均匀,这也是扩散在起作用。

还有在生物领域,细胞之间物质的交换,也离不开扩散。

想象一下,细胞就像一个个小小的房子,它们之间的“门窗”就是用来进行物质扩散的通道。

扩散工艺的影响可大了去了。

就拿我们用的手机来说吧,里面的芯片能这么厉害,少不了扩散工艺的功劳。

要是没有精确的扩散控制,芯片的性能可就没法保证啦,您的手机可能就会变得又慢又卡。

在工业生产中,为了让扩散工艺更高效、更精准,科学家和工程师们可是费了不少心思。

他们不断地改进设备,优化工艺参数,就为了能让扩散的效果更好。

比如说,他们会研究怎么控制温度,因为温度高一点或者低一点,扩散的速度和效果都会不一样。

还有扩散的时间,多一秒少一秒,都可能影响最终的产品质量。

扩散原理及基本知识

扩散原理及基本知识

扩散基本知识一、半导体基本知识太阳电池是用半导体材料硅做成的。

容易导电的是导体,不易导电的是绝缘体,即不像导体那样容易导电又不像绝缘体那样不容易导电的物体叫半导体,譬如:锗、硅、砷化缘等。

世界上的物体都是由原子构成的,从原子排列的形式来看,可以把物体分成2大类,晶体和非晶体。

晶体通常都有特殊的外形,它内部的原子按照一定的规律整齐地排列着;非晶体内部原子排列乱七八糟,没有规则;大多数半导体都是晶体。

半导体材料硅是原子共价晶体,在晶体中,相邻原子之间是以共用电子结合起来的。

硅是第四族元素,硅原子的电子层结构为2、8、4,它的最外层的四个电子是价电子。

因此每个硅原子又分别与相邻的四个原子形成四个共价键,每个共价键都是相邻的两个原子分别提供一个价电子所组成的。

如果硅晶体纯度很高,不含别的杂质元素,而且晶体结构很完美,没有缺陷,这种半导体叫本征半导体,而且是单晶体。

而多晶体是由许多小晶粒聚合起来组成的,每一晶体又由许多原子构成。

原子在每一晶粒中作有规则的整齐排列,各个晶粒中原子的排列方式都是相同的。

但在一块晶体中,各个晶粒的取向(方向)彼此不同,晶粒与晶粒之间并没有按照一定的规则排列,所以总的来看,原子的排列是杂乱无章的,这样的晶体,我们叫它多晶体。

半导体有很特别的性质:导电能力在不同的情况下会有非常大的差别。

光照、温度变化、适当掺杂都会使半导体的导电能力显著增强,尤其利用掺杂的方法可以制造出五花八门的半导体器件。

但掺杂是有选择的,只有加入一定种类和数量的杂质才能符合我们的要求。

我们重点看一下硼和磷这两种杂质元素。

硼是第三族主族元素,硼原子的电子层结构为2、3,由于硼原子的最外电子层只有三个电子,比硅原子缺少一个最外层电子,因此当硼原子的三个最外层价电子与周围最邻近的三个硅原子的价电子结合成共价键时,在与第四个最邻近的硅原子方向留下一个空位。

这个空位叫空穴,它可以接受从邻近硅原子上跳来的电子,形成电子的流动,参与导电。

热处理的基本知识

热处理的基本知识

常用热处理的基本知识一. 退火目的及工艺退火是钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织、提高加工性能的一种热处理工艺。

其主要目的是减轻钢的化学成分及组织的不均匀性,细化晶粒,降低硬度,消除内应力,以及为淬火作好组织准备。

退火工艺种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火及再结晶退火等。

不同退火工艺的加热温度范围如图5.25所示,它们有的加热到临界点以上,有的加热到临界点以下。

对于加热温度在临界点以上的退火工艺,其质量主要取决于加热温度、保温时间、冷却速度及等温温度等。

对于加热温度在临界点以下的退火工艺,其质量主要取决于加热温度的均匀性。

1. 完全退火完全退火是将亚共析钢加热到A C3以上20~30℃,保温一定时间后随炉缓慢冷却至500℃左右出炉空冷,以获得接近平衡组织的一种热处理工艺。

它主要用于亚共析钢,其主要目的是细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性能。

低碳钢和过共析钢不宜采用完全退火。

低碳钢完全退火后硬度偏低,不利于切削加工。

过共析钢完全退火,加热温度在A cm以上,会有网状二次渗碳体沿奥氏体晶界析出,造成钢的脆化。

2. 等温退火完全退火所需时间很长,特别是对于某些奥氏体比较稳定的合金钢,往往需要几十小时,为了缩短退火时间,可采用等温退火。

等温退火的加热温度与完全退火时基本相同,钢件在加热温度保温一定时间后,快冷至A r1以下某一温度等温,使奥氏体转变成珠光体,然后出炉空冷。

图5.26为高速钢的完全退火与等温退火的比较,可见等温退火所需时间比完全退火缩短很多。

A r1以下的等温温度,根据要求的组织和性能而定;等温温度越高,则珠光体组织越粗大,钢的硬度越低。

3. 球化退火球化退火是使钢中渗碳体球化,获得球状(或粒状)珠光体的一种热处理工艺。

主要用于共析和过共析钢,其主要目的在于降低硬度,改善切削加工性能;同时为后续淬火作好组织准备。

烧结工艺知识点总结大全

烧结工艺知识点总结大全

烧结工艺知识点总结大全一、烧结原理1. 烧结是指将粉末材料在一定温度下加热,使其颗粒间发生结合,形成致密的块状产品。

烧结的基本原理是固相扩散,即热力学上的固相之间的扩散过程。

2. 烧结过程中主要有三种力学过程,分别为颗粒间的原子扩散、颗粒间的表面扩散和颗粒间的体扩散。

这三种扩散方式相互作用,共同促进颗粒间发生结合。

3. 烧结过程中温度、时间和压力是影响烧结效果的重要因素。

通过控制这些参数,可以使烧结过程更加均匀和有效。

二、烧结设备1. 烧结设备主要包括热处理炉、烧结炉、烧结机等。

不同的烧结设备适用于不同的烧结材料和工艺要求。

2. 烧结设备的主要部件包括燃烧室、加热炉、炉膛、热风循环系统、控制系统等。

这些部件共同作用,实现对粉末材料的加热和烧结作用。

3. 热处理炉是常见的烧结设备之一,主要通过电阻加热、气体燃烧等方式对粉末材料进行加热处理,适用于各种金属和非金属材料的烧结工艺。

三、烧结工艺控制1. 烧结工艺控制是烧结过程中的关键环节,可以通过控制温度、时间、压力等参数,实现对烧结过程的精确控制。

2. 烧结工艺控制的主要方法包括PID控制、自适应控制、模糊控制等。

这些控制方法通过对烧结过程中的各个参数进行实时监测和调整,以实现对烧结过程的精确控制。

3. 在实际生产中,烧结工艺控制可以通过计算机控制系统实现自动化,提高生产效率和产品质量。

四、烧结材料选型1. 烧结工艺适用于各种粉末材料,包括金属粉末、陶瓷粉末、粉末冶金材料等。

根据不同的材料性质和要求,选择合适的烧结工艺和设备。

2. 烧结材料的选型考虑因素包括原料种类、粒度、成分、形状等。

根据不同的要求,选择合适的烧结材料,可以有效提高产品质量和生产效率。

3. 在烧结材料选型过程中,也需要考虑成本、资源利用率和环境保护等方面的因素,以实现经济、环保和可持续发展。

五、烧结工艺的应用1. 烧结工艺广泛应用于金属、陶瓷、粉末冶金、电子材料等行业。

在金属制品生产中,烧结工艺可以用于制造各种粉末冶金制品、焊接材料、钎焊材料等。

半导体工艺知识

半导体工艺知识

第一章工艺和器件发展概述1947年第一只具有放大作用的点接触晶体管问世,与电子管相比具有很多优点,引起人们广泛注意,在随后的十几年时间相继发明了各式各样晶体管(合金管、合金扩散管、台面管等)。

1960年硅平面工艺和外延技术的出现,使半导器件的制造工艺获得重大突破。

它为集成电路的制造开拓了广阔的途径,促进了半导体器件进一步向微型化、低功耗和高可靠性方向发展。

集成度由SSI、MSI、LSI、VLSI步入了ULSI时代。

1957年第一只SCR问世以来功率器件也取得了长足的进步,相继推出了GTO(可关断晶闸管)TRIAC(双向晶闸管)和GTR(达林顿功率晶体管)这些都是双极型器件,它们共同优点是功率容量大,导通电阻小,缺点是存在少子贮存效应,开关速度低,电流驱动,驱动功率大,不易控制,七十年末由IR和GE公司发明了单极型功率器件功率MOSFET,立即受到制造厂和用户的重视。

三年后西方15家大公司均掌握了功率MOSFET生产技术(VDMOS),1983年诞生了IGBT双极型器件。

半导体器件种类繁多,工艺有别,本次培训主要以外延平面工艺为主,介绍以下内容:单晶硅拉制及衬底制备、外延工艺、氧化工艺、扩散与离子注入工艺、光刻工艺、蒸发工艺、芯片组装工艺。

一、锗合金扩散晶体管制造工艺流程简介合金扩散晶体管是五十年代中期发展起来的一种高频管。

工艺流程:切片→研磨、抛光、腐蚀→扩散(Sb扩)→装发射极(In合金)→真空烧结(500~550℃)→装基极及支架→烧结(H2)→点焊管座→拉丝→涂保护油→台面腐蚀→去油清洗→管芯腐蚀→烘干→涂胶→封管二、硅外延平面晶体管制造工艺流程(NPN型)三、集成电路制造工艺流程原始硅片 P型(衬底) ρ:8-13Ω·cm 晶面(111)比平面晶体管多出工艺隐埋(埋层)扩散,隔离扩散。

四、肖特基二极管芯工艺工艺势垒金属结温 VF IRVR标准工艺 Mo-Si化合物 150℃低适中≤60V830工艺 Pd-Si化合物+Mo 175℃高低≤200VCr Cr-Si化合物+Mo 125℃很低高≤45VV V-Si化合物 100℃极低很高≤45V 管芯工艺流程见附图五、IGBT工艺流程 IGBT、MOSFET芯片结构详见附图第二章单晶拉制与衬底制备半导体单晶是制造半导体器件的基础材料,它的质量好坏直接影响到半导体器件的性能。

扩散工艺知识

扩散工艺知识

第三章扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。

这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。

除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。

第一节 扩散原理扩散是一种普通的自然现象,有浓度梯度就有扩散。

扩散运动是微观粒子原子或分子热运动的统计结果。

在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓称为扩As )t 为扩散时间;x 为扩散到硅中的距离。

四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。

为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。

其表达式为:KT Ee D D ∆-=0(3-3)这里:D 0——当温度为无穷大时,D 的表现值,通常为常数;K ——玻尔兹曼常数,其值为8.023×10-5ev/o K ;T ——绝对温度,单位用“o K ”表示;E ∆——有关扩散过程的激活能,实际上就是杂质原子扩散时所必须克服的某种势垒。

扩散系数除与杂质种类、扩散温度有关,还与扩散气氛、衬底晶向、晶格完整性、衬底材料、本体掺杂浓度N B 及扩散杂质的表面浓度N S 等有关。

五.扩散杂质分布在半导体器件制造中,虽然采用的扩散工艺各有不同,但都可以分为一步法扩散和二步法扩散。

二步法扩散分预沉积和再分布两步。

一步法与二步法中的预沉积属恒定表面源扩散。

而二步法中的再扩散属限定表面源扩散。

由于恒定源和限定源扩散两者的边界和初始条件不同,因而扩散方程有不同的解,杂质在硅中的分布状况也就不同。

1.恒定源扩散在恒定源扩散过程中,硅片的表面与浓度始终不变的杂质(气相或固相)相接触,即在整个扩散过程中硅片的表面浓度N S 保持恒定,故称为恒定源扩散。

恒定源扩散的杂质浓度分布的表达式是:t 三个式中的e Dt x 42-为高斯函数,故这种杂质分布也叫高斯分布。

硼扩散实验——精选推荐

硼扩散实验——精选推荐

两步法掺硼杂质(硼扩散)实验一、实验目的和要求:扩散工艺实验是通过平面工艺制造出有晶体管特性的硅平面NPN 晶体管等器件中的氧化、扩散、光刻这三个平面工艺中最基本工艺之一。

硼扩散工艺实验的目的是通过具体的硼扩散工艺操作熟悉硼扩散工艺步骤、了解扩散设备的使用以及进一步掌握和巩固两步法硼扩散工艺的原理和相关知识。

同时了解相关测试和分析手段,以及对工艺环境和成品率进行分析和评价。

二、实验原理:1、杂质浓度分布情况:硼扩散通常分为硼的预沉积(预扩散)和硼的再分布(再扩散)两步进行。

这就是硅平面工艺中所说的两步扩散工艺。

(1) 预沉积:采取恒定表面浓度的扩散方式,在硅片表面沉积上一层杂质原子。

由于扩散温度较低,且扩散时间较短,因此在预沉积过程中,杂质原子在硅片表面的扩散深度较浅。

其杂质分布遵循余误差函数分布。

根据这种扩散的特点可以写出它的初始条件和边界条件为:初始条件: (,0)0N x = (x 扩散结深)边界条件: (0,)N s N t = 和 (,t)0N ∞= (t 扩散时间;为Si 片表面的杂质浓度为恒定值)根据扩散方程 22N N D t x∂∂=∂∂ 和上述条件可解出预淀积杂质分布(,)N x t 表达式:220(,)(1)exp()s N x t N d πλλ=-- (λ为结深的微元) (1)简写为(,)s N x t N erfc = (D 为扩散系数) (2) 式中:erfc 为余误差函数;表面杂质浓度s N 和D 扩散系数主要取决于不同杂质元素和扩散温(0exp()a E D D kT -=,0D 和a E 为实验值)。

注:N s 是半导体内表面处的杂质浓度,它并不等于半导体周围气氛中的杂质浓度。

当气氛中得分压强较低时,在半导体内表面处的杂质溶解度将与其周围气氛中杂质的压强成正比。

当杂质分压强较高时,则与周围气氛中杂质的分压强无关,数值上等于扩散温度下杂质在半导体中的固溶度。

(2) 再分布:是把由预沉积过程在硅片表面淀积了一定杂质的硅片,放入较高温度的扩散炉内加热,使杂质向硅片内部扩散,扩散过程中没有外来杂质的补充,是一种限定源扩散。

钕铁硼磁体晶界扩散工艺[发明专利]

钕铁硼磁体晶界扩散工艺[发明专利]

(10)申请公布号 CN 101845637 A(43)申请公布日 2010.09.29C N 101845637 A*CN101845637A*(21)申请号 200910129479.8(22)申请日 2009.03.25C23F 17/00(2006.01)C23C 30/00(2006.01)C21D 1/26(2006.01)C21D 1/74(2006.01)(71)申请人罗阳地址100193 北京市海淀区肖家河天秀花园安和园5-7-101申请人罗惇(72)发明人罗阳 罗惇(74)专利代理机构北京市浩天知识产权代理事务所 11276代理人刘云贵(54)发明名称钕铁硼磁体晶界扩散工艺(57)摘要本发明涉及烧结钕铁硼(Nd-Fe-B)磁体合金改性的加工工艺,通过对烧结钕铁硼磁体合金成分的局部改变,即将适当重量的重稀土氧化物(Dy 2O 3,Tb 4O 7)或氟化物(DyF 3,TbF 3)的粉末溶于浓度适当的酸溶剂内,将磁体浸泡其中适当时间后,取出烘干,磁体表面即覆盖重稀土粉末薄层,将此磁体置于氩气炉内先后进行热扩散处理,然后进行退火处理。

本发明的方法既能有效提高磁体矫顽力,又显著降低所需添加的重稀土用量。

(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书 1 页 说明书 5 页 附图 2 页权 利 要 求 书CN 101845637 A1/1页1.一种提高钕铁硼磁体矫顽力的处理方法,其包括:步骤A,将一定粒度的重稀土氧化物粉末和/或重稀土氟化物粉末,溶于在磁体表面附着力强且对磁体性能无负影响的无机溶剂内;步骤B,将磁体置于上述重稀土粉末溶剂内浸泡适当时间,磁体取出后立刻用热风使之干燥;步骤C,表面涂敷了重稀土粉末的磁体在惰性气中进行热处理;步骤D,最后进行退火处理。

2.如权利要求1所述的处理方法,其中所述的重稀土氧化物可以为Dy2O3或Tb4O7,或者其混和物。

平面扩散焊接

平面扩散焊接

平面扩散焊接平面扩散焊接是一种常见的焊接方法,广泛应用于工业生产中。

它是利用高温将被焊接的金属材料加热至熔点,然后让其自然冷却形成焊接接头的工艺。

在实际应用中,平面扩散焊接具有许多优点,同时也需要注意一些问题。

平面扩散焊接具有焊接接头强度高、气密性好、耐腐蚀性强等优点。

通过高温加热,金属材料的晶粒得以重新排列,从而形成较为均匀的焊接接头,使焊接接头的强度得到提高。

同时,由于焊接过程中金属材料的熔点较高,焊接接头具有较好的气密性,可以有效防止气体或液体的泄漏。

此外,平面扩散焊接还可以降低焊接接头的应力集中度,使其具有较好的耐腐蚀性,延长使用寿命。

然而,在进行平面扩散焊接时,也需要注意一些问题。

首先,焊接过程中需要控制好焊接温度和时间,避免出现过高或过低的温度造成焊接接头质量不稳定的情况。

其次,需要保证被焊接的金属材料表面清洁,并严格控制焊接环境的氧含量,以避免氧化对焊接接头质量的影响。

另外,还需要选择合适的焊接材料和焊接工艺,确保焊接接头的性能满足使用要求。

在实际应用中,平面扩散焊接被广泛应用于航空航天、汽车制造、电子设备等领域。

例如,在航空航天领域,平面扩散焊接被用于制造飞机结构件、发动机零部件等,确保飞机的安全性和可靠性。

在汽车制造领域,平面扩散焊接被用于制造汽车车身、底盘等部件,提高汽车的整体性能和使用寿命。

在电子设备领域,平面扩散焊接被用于制造集成电路、传感器等部件,提高设备的稳定性和可靠性。

总的来说,平面扩散焊接作为一种重要的焊接方法,在工业生产中发挥着重要作用。

通过控制好焊接温度和时间,保证焊接接头质量,选择合适的焊接材料和工艺,可以确保焊接接头的性能满足使用要求,提高产品的质量和可靠性。

因此,在实际应用中,需要加强对平面扩散焊接的研究和应用,不断提高焊接技术水平,推动工业生产的发展。

关于扩散工艺的实习报告

关于扩散工艺的实习报告

实习报告实习单位:XX科技有限公司实习时间:2023年3月1日至2023年3月31日实习内容:扩散工艺一、实习背景及目的作为一名材料科学与工程专业的学生,我深知实践操作对于理论知识的重要性。

为了更好地将所学知识应用到实际工作中,提高自己的综合素质,我选择了XX科技有限公司进行为期一个月的实习。

本次实习主要涉及扩散工艺的操作和学习,旨在了解扩散工艺的基本原理、流程及应用。

二、实习内容及过程1. 实习前的培训在实习开始前,公司为我们实习生进行了系统的培训,包括安全知识、厂规厂纪、设备操作等方面。

通过培训,我们对公司的基本情况有了初步了解,为接下来的实习打下了基础。

2. 实习过程中的学习与操作(1)扩散工艺的基本原理扩散工艺是一种通过高温加热,使两种不同的金属元素在固态下发生相互渗透,形成合金的过程。

扩散焊接是一种常见的扩散工艺,其原理是通过高温使焊接界面上的原子发生扩散,达到焊接的目的。

(2)扩散工艺的流程扩散工艺的流程主要包括以下几个步骤:① 准备扩散材料:选择合适的金属材料,并进行表面处理,去除氧化层、油污等。

② 装配:将准备好的金属材料进行装配,使焊接界面紧密接触。

③ 高温加热:将装配好的试样放入扩散炉中,加热至高温状态,保持一定时间。

④ 冷却:缓慢冷却至室温,使原子充分扩散。

⑤ 检测:对扩散焊接接头进行宏观和微观检测,评估焊接质量。

(3)扩散工艺的应用扩散工艺在许多领域都有广泛的应用,如航空航天、汽车制造、电子封装等。

特别是在航空航天领域,扩散焊接技术在发动机叶片、涡轮盘等关键部件的制造中起着重要作用。

3. 实习中的困难与解决方法在实习过程中,我遇到了一些困难,如设备操作不熟练、焊接质量不稳定等。

针对这些问题,我通过请教同事、查阅资料、反复实践等方式,逐步掌握了操作技巧,提高了焊接质量。

三、实习收获与反思通过本次实习,我对扩散工艺有了更深入的了解,掌握了基本的操作技能。

同时,实习过程中的困难与挑战,也锻炼了我的解决问题、团队合作的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。

这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。

除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。

第一节 扩散原理扩散是一种普通的自然现象,有浓度梯度就有扩散。

扩散运动是微观粒子原子或分子热运动的统计结果。

在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。

一.扩散定义在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。

二.扩散机构杂质向半导体扩散主要以两种形式进行:1.替位式扩散一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。

其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位”。

这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。

硼(B )、磷(P )、砷(As )等属此种扩散。

2.间隙式扩散构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进。

这种扩散称间隙式扩散。

金、铜、银等属此种扩散。

三. 扩散方程扩散运动总是从浓度高处向浓度低处移动。

运动的快慢与温度、浓度梯度等有关。

其运动规律可用扩散方程表示,具体数学表达式为:N D tN 2∇=∂∂ (3-1) 在一维情况下,即为: 22xN D t N ∂∂=∂∂ (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。

四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。

为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。

其表达式为:KT Ee D D ∆-=0 (3-3)这里:D 0——当温度为无穷大时,D 的表现值,通常为常数;K ——玻尔兹曼常数,其值为8.023×10-5ev/ºK ;T —— 绝对温度,单位用“ºK ”表示;E ∆——有关扩散过程的激活能,实际上就是杂质原子扩散时所必须克服的某种势垒。

扩散系数除与杂质种类、扩散温度有关,还与扩散气氛、衬底晶向、晶格完整性、衬底材料、本体掺杂浓度N B 及扩散杂质的表面浓度N S 等有关。

五.扩散杂质分布在半导体器件制造中,虽然采用的扩散工艺各有不同,但都可以分为一步法扩散和二步法扩散。

二步法扩散分预沉积和再分布两步。

一步法与二步法中的预沉积属恒定表面源扩散。

而二步法中的再扩散属限定表面源扩散。

由于恒定源和限定源扩散两者的边界和初始条件不同,因而扩散方程有不同的解,杂质在硅中的分布状况也就不同。

1.恒定源扩散在恒定源扩散过程中,硅片的表面与浓度始终不变的杂质(气相或固相)相接触,即在整个扩散过程中硅片的表面浓度N S 保持恒定,故称为恒定源扩散。

恒定源扩散的杂质浓度分布的表达式是:erfc N t x N S •=),(Dtx 2 (3-4) 式中:),(t x N 表示杂质浓度随杂质原子进入硅体内的距离x 及扩散时间t 的变化关系;N S 为表面处的杂质浓度;D 为扩散系数。

erfc 为余误差函数。

因此恒定源扩散杂质浓度分布也称余误差分布。

图3-1为恒定源扩散杂质分布示意图:从图上可见,在不同扩散时间表面浓度N S 的值不变。

也就是说,N S 与扩散时间无关,但与扩散杂质的种类、杂质在硅内的固溶度和扩散温度有关。

硅片内的杂质浓度随时间增加而增加,随离开硅表面的距离增加而减少。

图中N B 为衬底原始杂质浓度,简称衬底浓度,其由单晶体拉制时杂质掺入量决定。

由恒定源扩散杂质分布表达式中可知道,当表面浓度N S 、杂质扩散系数D和扩散时间t 三个量确定以后,硅片中的杂质浓度分布也就确定。

经过恒定源扩散之后进入硅片单位面积内的杂质原子数量可由下式给出:Dt N Dt N Q S S 13.12==π (3-5)式中:Q 为单位面积内杂质原子数或杂质总量。

2.限定源扩散在限定源扩散过程中,硅片内的杂质总量保持不变,它没有外来杂质的补充,只依靠预沉积在硅片表面上的那一层数量有限的杂质原子向硅内继续进行扩散,这就叫限定源扩散或有限源扩散。

其杂质浓度分布表达式为:e Dt x Dt Q t x N 42),(-=π (3-6)式中的e Dt x 42-为高斯函数,故这种杂质分布也叫高斯分布。

图3-2是限定源扩散杂质分布示意图。

由于扩散过程中杂质总量保持不变,图中各条曲线下面的面积相等。

当扩散温度恒定时,随扩散时间t 的增加,一方面杂质扩散进硅片内部的深度逐渐增加;另一方面,硅片表面的杂质浓度将不断下降。

在讨论限定源扩散,即两步法的再分布时,必须考虑的一个因素是分凝效应。

在“氧化工艺”中曾经分析过,由于热氧化,在再分布时杂质在硅片表面氧化层中会出现“吸硼排磷”现象,我们不能忽略这个因素;并且应当利用这些规律来精确的控制再分布的杂质表面浓度。

第二节扩散条件扩散条件选择,主要包括扩散杂质源的选择和扩散工艺条件的确定两个方面。

一.扩散源的选择选取什么种类的扩散杂质源,主要根据器件的制造方法和结构参数确定。

具体选择还需要遵循如下原则:1.导电类型与衬底相反;2.先扩散的扩散系数要比后扩散的小;3.杂质与掩模之间的配合要协调,扩散系数在硅中要比在掩模中大得多;4.要选择容易获得高浓度、高蒸汽压、且使用周期长的杂质源;5.在硅中的固溶度要高于所需要的表面杂质浓度;6.毒性小,便于工艺实施。

从杂质源的组成来看,有单元素、化合物和混合物等多种形式。

从杂质源的状态来看,有固态、液态、气态多种。

二.扩散条件的确定扩散的目的在于形成一定的杂质分布,使器件具有合理的表面浓度和结深,而这也是确定工艺条件的主要依据。

此外如何使扩散结果具有良好的均匀性、重复性也是选择工艺条件的重要依据。

具体讲有:1.温度对扩散工艺参数有决定性影响。

对浅结器件一般选低些;对很深的PN 结选高些。

此外还需根据工艺要求实行不同工艺系列的标准化,以有利于生产线的管理。

2.时间调节工艺时间往往是调节工艺参数的主要手段,扩散时间的控制应尽量减少人为的因素。

3.气体流量流量是由掺杂气体的类别和石英管直径确定的,只有使扩散的气氛为层流型,才能保证工艺的稳定性,流量控制必须采用质量流量控制器MFC 。

第三节 扩散参数及测量扩散工艺中有三个参数非常重要,它们是扩散结深、薄层电阻及表面浓度,三者之间有着一个十分密切的有机联系。

一.扩散结深结深就是PN 结所在的几何位置,它是P 型与N 型两种杂质浓度相等的地方到硅片表面的距离,用j x 表示,单位是微米(μμ或m )其表达式为:Dt A x j ⋅= (3-7)式中A 是一个与N S 、N B 等有关的常数,对应不同的杂质浓度分布,其表达式不同。

余误差分布时:S B N N erfc A 12-=(3-8)高斯分布时:212⎥⎦⎤⎢⎣⎡=BSnNNA (3-9)这里erfc-1为反余误差函数,可以查反余误差函数表。

㏑为以e为底的自然对数,可以查自然对数表。

此外,A也可以通过半导体手册A~BSNN曲线表直接查出。

实际生产中j x直接通过测量显微镜测量。

具体方法有磨角染色法、滚槽法、阳极氧化法等。

二.方块电阻扩散层的方块电阻又叫薄层电阻,记作R□或RS,其表示表面为正方形的扩散薄层在电流方向(平行于正方形的边)上所呈现的电阻。

由类似金属电阻公式SLRρ=可推出薄层电阻表达式为:______1σρρjjjSxxLxLR===(3-10)式中:__ρ、__σ分别为薄层电阻的平均电阻率和电导率。

为区别于一般电阻,其单位用Ω/□表示。

由于:___________)(1μρ⋅⋅=xNq(3-11)q为电子电荷量,______)(xN为平均杂质浓度,__μ为平均迁移率。

RS可变换为:j j S x x N q x R ⋅⋅⋅==__________)(1μρ(3-12)式中:______)(x N ·j x 为单位表面积扩散薄层内的净杂质总量Q 。

可见,方块电阻与方块内净杂质总量成反比。

方块电阻不仅十分直观地反映了杂质在扩散过程中杂质总量的多少,还可以结合结深方便地算出扩散后的平均电阻率或平均电导率。

实际生产中,R S (R □)用四探针测试仪测量。

三.表面杂质浓度扩散后的表面杂质浓度N S 是半导体器件设计制造和特性分析的一个重要结构参数,它可以采取放射性示踪技术通过一些专门测试仪器直接测量,但是实际生产中是先测出结深j x 和方块电阻R □,再用计算法或图解法间接得出。

1.计算法若已知扩散预沉积杂质扩散系数为D 1,扩散时间t 1,预沉积后表面浓度为N S1,再扩散的扩散系数D 2,扩散时间t 2,忽略再分布时的杂质分凝效应,如何利用有关公式,计算求出再扩散后表面杂质浓度N S2?(提示:表面处0=x )计算步骤如下:再扩散杂质浓度遵循了高斯分布。

根据公式(3-6),且考虑到0=x ,于是有:?由于忽略分凝效应,再扩散时杂质总量等于预沉积后的杂质总量。

预沉积是恒定表面源扩散,根据公式(3-4)可知其扩散后进入硅片单位面积内杂质总量为:?代入上式即可得到2211222t D t D N N S S π= (3-13) 事实上表达式(3-13)也就是一个常用的扩散杂质浓度计算公式。

如果不忽略表面氧化层分凝效应,则磷扩散时实际表面浓度应高于(3-13)计算结果;反之若是硼扩散,实际表面浓度比计算数据要低。

2.图解法半导体手册上都能方便地查到不同衬底杂质浓度N B 下不同杂质分布的表面浓度N S 与平均电导率__σ的关系曲线。

通过测出的R S 和j x 能得到__σ: j S x R ⋅=1__σ(3-14) 衬底材料电阻率ρ往往是已知的,从而可用手册上ρ~N B 曲线查出衬底浓度N B 。

当然也可以根据经验公式:ρμ⋅⋅=q N B 1(3-15)算出N B 。

有了__σ和N B ,只要知道杂质分布类型(恒定源还是限定源扩散),就可以通过和已知衬底浓度N B 相应的那组S N ~__σ曲线,查到从表面(0=x )到结(x =j x )之间任意一点x 处的杂质浓度。

第四节 扩散方法扩散方法很多。

常用的主要有:液态源扩散气—固扩散 粉态源扩散片状源扩散扩散法:乳胶源扩散固—固扩散 CVD 掺杂扩散PVD 蒸发扩散这是以扩散中杂质源与硅片(固态)表面接触时的最终状态是气态还是固态来划分的。

相关文档
最新文档