MATLAB中多元线性回归的例子

合集下载

多元回归分析matlab

多元回归分析matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ;alpha 缺省时为0.5.例 1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model’, alpha )说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jj m m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 7580 70 50 65 90100 110 60 收入 1000 600 1200 500 300 400 13001100 1300 300解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中. 在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x ,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY ,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY ,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与F 对应的概率P.例1. 水泥凝固时放出的热量y 与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.序号x1 7 1 11 11 7 11 3 1 2 21 1 11 10 x2 26 29 56 31 52 55 71 31 54 47 40 66 68 x3 6 15 8 8 6 9 17 22 18 4 23 9 8 x4 60 52 20 47 33 22 6 44 22 26 34 12 12 y 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587 format short gX11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.311 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

Matlab 多元线性回归

Matlab 多元线性回归
在 Matlab 图示所示:
/输出结果如图所示:/
因 此 我 们 可 得 bˆ0 = −16.0730, , bˆ1 = 0.7194.
bˆ0 的置信区间 ( − 33.7071, 1.5612) ,
bˆ1 的置信区间 (0.6047, 0.834). r2 = 0.9282, F = 180.9531, p = 0.0000.
多元线性回归模型的一般形式为:
Yi =β0 +β1X1i +β2X2i + +βk Xki +μi , i=1,2, ,n
(1)
其中 k 为解释变量的数目, β j ( j = 1,2, ,k) 称为回归系数(regression coefficient)。上
式也被称为总体回归函数的随机表达式。它的非随机表达式为:
Matlab 多元线性回归
1、 多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象 常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一 个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模 型。(multivariable linear regression model )
在 Matlab 图示所示:
/输出结果如图所示:/
bˆ0 = 62.4054, bˆ0 的置信区间 ( − 99.1786, 223.9893) , bˆ1 = 1.5511, bˆ1 的置信区间 (−0.1663, 3.2685) , 因此我们可得 bˆ2 = 0.5102, , bˆ2 的置信区间 (−1.1589, 2.1792) , bˆ3 = 0.1019, bˆ3 的置信区间 (−1.6385, 1.8423) , bˆ4 = −1441. bˆ4 的置信区间 (−1.7791, 1.4910). r2 = 0.9824, F = 111.4792, p = 0.0000. p < 0.05,回归模型 y = −62.4054 +1.5511x1 + 0.5102x2 +0.1019x3 -0.1441x4成立.

Matlab_多元的线性回归

Matlab_多元的线性回归

1、 多元线性回归Matlab 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。

事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。

在实际经济问题中,一个变量往往受到多个变量的影响。

例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。

这样的模型被称为多元线性回归模型。

(multivariable linear regression model)多元线性回归模型的一般形式为:Y i =0+1 X 1i +2X 2i + …+k X ki +i ,i=1,2,…n(1)其中 k 为解释变量的数目, βj j( j = 1,2,…k )称为回归系数(regression coefficient)。

上式也被称为总体回归函数的随机表达式。

它的非随机表达式为:Y i =0+1 X 1i +2X 2i + …+k X ki , i=1,2, …n kj j也被称为偏回归系数(partial regression coefficient)。

,2、 多元线性回归计算模型Y=0+1 X 1+2X 2+ …+k X k +,~N(0,2) (3)(2)多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe) 为最小的前提下,用最小二乘法或最大似然估计法求解参数。

设( x 11,x 12,…,x 1p ,y 1),…,(x n1,x n2,…,x np ,y n ) 是一个样本,用最大似然估计法估计参数:取,…,,当b 0=,b 1=,…,b p=时,Q=达到最小。

(4)化简可得:ββββμ βββββββββεεδ,ˆ0b 1ˆb p b ˆ0ˆb1ˆb p b ˆ21101)...(ip p i ni i x b x b b y ----∑=⎪⎪⎩⎪⎪⎨⎧-----=∂∂=-----=∂∂∑∑===ni ij ip p i i j n i ip p i i x x b x b b y b Q x b x b b y b Q 1011011100)(20)(2 ⎪⎪⎩⎪⎪⎨⎧-----=∂∂=-----=∂∂∑∑===n i ij ip p i i jn i ip p i i x x b x b b y b Q x b x b b y b Q1011011100)(20)(2引入矩阵: y方程组(5)可以化简得:X X X 可得最大似然估计值:BX ’Y⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫=++++=++++=+++∑∑∑∑∑∑∑∑∑∑∑∑∑∑============n i n i n i n i ni i ip ip p i ip i ip ip n i n i n i i i i ip i p i i i i ni ni ni i ip p i i y x x b x x b x x b x b y x x x b x x b x b x b y x b x b x b n b 111112221101111112122111011122110,,,⎪⎪⎪⎪⎪⎭⎫⎝⎛np n n p p x x xx x x x x x 212222111211111X X X b b b B p ')'(ˆˆˆˆ110-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=(8)的估计是:公式(8)为P 元经验线性回归方程。

(完整版)Matlab线性回归(拟合)

(完整版)Matlab线性回归(拟合)

Matlab 线性回归(拟合)对于多元线性回归模型:e x x y p p ++++=βββΛ110设变量12,,,p x x x y L 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n =L L .记 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x x ΛΛΛΛΛΛΛΛ212222*********,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y M 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββM 10 的估计值为 y x x x b ')'(ˆ1-==β(11.2) 在Matlab 中,用regress 函数进行多元线性回归分析,应用方法如下:语法:b = regress(y, x)[b, bint, r, rint, stats] = regress(y, x)[b, bint, r, rint, stats] = regress(y, x, alpha)b = regress(y, x),得到的1+p 维列向量b 即为(11.2)式给出的回归系数β的估计值.[b, bint, r, rint, stats]=regress(y, x) 给出回归系数β的估计值b ,β的95%置信区间((1)2p +⨯向量)bint ,残差r 以及每个残差的95%置信区间(2⨯n 向量)rint ;向量stats 给出回归的R 2统计量和F 以及临界概率p 的值.如果i β的置信区间(bint 的第1i +行)不包含0,则在显著水平为α时拒绝0i β=的假设,认为变量i x 是显著的.[b, bint, r, rint, stats]=regress(y, x, alpha) 给出了bint 和rint 的100(1-alpha)%的置信区间.三次样条插值函数的MATLAB 程序matlab 的splinex = 0:10; y = sin(x); %插值点xx = 0:.25:10; %绘图点yy = spline(x,y,xx);plot(x,y,'o',xx,yy)非线性拟合非线性拟合可以用以下命令(同样适用于线形回归分析):1.beta = nlinfit(X,y,fun,beta0)X给定的自变量数据,Y给定的因变量数据,fun要拟合的函数模型(句柄函数或者内联函数形式),beta0函数模型中系数估计初值,beta返回拟合后的系数2.x = lsqcurvefit(fun,x0,xdata,ydata)fun要拟合的目标函数,x0目标函数中的系数估计初值,xdata自变量数据,ydata 函数值数据X拟合返回的系数(拟合结果)nlinfit格式:[beta,r,J]=nlinfit(x,y,’model’, beta0)Beta 估计出的回归系数r 残差J Jacobian矩阵x,y 输入数据x、y分别为n*m矩阵和n维列向量,对一元非线性回归,x为n维列向量。

matlab regress用法

matlab regress用法

matlab regress用法
在MATLAB中,regress函数用于执行多元线性回归分析。

它可以通过拟合线性模型来预测和分析因变量与一个或多个自变量之间的关系。

regress函数的语法如下:
scssCopy code
b = regress(y, X)
参数说明:
•y:因变量的数据向量或矩阵。

•X:自变量的数据矩阵。

每一列代表一个自变量。

返回值:
•b:回归系数的估计值。

示例使用:
假设我们有因变量y和两个自变量x1和x2的数据。

可以按照以下方式使用regress函数:
matlabCopy code
y = [1; 2; 3; 4; 5]; % 因变量数据
x1 = [0.5; 1; 1.5; 2; 2.5]; % 自变量1数据
x2 = [1; 2; 3; 4; 5]; % 自变量2数据
X = [ones(size(y)), x1, x2]; % 构建自变量矩阵,包括常数项
b = regress(y, X); % 执行线性回归分析
% 显示回归系数
disp(’回归系数:’);
disp(b);
上述示例中,我们构建了自变量矩阵X,包括常数项和两个自变量。

然后使用regress函数执行回归分析,并将结果存储在变量b中。

最后,我们显示回归系数。

注意:为了使用regress函数,确保MATLAB Statistics and Machine Learning Toolbox已被正确安装和许可。

希望这个示例能帮助您理解regress函数的用法。

如有任何进一步的问题,请随时提问。

MATLAB回归分析

MATLAB回归分析

MATLAB回归分析回归分析是统计学中常用的一种方法,用于建立一个依赖于自变量(独立变量)的因变量(依赖变量)的关系模型。

在MATLAB环境下,回归分析可以实现简单线性回归、多元线性回归以及非线性回归等。

简单线性回归是一种最简单的回归分析方法,它假设自变量和因变量之间存在线性关系。

在MATLAB中,可以通过`polyfit`函数进行简单线性回归分析。

该函数可以拟合一元数据点集和一维多项式,返回回归系数和截距。

例如:```matlabx=[1,2,3,4,5];y=[2,3,4,5,6];p = polyfit(x, y, 1);slope = p(1);intercept = p(2);```上述代码中,`x`是自变量的数据点,`y`是因变量的数据点。

函数`polyfit`的第三个参数指定了回归的阶数,这里是1,即一次线性回归。

返回的`p(1)`和`p(2)`分别是回归系数和截距。

返回的`p`可以通过`polyval`函数进行预测。

例如:```matlabx_new = 6;y_pred = polyval(p, x_new);```多元线性回归是在有多个自变量的情况下进行的回归分析。

在MATLAB中,可以使用`fitlm`函数进行多元线性回归分析。

例如:```matlabx1=[1,2,3,4,5];x2=[2,4,6,8,10];y=[2,5,7,8,10];X=[x1',x2'];model = fitlm(X, y);coefficients = model.Coefficients.Estimate;```上述代码中,`x1`和`x2`是两个自变量的数据点,`y`是因变量的数据点。

通过将两个自变量放在`X`矩阵中,可以利用`fitlm`函数进行多元线性回归分析。

返回值`model`是回归模型对象,可以通过`model.Coefficients.Estimate`获得回归系数。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。

基于Matlab的数据多元回归分析的研究

基于Matlab的数据多元回归分析的研究

基于Matlab的数据多元回归分析的研究摘要多元线性回归是利用MATLAB软件研究一个变量与多个变量的定量关系,MATLAB(矩阵实验室,是MATrix LABoratory的缩写)是一套高性能的数值运算和可视化软件,它集矩阵运算、数值分析、信号处理和图形显示于一体,构成了一个界面友好、使用方便的用户环境,是实现数据分析与处理的有效工具,其中MATLAB统计工具箱更为人们提供了一个强有力的数据统计分析工具。

利用MATLAB统计工具箱来进行数据的多元回归分析使得分析的样本容量扩大,增加了统计推断的正确性,也促进了包含大量计算的多元统计分析的发展和运用。

本课题研究了在MATLAB软件平台上实现数据的多元统计分析,具体包括一元线性回归分析,非线性回归分析,多元线性回归分析,通过对基础数据分析函数polyfit(一元回归);regress(多元回归);及nlinfit(非线性回归)的学习。

根据已得的实验结果以及以往的经验来建立统计模型,并研究变量之间的相关关系,建立起变量之间关系的近似表达式,并由此对相应的变量进行预测和控制。

根据所收集的数据,通过本文的研究方法进行一一分析,掌握它们的相关关系,可以找出数据中我们最需要的信息,从而进一步对总体的特性进行进一步的判断,把握规律,并将研究结果广泛运用于各种实际应用的预测和判断之中。

关键词:polyfit,regress,置信区间,最小二乘估计目录绪论....................................................................................................... - 3 -1.1研究的背景............................................................................................ - 3 -1.2研究的主要内容................................. - 4 -1.3应解决的关键问题.............................................................................. - 4 -2 MATLAB数据分析.......................................................................... - 4 -2.1 MATLAB重点基础预备....................................................................... - 4 -2.1.1 MATLAB界面掌握 ............................................................................... - 4 -2.1.2矩阵及其运算 ....................................................................................... - 5 -2.2数据分析 ...................................... - 6 -2.2.1样本数据的基本统计量.................................................................. - 6 -3 一元回归分析 ............................................................................... - 7 -3.1一元回归模型 ....................................................................................... - 7 -3.1.1一元线性回归 ....................................................................................... - 7 -3.1.2一元多项式回归.................................................................................. - 8 -3.2一元非线性回归................................................................................... - 9 -3.2.1非线性曲线选择.................................................................................. - 9 -3.2.2非线性回归命令的调用格式 ....................................................... - 9 -3.3一元回归建模实例............................................................................ - 11 -4 多元线性回归模型..................................................................... - 13 -4.1多元线性回归初级分析................................................................... - 13 -4.1.1多元回归基本概念........................................................................... - 13 -4.1.2建立多元线性回归建模的基本步骤 ..................................... - 14 -4.2 MATLAB的回归分析命令 ................................................................ - 15 -4.2.1 多元回归建模命令 ......................................................................... - 15 -4.2.2 多元回归辅助图形命令............................................................... - 15 -4.3 一元回归建模实例........................................................................... - 16 -5 GUI界面的设计.......................................................................... - 23 -5.1 GUI界面的介绍................................................................................. - 23 -5.2 GUI的设计流程 .............................................................................. - 23 -5.2 实例的GUI设计............................................................................... - 25 -结论................................................................................................. - 28 -参考文献 ............................................................................................. - 28 -附录................................................................................................ - 29 -绪论1.1研究的背景MATLAB是一套集高性能的数值计算和可视化整理、计算、绘制图表等于一身的数学工具。

Matlab回归分析:详解+实例

Matlab回归分析:详解+实例
回归分析 —从姚明女儿的身高谈起
姚明女儿的身高
问 建立父母身高和女儿身高的模型 题 姚明2.26米,叶莉1.90米,预测姚明女儿身高
女孩身高y(cm) 156 172 162 158 164 166 160 155 174 165
父母平均身高 x(cm)
158.5
170.5
166
163.5
166
168.5 165.5
自变量X:用来解释Y的变量,通常有多个。
Y:薪资收入 X:学历、年龄、性别...
注意:(1)自变量可以是定量数据,也可以是定
性数据,它不决定回归模型的类型,决定回归模型 类型的是因变量;
(2)确定自变量的方法可以头脑风暴,但同时也 要看数据的可获得性,有时候可能头脑风暴想的很 好,但是没办法获取这个指标的数据也是不行的, 所以自变量的选取往往看一个数据的可获取性。
1 n
(x0 x)2 Lxx
小结
1.回归分析的任务 研究变量之间的相关关系
2.线性回归的步骤
(1) 推测回归函数; (3) 估计未知参数; (5) 预测.
(2) 建立回归模型; (4) 进行假设检验;
MATLAB中回归分析的实现
多元线性回归
1.确定回归系数的点估计值,用命令:
b=regress(Y,X)
女孩身高y(cm) 156 172 162 158 164 166 160 155 174 165
父母平均身高 x(cm)
158.5
170.5
166
163.5
166
168.5 165.5
159
180.5
169
基本模型
y 0 1x
y ~女孩身高
0, 1 ~回归系数

学习笔记124—MATLAB中regress函数用法(多元线性回归)

学习笔记124—MATLAB中regress函数用法(多元线性回归)

学习笔记124—MATLAB中regress函数⽤法(多元线性回归)⽤于⼀元及多元线性回归,本质上是最⼩⼆乘法。

在Matlab 2014a中,输⼊help regress ,会弹出和regress的相关信息,⼀⼀整理。

调⽤格式:B = regress(Y,X)[B,BINT] = regress(Y,X)[B,BINT,R] = regress(Y,X)[B,BINT,R,RINT] = regress(Y,X)B,BINT,R,RINT,STATS] = regress(Y,X)[...] = regress(Y,X,ALPHA)参数解释:B:回归系数,是个向量(“the vector B of regression coefficients in the linear model Y = X*B”)。

BINT:回归系数的区间估计(“a matrix BINT of 95% confidence intervals for B”)。

R:残差( “a vector R of residuals”)。

RINT:置信区间(“a matrix RINT of intervals that can be used to diagnose outliers”)。

STATS:⽤于检验回归模型的统计量。

有4个数值:判定系数R^2,F统计量观测值,检验的p的值,误差⽅差的估计。

ALPHA:显著性⽔平(缺少时为默认值0.05)。

regress函数例程⽬标函数:y=Ax1^2+Bx1^2+Cx1+Dx2+Ex1*x2+F (这是⼀个⼆次函数,两个变量,⼤写的字母是常数)1. %导⼊数据2. y=[7613.51 7850.91 8381.86 9142.81 10813.6 8631.43 8124.94 9429.79 10230.813. ... 10163.61 9737.56 8561.06 7781.82 7110.97]';4. x1=[7666 7704 8148 8571 8679 7704 6471 5870 5289 3815 3335 2927 2758 2591]';5. x2=[16.22 16.85 17.93 17.28 17.23 17 19 18.22 16.3 13.37 11.62 10.369.83 9.25]';6. X=[ones(size(y)), x1.^2,x2.^2, x1, x2, x1.*x2];7. %开始分析8. [b,bint,r,rint,stats] = regress(y,X);。

MATLAB中多元线性回归

MATLAB中多元线性回归

0 1 2 3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到0.8462 ,我们得到回归模型为:
ˆ 58 . 5101 0 . 4303 x 1 2 . 3449 x 2 10 . 3065 x 3 y
y与x1的散点图 线性回归模型
y与x2的散点图
y 0 1 x1 2 x 2 3 x 3
回归系数0, 1, 2, 3 由数据估计, 是随机误差
n=30;m=3; y=[144 215 138 145 162 142 170 124 158 154 162 150 140 110 128 130 135 114 116 124 136 142 120 120 160 158 144 130 125 175]; x1=[39 47 45 47 65 46 67 42 67 56 64 56 59 34 42 48 45 18 20 19 36 50 39 21 44 53 63 29 25 69]; x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4]; x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1];
n n
DW


t2
( e t e t 1 ) /
2

Matlab实现多元的回归实例

Matlab实现多元的回归实例

Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。

如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。

进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。

在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。

回归方程具有如下形式:011m m y x x λλλε=++⋅⋅⋅++其中,ε是残差。

在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。

⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。

Matlab实现多元回归实例-8页word资料

Matlab实现多元回归实例-8页word资料

Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。

如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。

进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。

在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。

回归方程具有如下形式: 其中,ε是残差。

在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。

⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。

matlab数学建模

matlab数学建模

利用多元线性回归研究水稻各品种的抗旱生理指标摘要在我国北方水源不足的条件下,大面积发展水稻生产受到了很大限制,因此采用抗旱品种,节水种稻,越来越为广大农业科学工作者所重视。

目前评价水稻品种的抗旱性方法和指标的研究工作还处于摸索阶段,先用综合的生理指标来反映水稻品种的抗旱性,为此进行本实验。

综合性的抗旱生理指标是由质膜透性,呼吸强度,脯氨酸含量,离体24小时的叶片含水量,气孔阻力,叶片生长速度,成活率7项组成。

该实验所用供试品种有26个(包括陆稻,水稻,湿润稻),由河北大学生物性提供,在中国农业科学院品种资源研究所培育,日平均温度为28℃,夜间温度为20℃,自然光照下,所得的实验数据均出于该研究所。

回归分析是研究随机现象中变量之间关系的一种统计方法,而这种统计规律称为变量之间的回归关系。

本文利用matlab对数据进行多元线性回归分析,先用regress函数进行回归,初步拟合出回归方程,然后再对其进行方差分析。

由于本实验变量较多,但并不是所有的变量都是显著的,故用逐步回归法对其进行分析,剔除不显著的变量,然后再用regress对剔除某些变量后拟合出来的方程进行检验。

通过比较两种不同方法,最终确定回归方程。

1.1实验数据实验数据见附表。

ShuidaoData.m 水稻数据文件见附页1.2多元线性回归——regress在命令窗口输入:X=[diandao,huxi,shengzhangv,pro,H2O,chenghuo,qikong,k];Y=zongjibie;[b,bint,r,rint,stats]=regress(Y,X,0.05);rcoplot(r,rint);由此模拟出来的回归方程如下所示:Y=0.2488*X(1)+0.2332*X(2)+0.2643*X(3)+0.1745*X(4)+0.1545*X(5) +0.2506*X(6)+0.1625*X(7)-1.6882所得统计量如下所示:由R2=0.9262 较大,且p值趋近于0,故可知回归的线性拟合较好。

利用Matlab进行线性回归分析

利用Matlab进行线性回归分析

利用Matlab 进行线性回归分析回归分析是处理两个及两个以上变量间线性依存关系的统计方法。

可以通过软件Matlab 实现。

1.利用Matlab 软件实现在Matlab 中,可以直接调用命令实现回归分析,(1)[b,bint,r,rint,stats]=regress(y,x),其中 b 是回归方程中的参数估计值,bint 是b的置信区间,r和rint分别表示残差及残差对应的置信区间。

stats包含三个数字,分别是相关系数,F统计量及对应的概率p值。

(2)recplot(r,rint)作残差分析图。

(3)rstool(x,y)一种交互式方式的句柄命令。

以下通过具体的例子来说明。

例现有多个样本的因变量和自变量的数据,下面我们利用Matlab,通过回归分析建立两者之间的回归方程。

% 一元回归分析x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3, 55 3372];%自变量序列数据y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];%因变量序列数据X=[ones(size(x')),x'],pause [b,bint,r,rint,stats]=regress(y',X,,pause% 调用一元回归分析函数rcoplot(r,rint)% 画出在置信度区间下误差分布。

% 多元回归分析% 输入各种自变量数据x1=[ 8 3 3 8 9 4 5 6 5 8 6 4 7]';x2=[31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 70 40 50 62 59]';x3=[10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9]';x4=[8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11]'; %输入因变量数据y=[ 160 155 195]'; X=[ones(size(x1)),x1,x2,x3,x4];[b,bint,r,rint,stats]=regress(y,X)% 回归分析Q=r'*rsigma=Q/18rcoplot(r,rint);%逐步回归X1=[x1,x2,x3,x4];stepwise(X1,y,[1,2,3])% 逐步回归% X2=[ones(size(x1)),x2,x3];% X3=[ones(size(x1)),x1,x2,x3];% X4=[ones(size(x1)),x2,x3,x4];% [b1,b1int,r1,r1int,stats1]=regress(y,X2)% [b2,b2int,r2,r2int,stats2]=regress(y,X3);% [b3,b3int,r3,r3int,stats3]=regress(y,X4);。

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数matlab回归分析regress,nlinfit,stepwise函数回归分析1.多元线性重回在matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl=regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性重回,挑k=1即可。

alpha为显著性水平(缺省时预设为0.05),输入向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats就是用作检验重回模型的统计数据量,存有三个数值,第一个就是r2,其中r就是相关系数,第二个就是f统计数据量值,第三个就是与统计数据量f对应的概率p,当p拒绝h0,回归模型成立。

图画出来残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中cod浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输出数据x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]x2=[0.450,0.475,0.485,0.50 0,0.535,0.545,0.550,0.575]x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]y=[5.19,5.30,5.60,5.82,6.00,6.06,6.45,6.95](2)留存数据(以数据文件.mat形式留存,易于以后调用)savedatax1x2x3x4yloaddata(抽出数据)(3)继续执行重回命令x=[ones(8,1),];[b,bint,r,rint,stats]=regress得结果:b=(-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats=(0.9908,80.9530,0.0022)即为=-16.5283+15.7206xl+2.0327x2-0.2106x3+0.1991x4r2=0.9908,f=80.9530,p=0.00222.非线性重回非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j]=nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是jacobian矩阵,它们是估计预测误差需要的数据。

MATLAB中多元线性回归的例子

MATLAB中多元线性回归的例子

s2=sum(r.^2)/(n-m-1);
b,bint,s,s2
rcoplot(r,rint)
模型 求解
xueya01.m
回归系数 回归系数估计值 回归系数置信区间
0
45.3636
[3.5537 87.1736]
1
0.3604
[-0.0758 0.7965 ]
2
3.0906
[1.0530 5.1281]
下面我们对模型进行检验: (1)残差的正态检验: 由jbtest检验,h=0表明残差服从正态分布,进而由t检验可知h=0,p=1,故残差服从 均值为零的正态分布; (2)残差的异方差检验: 我们将28个数据从小到大排列,去掉中间的6个数据,得到F统计量的观测值为:f =1.9092,
由F(7,7)=3.79,可知:f =1.9092<3.79,故不存在异方差.
这时置信区间不包含零点,F统计量增大,可决系数从0.6855增大到0.8462 , 我们得到回归模型为:
yˆ 58.5101 0.4303 x1 2.3449 x2 10.3065 x3
通常,进行多元线性回归的步骤如下:
(1)做自变量与因变量的散点图,根据散点图的形状决定是否可以进行线性回归;
67 56 64 56 59 34 42 48
45 18 20 19 36 50 39 21
44 53 63 29 25 69];
x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0
25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5
(3)残差的自相关性检验: 计算得到:dw = 1.4330,查表后得到:dl=0.97 , du=1.41, 由于 1.41=du<dw=1.433<4-du=2.59 ,残差不存在自相关性.

Matlab统计回归详解

Matlab统计回归详解

统计回归一、一元线性回归回归分析中最简单的形式是x y 10ββ+=,y x ,均为标量,10,ββ为回归系数,称一元线性回归。

这里不多做介绍,在线性回归中以介绍多元线性回归分析为主。

二、多元线性回归(regress )多元线性回归是由一元线性回归推广而来的,把x 自然推广为多元变量。

m m x x y βββ+++= 110 (1)2≥m ,或者更一般地)()(110x f x f y m m βββ+++= (2)其中),,(1m x x x =,),,1(m j f j =是已知函数。

这里y 对回归系数),,,(10m ββββ =是线性的,称为多元线性回归。

不难看出,对自变量x 作变量代换,就可将(2)化为(1)的形式,所以下面以(1)为多元线性回归的标准型。

1.1 模型在回归分析中自变量),,,(21m x x x x =是影响因变量y 的主要因素,是人们能控制或能观察的,而y 还受到随机因素的干扰,可以合理地假设这种干扰服从零均值的正态分布,于是模型记作⎩⎨⎧++++=),0(~2110σεεβββN x x y m m (3) 其中σ未知。

现得到n 个独立观测数据),,,(1im i i x x y ,m n n i >=,,,1 ,由(3)得⎩⎨⎧=++++=ni N x x y i i im m i i ,,1),,0(~2110 σεεβββ (4) 记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nm n m x x x x X 111111, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n y y Y 1 (5) T n ][1εεε =,T m ][10ββββ =(4)表示为 ⎩⎨⎧+=),0(~2σεεβN X Y (6) 1.2 参数估计用最小二乘法估计模型(3)中的参数β。

由(4)式这组数据的误差平方和为∑=--==ni T i X Y X Y Q 12)()()(ββεβ (7)求β使)(βQ 最小,得到β的最小二乘估计,记作βˆ,可以推出 Y X X X T T 1)(ˆ-=β(8) 将βˆ代回原模型得到y 的估计值mm x x y βββˆˆˆˆ110+++= (9) 而这组数据的拟合值为βˆˆX Y =,拟合误差Y Y e ˆ-=称为残差,可作为随机误差ε的估计,而∑∑==-==n i ni i i iy y e Q 1122)ˆ( (10) 为残差平方和(或剩余平方和),即)ˆ(βQ 。

利用MATLAB进行多元线性回归.ppt

利用MATLAB进行多元线性回归.ppt
yˆ 58.5101 0.4303 x1 2.3449 x2 10.3065 x3
通常,进行多元线性回归的步骤如下:
(1)做自变量与因变量的散点图,根据散点图的形 状决定是否可以进行线性回归;
(2)输入自变量与因变量;
(3)利用命令: [b,bint,r,rint,s]=regress(y,X,alpha),rcoplot(r,rint) 得到回归模型的系数以及异常点的情况;
中为了“夸大”残差的差异性,一般先在样本中部去 掉C个数据(通常取c=n/4),再利用F统计量判断差 异的显著性:
F RSS2 /((n c) / 2 k 1) RSS2 ~ F ((n c) / 2 k 1, (n c) / 2 k 1) RSS1 /((n c) / 2 k 1) RSS1
体重指数 = 体重(kg)/身高(m)的平方 吸烟习惯: 0表示不吸烟,1表示吸烟 建立血压与年龄、体重指数、吸烟习惯之间的回归模型
模型建立
血压y,年龄x1,体重指数x2,吸烟习惯x3
y与x1的散点图
y与x2的散点图
线性回归模型
y 0 1x1 2ຫໍສະໝຸດ x2 3x3 回归系数0, 1, 2, 3 由数据估计, 是随机误差
22.0 25.3 27.4];
x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0
1 0 0 0 ...
0 0 1 0 0 1 1 0 1 0 1];
X=[ones(n,1), x1',x2',x3']; [b,bint,r,rint,s]=regress(y',X); s2=sum(r.^2)/(n-m-1); b,bint,s,s2 rcoplot(r,rint)

MATLAB中多元线性回归的例子

MATLAB中多元线性回归的例子

0 1 2 3
回归系数估计值 回归系数置信区间 45.3636 [3.5537 87.1736] 0.3604 [-0.0758 0.7965 ] 3.0906 [1.0530 5.1281]
剔除异常点 (第2点和第 10点)后
回归系数
10.3065 [3.3878 17.2253] R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
通常,进行多元线性回归的步骤如下: (1)做自变量与因变量的散点图,根据散点图的形 状决定是否可以进行线性回归; (2)输入自变量与因变量; (3)利用命令: [b,bint,r,rint,s]=regress(y,X,alpha),rcoplot(r,rint) 得到回归模型的系数以及异常点的情况;
(4)对回归模型进行检验 首先进行残差的正态性检验:jbtest,ttest
其次进行残差的异方差检验: 戈德菲尔德一匡特 (Goldfeld—Quandt)检验 戈德菲尔德检验,简称为G—Q检验.为了检验异方差 性,将样本按解释变量排序后分成两部分,再利用样 本1和样本2分别建立回归模型,并求出各自的残差平 方和RSSl和RSS2。如果误差项的离散程度相同(即为 同方差的),则RSSl和RSS2的值应该大致相同;若两 者之间存在显著差异,则表明存在异方差. 检验过程 中为了“夸大”残差的差异性,一般先在样本中部去 掉C个数据(通常取c=n/4),再利用F统计量判断差 异的显著性:
F
RSS RSS
2 1
/(( n c ) / 2 k 1 ) /(( n c ) / 2 k 1 )
RSS RSS源自2 1~ F (( n c ) / 2 k 1, ( n c ) / 2 k 1 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RSS2 /((n c) / 2 k 1) RSS2 F ~ F ((n c) / 2 k 1, (n c) / 2 k 1) RSS1 /((n c) / 2 k 1) RSS1
其中,n为样本容量,k为自变量个数. 然后对残差进行自相关性的检验,通常我们利用DW检 验进行残差序列自相关性的检验。该检验的统计量为:
模型建立
血压y,年龄x1,体重指数x2,吸烟习惯x3
y与x1的散点图 线性回归模型
y与x2的散点图
y 0 1 x1 2 x2 3 x3
回归系数0, 1, 2, 3 由数据估计, 是随机误差
n=30;m=3; y=[144 215 138 145 162 142 170 124 158 154 162 150 140 110 128 130 135 114 116 124 136 142 120 120 160 158 144 130 125 175]; x1=[39 47 45 47 65 46 67 42 67 56 64 56 59 34 42 48 45 18 20 19 36 50 39 21 44 53 63 29 25 69]; x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4]; x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 ... 0 0 1 0 0 1 1 0 1 0 1];
0 1 2 3
回归系数估计值 回归系数置信区间 58.5101 [29.9064 87.1138] 0.4303 [0.1273 0.7332] 2.3449 [0.8509 3.8389]
ˆ 58.5101 0.4303 y x1 2.3449x2 10.3065 x3
此时可见第二与第十二个点是异常点,于是删除 上述两点,再次进行回归得到改进后的回归模型的系 数、系数置信区间与统计量
0 1 2 3
回归系数估计值 回归系数置信区间 45.3636 [3.5537 87.1736] 0.3604 [-0.0758 0.7965 ] 3.0906 [1.0530 5.1281]
剔除异常点 (第2点和第 10点)后
回归系数
10.3065 [3.3878 17.2253] R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
DW (et et 1 ) / et
2 t 2 t 1 n n 2
其中 e t 为残差序列,对于计算出的结果通过查 表决定是否存在自相关性。 若 du<DW<4-du,则不存在自相关性; 若 DW<dl,则存在一阶正相关; DW>4-dl,则存在一阶负相关; 若 dl<DW<du 或4-du<DW<4-dl ,则无法判断
X=[ones(n,1), x1',x2',x3']; [b,bint,r,rint,s]=regress(y',X); s2=sum(r.^2)/(n-m-1); b,bint,s,s2 rcoplot(r,rint)
模型 求解
xueya01.m
回归系数
11.8246 [-0.1482 23.7973] R2= 0.6855 F= 18.8906 p<0.0001 s2 =169.7917
2.线性回归
b=regress(y,X) [b,bint,r,rint,s]=regress(y,X,alpha) 输入: y~因变量(列向量), X~1与自变量组成的矩阵, Alpha~显著性水平(缺省时设定为0.05) ˆ , ˆ , 输出:b=( ),bint: b的置信区间,
0 1
r:残差(列向量),rint: r的置信区间
s: 3个统计量:决定系数R2,F值, F(1,n-2)分布大于 F值的概率p,p<时回归模型有效
rcoplot(r,rint)
ห้องสมุดไป่ตู้
残差及其置信区间作图
回归 模型
序 号 1 血 压 144
例3: 血压与年龄、体重指数、吸烟习惯
年 龄 39 体重 指数 24.2 吸烟 习惯 0 序 号 21 血 压 136 年 龄 36 体重 指数 25.0 吸烟 习惯 0
回归系数 回归系数估计值 58.5101 0.4303 2.3449 10.3065 回归系数置信区间 [29.9064 87.1138] [0.1273 0.7332] [0.8509 3.8389] [3.3878 17.2253]
0 1 2 3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到0.8462 ,我们得到回归模型为:
ˆ 58.5101 0.4303x1 2.3449x2 10.3065x3 y
通常,进行多元线性回归的步骤如下: (1)做自变量与因变量的散点图,根据散点图的形 状决定是否可以进行线性回归; (2)输入自变量与因变量; (3)利用命令: [b,bint,r,rint,s]=regress(y,X,alpha),rcoplot(r,rint) 得到回归模型的系数以及异常点的情况;
(4)对回归模型进行检验 首先进行残差的正态性检验:jbtest,ttest
其次进行残差的异方差检验: 戈德菲尔德一匡特 (Goldfeld—Quandt)检验 戈德菲尔德检验,简称为G—Q检验.为了检验异方差 性,将样本按解释变量排序后分成两部分,再利用样 本1和样本2分别建立回归模型,并求出各自的残差平 方和RSSl和RSS2。如果误差项的离散程度相同(即为 同方差的),则RSSl和RSS2的值应该大致相同;若两 者之间存在显著差异,则表明存在异方差. 检验过程 中为了“夸大”残差的差异性,一般先在样本中部去 掉C个数据(通常取c=n/4),再利用F统计量判断差 异的显著性:
下面我们对模型进行检验: (1)残差的正态检验: 由jbtest检验,h=0表明残差服从正态分布,进而由t检 验可知h=0,p=1,故残差服从均值为零的正态分布; (2)残差的异方差检验: 我们将28个数据从小到大排列,去掉中间的6个数据, 得到F统计量的观测值为:f =1.9092, 由F(7,7)=3.79,可知:f =1.9092<3.79,故不存在异方差. (3)残差的自相关性检验: 计算得到:dw = 1.4330,查表后得到:dl=0.97 , du=1.41, 由于 1.41=du<dw=1.433<4-du=2.59 ,残差不存在自相关性.
2
3 10
215
138 154
47
45 56
31.1
22.6 19.3
1
0 0
22
23 30
142
120 175
50
39 69
26.2
23.5 27.4
1
0 1
体重指数 = 体重(kg)/身高(m)的平方 吸烟习惯: 0表示不吸烟,1表示吸烟
建立血压与年龄、体重指数、吸烟习惯之间的回归模型
相关文档
最新文档