Matlab多元线性回归

合集下载

第15讲 MATLAB 多元线性回归分析

第15讲  MATLAB 多元线性回归分析
假设,说明至少有一个回归系数 i 0 ,从而说明
变量 Y 线性依赖于某个变量 X i ;若检验的结果是 接受 H 0 ,则说明所有变量 X 1 , X 2 ,..., X p 对变量的线性 关系是不重要的。
本章目录
16
回 归 分析
2 线性回归
—多元线性回归
2.3 回归方程的假设检验—模型的检验
x i (1, xi1 ,...,xip )

本章目录
22
i 1,2,...,n
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
自变量的选择
本章目录
23
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择

选择自变量的准则 选择自变量进入回归模型的方法

(SAS实例)
本章目录
24
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法
1. 引言
因变量
y 自变量为 x , x ,, x
1 2
p
满足线性关系
p
y x x e
0 1 1 p
(I)
对 x1 , x2 ,, x p y 进行 n 次观测, 所得的 n 组数据为
xi1 , xi 2 ,, xip, (i 1,2,, n)
它们均满足(I)式
25
本章目录
回 归 分析
2 线性回归
—多元线性回归
2.4 自变量的选择
选择 自变 量的 准则
选择 自变 量进 入回 归模 型的 方法

第八讲MATLAB中多元线性回归

第八讲MATLAB中多元线性回归
2.线性回归 2.线性回归
b=regress(y,X) [b,bint,r,rint,s]=regress(y,X,alpha) 输入: 因变量 列向量), 因变量(列向量 与自变量组成的矩阵, 输入 y~因变量 列向量 X~1与自变量组成的矩阵, 与自变量组成的矩阵 Alpha~显著性水平α(缺省时设定为 缺省时设定为0.05) 显著性水平 ) 输出:b=( β 0 , β1 , ( ), ),bint: b的置信区间, 输出 的置信区间, r:残差 列向量 ,rint: r的置信区间 残差(列向量 残差 列向量), 的 s: 3个统计量:决定系数 2,F值, F(1,n-2)分布大于 个统计量: 个统计量 决定系数R 值 F值的概率 ,p<α时回归模型有效 值的概率p, 回归模型有效 值的概率 rcoplot(r,rint) 残差及其置信区间作图 残差及其置信区间作图 及其
回归 模型
序 号 1 2 3 … 10 血 压 144 215 138 … 154
血压与年龄、体重指数、 例3: 血压与年龄、体重指数、吸烟习惯
年 龄 39 47 45 … 56 体重 指数 24.2 31.1 22.6 … 19.3 吸烟 习惯 0 1 0 … 0 序 号 21 22 23 … 30 血 压 136 142 120 … 175 年 龄 36 50 39 … 69 体重 指数 25.0 26.2 23.5 … 27.4 吸烟 习惯 0 1 0 … 1
β0 β1 β2 β3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点, 统计量增大 统计量增大, 这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到 增大到0.8462 ,我们得到回归模型为: 我们得到回归模型为: 数从 增大到

多元回归分析matlab

多元回归分析matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ;alpha 缺省时为0.5.例 1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model’, alpha )说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jj m m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 7580 70 50 65 90100 110 60 收入 1000 600 1200 500 300 400 13001100 1300 300解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中. 在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x ,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY ,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY ,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与F 对应的概率P.例1. 水泥凝固时放出的热量y 与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.序号x1 7 1 11 11 7 11 3 1 2 21 1 11 10 x2 26 29 56 31 52 55 71 31 54 47 40 66 68 x3 6 15 8 8 6 9 17 22 18 4 23 9 8 x4 60 52 20 47 33 22 6 44 22 26 34 12 12 y 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587 format short gX11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.311 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%?% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显着% fV:F分布值,越大越好,线性回归方程越显着% fH:0或1,0不显着;1显着(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显着的=1),% 但是所有的回归系数却对Y的线性作用却不显着=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显着性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着(好);H=0,回归不显着% 回归系数的显着性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显着tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显着的线性作用;H(i)=0,Xi对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。

多元回归分析报告matlab

多元回归分析报告matlab

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立.⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、多项式回归(一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];[p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 10075 80 70 50 65 90 100 110 60收入 1000 600 1200500 300 400 1300 1100 1300 300 价格 5 7 6 6 8 7 5 4 3 9解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.00011.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值.(2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,StepwiseHistory.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

多元回归模型matlab

多元回归模型matlab

多元回归模型matlab
在 MATLAB 中,可以使用多种函数来拟合多元回归模型。

其中最常用的是“fitlm”函数。

下面是一个简单的例子:
假设我们有一组数据,包含两个自变量 x1 和 x2,以及一个因变量 y。

我们想要建立一个多元回归模型,来预测 y 值。

首先,我们需要将数据加载到 MATLAB 中,并创建一个线性回归模型对象:
```
data = readtable("data.csv"); % 加载数据
model = fitlm(data, "y ~ x1 + x2"); % 创建回归模型
```
在这个例子中,“data.csv”是包含数据的 CSV 文件,第一列是 y 值,第二列是 x1 值,第三列是 x2 值。

然后,我们使用“fitlm”函数来创建一个线性回归模型对象“model”,其中第一个参数是数据表,第二个参数是回归方程式,它指定了因变量和自变量之间的关系。

我们现在可以使用该模型对象进行预测。

MATLAB中多元线性回归

MATLAB中多元线性回归

0 1 2 3
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到0.8462 ,我们得到回归模型为:
ˆ 58 . 5101 0 . 4303 x 1 2 . 3449 x 2 10 . 3065 x 3 y
y与x1的散点图 线性回归模型
y与x2的散点图
y 0 1 x1 2 x 2 3 x 3
回归系数0, 1, 2, 3 由数据估计, 是随机误差
n=30;m=3; y=[144 215 138 145 162 142 170 124 158 154 162 150 140 110 128 130 135 114 116 124 136 142 120 120 160 158 144 130 125 175]; x1=[39 47 45 47 65 46 67 42 67 56 64 56 59 34 42 48 45 18 20 19 36 50 39 21 44 53 63 29 25 69]; x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4]; x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1];
n n
DW


t2
( e t e t 1 ) /
2

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数matlab回归分析regress,nlinfit,stepwise函数回归分析1.多元线性重回在matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl=regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性重回,挑k=1即可。

alpha为显著性水平(缺省时预设为0.05),输入向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats就是用作检验重回模型的统计数据量,存有三个数值,第一个就是r2,其中r就是相关系数,第二个就是f统计数据量值,第三个就是与统计数据量f对应的概率p,当p拒绝h0,回归模型成立。

图画出来残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中cod浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输出数据x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]x2=[0.450,0.475,0.485,0.50 0,0.535,0.545,0.550,0.575]x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]y=[5.19,5.30,5.60,5.82,6.00,6.06,6.45,6.95](2)留存数据(以数据文件.mat形式留存,易于以后调用)savedatax1x2x3x4yloaddata(抽出数据)(3)继续执行重回命令x=[ones(8,1),];[b,bint,r,rint,stats]=regress得结果:b=(-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats=(0.9908,80.9530,0.0022)即为=-16.5283+15.7206xl+2.0327x2-0.2106x3+0.1991x4r2=0.9908,f=80.9530,p=0.00222.非线性重回非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j]=nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是jacobian矩阵,它们是估计预测误差需要的数据。

MATLAB 回归分析regress,nlinfit,stepwise函数

MATLAB 回归分析regress,nlinfit,stepwise函数

回归分析1.多元线性回归在Matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl = regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性回归,取k=1即可。

alpha为显著性水平(缺省时设定为0.05),输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立。

画出残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中COD浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。

(1)输入数据x1=[1.376, 1.375, 1.387, 1.401, 1.412, 1.428, 1.445, 1.477]x2=[0.450, 0.475, 0.485, 0.500, 0.535, 0.545, 0.550, 0.575]x3=[2.170 ,2.554, 2.676, 2.713, 2.823, 3.088, 3.122, 3.262]x4=[0.8922, 1.1610 ,0.5346, 0.9589, 1.0239, 1.0499, 1.1065, 1.1387]y=[5.19, 5.30, 5.60,5.82,6.00, 6.06,6.45,6.95](2)保存数据(以数据文件.mat形式保存,便于以后调用)save data x1 x2 x3 x4 yload data (取出数据)(3)执行回归命令x =[ones(8,1),];[b,bint,r,rint,stats] = regress得结果:b = (-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats = (0.9908,80.9530,0.0022)即= -16.5283 + 15.7206xl + 2.0327x2 - 0.2106x3 + 0.1991x4R2 = 0.9908,F = 80.9530,P = 0.00222.非线性回归非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j] = nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x 为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是Jacobian矩阵,它们是估计预测误差需要的数据。

matlab线性回归

matlab线性回归

matlab线性回归⼀、多元线性回归多元线性回归:1、b=regress(Y, X )确定回归系数的点估计值2、[b, bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检验回归模型①bint表⽰回归系数的区间估计.②r表⽰残差③rint表⽰置信区间④stats表⽰⽤于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p 说明:相关系数r2越接近1,说明回归⽅程越显著;时拒绝H0,F越⼤,说明回归⽅程越显著;与F对应的概率p<α时拒绝H0⑤alpha表⽰显著性⽔平(缺省时为0.05)3、rcoplot(r,rint)画出残差及其置信区间具体参见下⾯的实例演⽰4、实例演⽰,函数使⽤说明(1)输⼊数据12>>x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';3>>X=[ones(16,1) x];4>>Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]';复制代码(2)回归分析及检验56>> [b,bint,r,rint,stats]=regress(Y,X)78 b =910-16.0730110.7194121314bint =1516-33.7071 1.5612 170.6047 0.8340 181920r =2122 1.205623-3.233124-0.952425 1.3282260.889527 1.170228-0.9879290.2927300.573431 1.8540320.134733-1.584734-0.304035-0.023436-0.4621370.0992383940rint =4142-1.2407 3.6520 43-5.0622 -1.4040 44-3.5894 1.6845 45-1.2895 3.9459 46-1.8519 3.6309 47-1.5552 3.8955 48-3.7713 1.7955 49-2.5473 3.1328 50-2.2471 3.393951-0.7540 4.462152-2.6814 2.950853-4.2188 1.049454-3.0710 2.463055-2.7661 2.719356-3.1133 2.189257-2.4640 2.6624585960stats =61620.9282 180.9531 0.0000 1.7437复制代码运⾏结果解读如下参数回归结果为对应的置信区间分别为[-33.7017,1.5612]和[0.6047,0.834]r2=0.9282(越接近于1,回归效果越显著),F=180.9531,p=0.0000,由p<0.05, 可知回归模型y=-16.073+0.7194x成⽴(3)残差分析作残差图6364rcoplot(r,rint)复制代码从残差图可以看出,除第⼆个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型y=-16.073+0.7194x能较好的符合原始数据,⽽第⼆个数据可视为异常点。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%?% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显着% fV:F分布值,越大越好,线性回归方程越显着% fH:0或1,0不显着;1显着(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显着的=1),% 但是所有的回归系数却对Y的线性作用却不显着=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显着性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着(好);H=0,回归不显着% 回归系数的显着性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显着tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显着的线性作用;H(i)=0,Xi对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。

matlab多元回归预测

matlab多元回归预测

matlab多元回归预测英文回答:In multivariate regression analysis, we aim to predict a dependent variable based on multiple independent variables. This technique is widely used in various fields, including finance, economics, and social sciences.To perform multivariate regression analysis in MATLAB, we can use the "fitlm" function. This function fits alinear regression model to the data and provides various statistical measures and predictions.Let's say we have a dataset with three independent variables (X1, X2, X3) and one dependent variable (Y). We can start by loading the data into MATLAB and creating a design matrix:matlab.data = load('data.mat');X = [data.X1, data.X2, data.X3];Y = data.Y;Next, we can use the "fitlm" function to fit the linear regression model:matlab.model = fitlm(X, Y);Once the model is fitted, we can obtain various statistics and predictions. For example, we can check the coefficients of the independent variables:matlab.coefficients = model.Coefficients;disp(coefficients);We can also make predictions using the model. Let's say we have a new set of independent variables (X1_new, X2_new, X3_new) for which we want to predict the dependent variable:matlab.X_new = [X1_new, X2_new, X3_new];Y_predicted = predict(model, X_new);disp(Y_predicted);This will give us the predicted values of the dependent variable based on the new independent variables.中文回答:在多元回归分析中,我们旨在基于多个自变量来预测一个因变量。

matlab 多元回归 约束条件

matlab 多元回归 约束条件

matlab 多元回归约束条件
在MATLAB中进行多元回归分析时,有时候需要加入约束条件来
限制模型的参数或者变量之间的关系。

一种常见的约束条件是参数
之间的线性关系,也就是参数之间存在某种固定的比例关系。

另一
种常见的约束条件是变量之间的关系,比如变量之间的和为常数等。

在MATLAB中,可以使用一些内置的函数和工具箱来实现多元回归分
析中的约束条件。

对于参数之间的线性关系的约束条件,可以使用MATLAB中的fmincon函数来实现。

fmincon是一个用于求解带有约束条件的最优
化问题的函数,可以通过设置约束条件来限制参数之间的关系。


体来说,可以通过设置线性等式约束来实现参数之间的线性关系约束。

另外,如果需要对变量之间的关系进行约束,可以使用MATLAB
中的linprog函数来实现。

linprog是一个线性规划求解器,可以
用来求解线性约束条件下的最优化问题。

通过设置线性等式约束或
者线性不等式约束,可以限制变量之间的关系,比如限制它们的和
为常数等。

除了使用内置函数,MATLAB还有一些优化工具箱,比如Optimization Toolbox和Global Optimization Toolbox,这些工具箱提供了更多高级的优化算法和工具,可以更灵活地处理多元回归分析中的约束条件。

总的来说,在MATLAB中进行多元回归分析时,可以通过内置函数和工具箱来实现约束条件,包括参数之间的线性关系约束和变量之间的关系约束。

通过合理设置约束条件,可以更准确地建立多元回归模型,从而更好地分析和预测数据。

matlab多元逻辑回归

matlab多元逻辑回归

matlab多元逻辑回归摘要:I.引言- 介绍Matlab多元逻辑回归- 说明多元逻辑回归在实际应用中的重要性II.Matlab多元逻辑回归基础- 多元逻辑回归的定义- 多元逻辑回归的假设条件- 多元逻辑回归的计算方法III.Matlab多元逻辑回归应用- 金融领域应用- 医疗领域应用- 市场营销领域应用IV.Matlab多元逻辑回归的优缺点- 优点- 强大的数据处理能力- 易于使用和操作- 高效率的计算能力- 缺点- 对数据质量要求较高- 需要专业的编程知识V.结论- 总结Matlab多元逻辑回归的重要性- 提出未来发展趋势和展望正文:Matlab多元逻辑回归是一种强大的回归分析工具,广泛应用于各个领域。

本文将介绍Matlab多元逻辑回归的基础知识、应用领域、优缺点以及未来发展趋势。

一、Matlab多元逻辑回归基础多元逻辑回归是一种基于逻辑回归的多元回归分析方法。

逻辑回归是一种用于分析二分类数据的回归方法,它通过建立逻辑函数来描述因变量与自变量之间的关系。

多元逻辑回归在逻辑回归的基础上,进一步扩展了自变量的数量,从而可以更好地解释因变量。

多元逻辑回归的假设条件包括:1.线性假设:自变量与因变量之间存在线性关系。

2.独立性假设:自变量之间相互独立。

3.多元正态分布假设:自变量和因变量都服从多元正态分布。

4.方差齐性假设:自变量的方差相同。

多元逻辑回归的计算方法主要采用最小二乘法(Least Squares Method),通过最小化残差平方和来求解回归系数。

二、Matlab多元逻辑回归应用Matlab多元逻辑回归在金融、医疗、市场营销等领域具有广泛的应用。

1.金融领域:多元逻辑回归可以用于信用风险评估、股票价格预测等金融问题。

2.医疗领域:多元逻辑回归可以用于疾病预测、药物疗效评估等医疗问题。

3.市场营销:多元逻辑回归可以用于市场细分、客户满意度调查等市场营销问题。

三、Matlab多元逻辑回归的优缺点Matlab多元逻辑回归具有以下优点:1.强大的数据处理能力:Matlab可以方便地处理大量数据,支持多种数据格式。

matlab 多元与非线性回归即拟合问题regress、nlinfit

matlab 多元与非线性回归即拟合问题regress、nlinfit

回归(拟合)自己的总结(20100728)1:学三条命令:polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2:同一个问题,可能这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。

相当于咨询多个专家。

3:回归的操作步骤:(1) 根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。

(并写出该函数表达式的一般形式,含待定系数)(2) 选用某条回归命令求出所有的待定系数所以可以说,回归就是求待定系数的过程(需确定函数的形式)配曲线的一般方法是: (一)先对两个变量x 和y 作n 次试验观察得n i y x ii,...,2,1),,( 画出散点图,散点图(二)根据散点图确定须配曲线的类型. 通常选择的六类曲线如下:(1)双曲线xba y +=1 (2)幂函数曲线y=a bx , 其中x>0,a>0(3)指数曲线y=a bx e 其中参数a>0.(4)倒指数曲线y=a xb e/其中a>0,(5)对数曲线y=a+blogx,x>0(6)S 型曲线x be a y -+=1(三)然后由n 对试验数据确定每一类曲线的未知参数a 和b.一、一元多次拟合polyfit(x,y,n)一元回归polyfit多元回归regress---nlinfit(非线性)二、多元回归分析(其实可以是非线性,它通用性极高)对于多元线性回归模型:e x x y p p ++++=βββ 110设变量12,,,px x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n= .记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同()拟合成多元函数---regress 使用格式:左边用b=或[b, bint, r, rint, stats]= 右边用regress(y, x) 或regress(y, x, alpha)---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项 ---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。

(完整版)Matlab线性回归(拟合)

(完整版)Matlab线性回归(拟合)

Matlab 线性回归(拟合)对于多元线性回归模型:e x x y p p ++++=βββΛ110设变量12,,,p x x x y L 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n =L L .记 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x x ΛΛΛΛΛΛΛΛ212222*********,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y M 21,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=p ββββM 10 的估计值为 y x x x b ')'(ˆ1-==β(11.2) 在Matlab 中,用regress 函数进行多元线性回归分析,应用方法如下:语法:b = regress(y, x)[b, bint, r, rint, stats] = regress(y, x)[b, bint, r, rint, stats] = regress(y, x, alpha)b = regress(y, x),得到的1+p 维列向量b 即为(11.2)式给出的回归系数β的估计值.[b, bint, r, rint, stats]=regress(y, x) 给出回归系数β的估计值b ,β的95%置信区间((1)2p +⨯向量)bint ,残差r 以及每个残差的95%置信区间(2⨯n 向量)rint ;向量stats 给出回归的R 2统计量和F 以及临界概率p 的值.如果i β的置信区间(bint 的第1i +行)不包含0,则在显著水平为α时拒绝0i β=的假设,认为变量i x 是显著的.[b, bint, r, rint, stats]=regress(y, x, alpha) 给出了bint 和rint 的100(1-alpha)%的置信区间.三次样条插值函数的MATLAB 程序matlab 的splinex = 0:10; y = sin(x); %插值点xx = 0:.25:10; %绘图点yy = spline(x,y,xx);plot(x,y,'o',xx,yy)非线性拟合非线性拟合可以用以下命令(同样适用于线形回归分析):1.beta = nlinfit(X,y,fun,beta0)X给定的自变量数据,Y给定的因变量数据,fun要拟合的函数模型(句柄函数或者内联函数形式),beta0函数模型中系数估计初值,beta返回拟合后的系数2.x = lsqcurvefit(fun,x0,xdata,ydata)fun要拟合的目标函数,x0目标函数中的系数估计初值,xdata自变量数据,ydata 函数值数据X拟合返回的系数(拟合结果)nlinfit格式:[beta,r,J]=nlinfit(x,y,’model’, beta0)Beta 估计出的回归系数r 残差J Jacobian矩阵x,y 输入数据x、y分别为n*m矩阵和n维列向量,对一元非线性回归,x为n维列向量。

多元回归分析matlab剖析

多元回归分析matlab剖析

回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ;alpha 缺省时为0.5.例 1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model’, alpha )说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jj m m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 7580 70 50 65 90100 110 60 收入 1000 600 1200 500 300 400 13001100 1300 300解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中. 在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x ,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY ,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY ,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与F 对应的概率P.例1. 水泥凝固时放出的热量y 与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.序号x1 7 1 11 11 7 11 3 1 2 21 1 11 10 x2 26 29 56 31 52 55 71 31 54 47 40 66 68 x3 6 15 8 8 6 9 17 22 18 4 23 9 8 x4 60 52 20 47 33 22 6 44 22 26 34 12 12 y 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587 format short gX11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.311 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。

Matlab实现多元的回归实例

Matlab实现多元的回归实例

Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。

如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。

进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。

在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。

回归方程具有如下形式:011m m y x x λλλε=++⋅⋅⋅++其中,ε是残差。

在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。

⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。

第八讲MATLAB中多元线性回归

第八讲MATLAB中多元线性回归

y与x1的散点图 与 线性回归模型
y与x2的散点图 与
y = β 0 + β1 x1 + β 2 x2 + β 3 x3 + ε
由数据估计, 回归系数β0, β1, β2, β3 由数据估计 ε是随机误差
n=30;m=3; y=[144 215 138 145 162 142 170 124 158 154 162 150 140 110 128 130 135 114 116 124 136 142 120 120 160 158 144 130 125 175]; x1=[39 47 45 47 65 46 67 42 67 56 64 56 59 34 42 48 45 18 20 19 36 50 39 21 44 53 63 29 25 69]; x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3 20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3 22.0 25.3 27.4]; x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 ... 0 0 1 0 0 1 1 0 1 0 1];
β0 β1 β2 β3
回归系数估计值 回归系数置信区间 回归系数估计值 回归系数置信区间 45.3636 [3.5537 87.1736]
剔除异常点 (第2点和第 第 点和第 10点)后 点后
β0 β1 β2 β3
R2= 0.8462
回归系数估计值 回归系数置信区间 回归系数估计值 回归系数置信区间 58.5101 [29.9064 87.1138] 0.4303 [0.1273 0.7332] 2.3449 [0.8509 3.8389] 10.3065 [3.3878 17.2253] F= 44.0087 p<0.0001 s2 =53.6604
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab多元线性回归
[ b , bint , r , rint , stats ]=regress ( y , x ) ,
其中b 是回归方程中的参数估计值,bint 是b 的置信区间,r 和rint 分别表示残差及残差对应的置信区间。

StatS 数组包含三个数字,分别是相关系数,F 统计量及对应的概率p 值。

拟合结果:
Y=b(1)x(1)+b(2)x(2)+b(3)x(3)+…+b(n)x(n)
b(1)是系数,x(1)为全1的一个列向量。

注意:不是插值。

x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3155 3372];%因变量时间序列数据
y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];%自变量时间序列数据
X=[ones(size(x')),x'];
[b,bint,r,rint,stats]=regress(y',X,0.05);%调用一元回归分析函数
rcoplot(r,rint)%画出在置信度区间下误差分布.
举例:
x =
1 2 4 9
1 4 3 7
1 5 9 0
1 9 1 8
>> y=[10 3 90 48]';
>> [ b , bint , r , rint , stats ]=regress ( y , x )
得到的结果
b =
-186.8333
16.0238
21.8571
8.5952
bint =
NaN NaN
NaN NaN
NaN NaN
NaN NaN
r =
1.0e-013 *
-0.5684
-0.9948
-0.1421
0.1421
rint =
NaN NaN
NaN NaN
NaN NaN
NaN NaN
stats =
1 NaN NaN NaN
另外,用b=inv(x)*y
得到的结果和上面用regression得到的一样。

可见,求逆的问题也是用了最小二乘的原理。

但是,regress更优于inv,体现在当x的元素存在缺陷时。

举例:
x =
1 0 0 4
1 0 0 3
1 0 0 5
1 0 0 8
y =
3
4
3
9
[ b , bint , r , rint , stats ]=regress ( y , x )
Warning: X is rank deficient to within machine precision.
b =
-0.9643
1.1429
bint =
-12.0010 10.0724
0 0
0 0
-0.9245 3.2102
r =
-0.6071
1.5357
-1.7500
0.8214
rint =
-9.2316 8.0173
-1.9141 4.9855
-7.4997 3.9997
0.2465 1.3964
stats =
0.7388 5.6575 0.1405 3.2321。

相关文档
最新文档