广西大学现代控制理论研究生期末考试14年试题

合集下载

现代控制理论试卷及答案

现代控制理论试卷及答案

现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。

(2)用独立变量描述的系统状态向量的维数不是唯一的。

(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。

(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。

(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。

(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。

(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。

(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。

(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。

对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。

二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。

(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。

试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。

(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。

(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。

2014年广西大学硕士研究生入学考试试卷(回忆版)

2014年广西大学硕士研究生入学考试试卷(回忆版)

2014年广西大学硕士研究生入学考试试卷(回忆版)
(填空和选择比较基础,和以前考试内容相差不大,略)
简答题
1.PQ、 PV 、平衡节点的定义
2.还有一次调频以及二次调频的概念和特点
计算题:
1. 模型:潮流计算,回推型的. 知末端功率、电压,求首端功率、电压。

2. 保持首端电压113KV,二次侧保持10.5KV,最大负荷为28+j14MV A,最小负荷为10+j6MV A,试确定并联电容补偿容量。

110±2*2.5%KV
2.44+j40
3.
如图:各参数如下:
发电机:G1 SN=60MV A Xd’’=0.15 G2 SN=150MV A Xd’’=0.2
变压器:T1 SN=60MV A U%=12 T2 SN=90MV A U%=12
线路L:L=80km x=0.4
负载LD:SN=120MV A XLD’’=0.35
发电机的次暂态电势为E’’=1.08 负载的次暂态电势为E’’=0.8
如图故障点发生三相短路:
取SB=100MV A 电压为平均电压归算元件参数画出等效电路图。

计算短路点的短路电流初始值。

LD。

现代控制理论试题

现代控制理论试题

现代控制理论试题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】现代控制理论试题一、名词解释(15分)1、能控性2、能观性3、系统的最小实现4、渐近稳定性二、简答题(15分)1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质2、如何判断线性定常系统的能控性如何判断线性定常系统的能观性3、传递函数矩阵的最小实现A、B、C和D的充要条件是什么4、对于线性定常系统能够任意配置极点的充要条件是什么5、线性定常连续系统状态观测器的存在条件是什么三、计算题(70分)1、RC 无源网络如图1所示,试列写出其状态方程和输出方程。

其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y。

2、计算下列状态空间描述的传递函数g(s)图1:RC无源网络3、求出下列连续时间线性是不变系统的时间离散化状态方程:其中,采样周期为T=2.4、求取下列各连续时间线性时不变系统的状态变量解和5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的取值范围:6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近稳定:7、给定一个单输入单输出连续时间线性时不变系统的传递函数为试确定一个状态反馈矩阵K,使闭环极点配置为,和。

现代控制理论试题答案一、概念题1、何为系统的能控性和能观性答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。

(2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t0 ),就称系统在t0时刻是能观测的。

若在任意初始时刻系统都能观测,则称系统是状态完全能观测的,简称能观测的。

(完整word版)现代控制理论复习题库

(完整word版)现代控制理论复习题库

一、选择题1.下面关于建模和模型说法错误的是( C )。

A.无论是何种系统,其模型均可用来提示规律或因果关系。

B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。

C.为设计控制器为目的建立模型只需要简练就可以了。

D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。

2.系统()3()10()++=的类型是( B ) 。

y t y t u tA.集中参数、线性、动态系统。

B.集中参数、非线性、动态系统。

C.非集中参数、线性、动态系统。

D.集中参数、非线性、静态系统。

3.下面关于控制与控制系统说法错误的是( B )。

A.反馈闭环控制可以在一定程度上克服不确定性。

B.反馈闭环控制不可能克服系统参数摄动。

C.反馈闭环控制可在一定程度上克服外界扰动的影响。

D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。

x Pz说法错误的是( D )。

4.下面关于线性非奇异变换=A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。

B.对于线性定常系统,线性非奇异变换不改变系统的特征值。

C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。

D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。

5.下面关于稳定线性系统的响应说法正确的是( A )。

A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。

B.线性系统的零状态响应是稳态响应的一部分。

C.线性系统暂态响应是零输入响应的一部分。

D.离零点最近的极点在输出响应中所表征的运动模态权值越大。

6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( A ) 。

A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。

B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。

C.能观性表征的是状态反映输出的能力。

D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。

现代控制理论试题及答案 研究生现代控制工程试卷

现代控制理论试题及答案  研究生现代控制工程试卷

现代控制理论试题及答案一、(10分)考虑如图的质量弹簧系统。

其中,m 为运动物体的质量,k 为弹簧的弹性系数,h 为阻尼器的阻尼系数,f 为系统所受外力。

取物体位移为状态变量x 1,速度为状态变量x 2,并取位移为系统输出y ,外力为系统输入u ,试建立系统的状态空间表达式。

解f ma =……………………………….……1分令位移变量为x 1,速度变量为x 2,外力为输入u ,有122u kx kx mx --=&………………………………2分于是有12x x =&………………………………..……………1分2121k h x x x u m m m=--+&……….….……………….2分 再令位移为系统的输出y ,有1y x =…………………………….……….1分写成状态空间表达式,即矩阵形式,有11220101x x u k h x x m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦&&………..……………..2分 []1210x y x ⎡⎤=⎢⎥⎣⎦……………………..……….……….2分二、(8分)矩阵A 是22⨯的常数矩阵,关于系统的状态方程式=&xAx ,有 1(0)1⎡⎤=⎢⎥-⎣⎦x 时,22t t e e --⎡⎤=⎢⎥-⎣⎦x ;2(0)1⎡⎤=⎢⎥-⎣⎦x 时,2t t e e --⎡⎤=⎢⎥-⎣⎦x 。

试确定状态转移矩阵(,0)t Φ和矩阵A 。

解因为系统的零输入响应是()(,0)(0)t t =x x Φ……………..……….……….2分所以221(,0)1t t e t e --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦Φ,22(,0)1t t e t e --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦Φ 将它们综合起来,得22122(,0)11tt tt e e t e e ----⎡⎤⎡⎤=⎢⎥⎢⎥---⎣⎦⎣⎦Φ……………….……….2分 122222222122(,0)11122112222t t tt t t t t t t t t t tt t e e t e e e e ee e e e e e e e e -----------------⎡⎤⎡⎤=⎢⎥⎢⎥----⎣⎦⎣⎦--⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦⎡⎤--=⎢⎥--⎣⎦Φ …………….……….2分 而状态转移矩阵的性质可知,状态转移矩阵0(,)t t Φ满足微分方程()()00,,dt t t t dt=A ΦΦ 和初始条件 ()00,t t =I Φ 因此代入初始时间00t =可得矩阵A 为:0100022220(,)(,)222424t t ttttt t tt t d t t t t dt e e e e e ee e -==--------=⎧⎫=⎨⎬⎩⎭⎡⎤-+-+=⎢⎥-+-+⎣⎦A ΦΦ…………….……….1分0213⎡⎤=⎢⎥--⎣⎦…………………………………….……….1分三、(10分)(1)设系统为()()()011, (0)011a t t u t x b -⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦&x x 试求出在输入为(0)u t t =≥时系统的状态响应(7分)。

现代控制理论试卷答案3套

现代控制理论试卷答案3套

现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。

()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。

()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。

()(4)状态反馈不改变被控系统的能控性和能观测性。

()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。

()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。

四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。

八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。

现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。

现代控制理论试卷与答案.docx

现代控制理论试卷与答案.docx

、名词解释与简答题(共3题,每小题5分,共15分)U i21 这甲 3!::l即U['4 _3 111 02 7 ^23 -u 2⑶尖用芷養变换送求取状壽空问表込5t 对賀分产 程⑶在零初Ife 条井下取拉氏娈换笹Jv(J)+ ⅛⅛(r)+3⅛ru) + 5K⅛)=5ιt⅛j)+7Γ(i) Γ⅛⅜g√⅛7LF(O =S 7Ti?+JijTS在用传诺两數求系绑的状态空何表达式IL 一定要 注咸传递函JS 足百为严搐H 育瑾分SL 即■是百小 于札 ⅛ffl =ri WPflTSt 理*U C1R 2 _ U 2U C 21、经典控制理论与现代控制理论的区别2、对偶原理的内容3、李雅普诺夫稳定5、已知系统的微分方程 y - 2y 3y7u。

试列写出状态空间表达式。

6、试将下列状态方程化为对角标准型或者约当标准型。

二、分析与计算题(共8小题,其中4-10小题每题10分,第11小题15分,共 85分)4、电路如图所示,设输入为U 1 ,输出为U 2 ,试自选状态变量并列写出其状态空间表达式。

麻曙秋恋爱■为J l*i ζlX i甘态空闿枝达式为 IHl IitBG 迦睾样机理分箭法,首先帳撼电踣定律则 ^ffl⅛⅛SS ・苒选澤就JS 娈■・求欄粗应的糸筑狀 盃空珂舌达式B 也珂以先由电路邀求袴糸址f⅛递函 ≡,再由悟越塑救求潯系臧帝空间表达式 采厢机理分护走“设G 两鋼电∣1⅛*ΓP G 两睛的电丘為越小则气 I *+ M TJ C M l⑴j Of ", ⅝+⅞c j i 1口白逐求得条统吠态△■期表込丄(刊 -13」LX3」L5ff It i.IW 1I⅛GV ∙K2 Lu试将下处伏越程化为朋融感P-I-I•-^S∣9U[-3-a 1•u≡IIZ7 4J u..,U.则猖对吊标■壯理l∣⅞^tη=Kn代入求聲公弍轉—⅛l- —<,i*2 f1 丿 1 ,j,1 ⅛'3f,-t i,rt<r-⅛* ft r2 2 2 1-r,(0J- JM(My IM MW-女"C F-3⅛"λf乩* J⅛4f丄■■i⅛,≡≡^Ll J——-一JfJOI-------- ---- X i(O)+βf- Iι7 -.∙Kl⅛ιp TΓl«期于占=-ι¾-I -L d-3 -( -2IJ Il∣2) IK:(IJ液转证追® 求4,j tf-3-3-1-2P llF l aLπIl%二i-3127J如n"Jf Ij= -3^f,A尸U1-12-41■'3 ⅛f,'=H1 -351 -21-I91-S5-21-12I35J7*5-27-Zfl -1I5 3 15J17I27JA_ 2*J22—_屯尸a371-15-27-202716HΛJ-A∣= -J Λs*^⅛r7、已知系统状态空间表达式为X -1-3 y =h:X Iu1 Ix求系统的单位阶跃响应。

现代控制理论试卷及答案-总结

现代控制理论试卷及答案-总结

、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。

现代控制理论试题与答案

现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1A Tz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观 7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定 (1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。

广西大学现代控制理论期末考试题库之计算题含答案

广西大学现代控制理论期末考试题库之计算题含答案

0 2 4
C
0 1 1
rank(Qc ) rank B
AB
A2 B
rank
2
2
2
3, rank(Qo )
rank
CA
rank
0
1
2
2
所以该
1 2 4
CA2
0 1 4
系统能控不能观。(4 分) (2)按能观性进行分解
引入变换 x Rx ,构造变换阵:
由此,得
0 1 1 0 0 1
e2t 2e2t
初始条件为零,即 x(0) 0 ,则系统的状态响应仅取决于控制作用的激励部分,即
x(t)
x1(t) x2 (t)
1 2et 2et
e2t 2e2t
(2
分)
系统的输出响应为 y(t) cx(t) 1
0
1 2et 2et
e2t 2e2t
1
2et
e2t
代入 R=1.5Ω,C=1F,L=0.5H,得
(2) 画出模拟结构图为
x1 x2
0 2
1
3
x1 x2
0 2
u
(1
分)
y 1
0
x1 x2
u
+ 2
++
x2
x1 y
-3 -2
(3)第一种方法,根据(1)中建立的微分方程,可得
uC
R L
uC
1 LC
uC
1u LC
拉氏变换,并代入 R=1Ω,C=1F,L=1H,得到
(6)求平衡点,并利用 Lyapunov 第二法判定其稳定性。(7 分)
(7) 判定系统的能控性,若能控,利用状态反馈,将系统的极点配置到-2 和-3。(8 分)

广西大学现代控制理论期末考试题库之选择题(含答案)

广西大学现代控制理论期末考试题库之选择题(含答案)





1
e
ke
Tl
1
m
U

kt R e



1 b m




D.
1
e
1 ke
1
m
36. 已知 x 5x 3u,, y 4x, t 0 ,则该系统是( )。B A.能控不能观的 B.能控能观的 C. 不能控能观的 D.不能控不能观的 37. 对于三维状态空间(各坐标值用 x1 , x2 , x3 表示),下面哪一个函数不是正定的。( )A
D. A 渐近稳定, Q 半正定,且 x T Qx 沿方程的非零解不恒为 0, P 一定正定。 34. 下面关于非线性系统近似线性化的说法错误的是( )。B A.近似线性化是基于平衡点的线性化。 B.系统只有一个平衡点时,才可以近似线性化。 C.只有不含本质非线性环节的系统才可以近似线性化。 D.线性化后系统响应误差取决于远离工作点的程度:越远,误差越大。 35. 永磁他励电枢控制式直流电机对象的框图如下,下面选项中,哪一个是其模拟结构图?(
) 。D
A. A(t0 )T B. I A(t0 )T C. I A(t )T D. I A(t0 )T 22. 下面关于线性连续定常系统的最小实现说法中( )是不正确的。D A.最小实现的维数是唯一的。 B.最小实现的方式是不唯的,有无数个。 C.最小实现的系统是能观且能控的。 D.最小实现的系统是稳定的。 23. 对确定性线性连续时不变系统,设计的线性观测器输入信号有 2 类信号,即( )。A A.原系统的输入和输出 B.原系统的输入和状态 C.原系统的状态和输出 D.自身的状态和原系统的输入 24. 关于线性系统与非线性系统说法正确的是( )。D A.凡是输入和状态关系满足叠加性的系统就是线性系统。 B.非线性方程一定表示非线性系统。 C.系统中含有非线性元件的系统一定是非线性系统。 D.因为初始条件与冲激输入的效果是完全等效,所以将 ( A, B, C , D) 在任何情况下都看成线性系 统。 25. 线性定常系统的状态转移矩阵 e At 的性质错误的是( A.若 t 和 是独立的自变量,则有 e e

广西大学现代控制理论期末考试题库之填空题 含答案

广西大学现代控制理论期末考试题库之填空题 含答案

1. 对任意传递函数00()m nj j j j j j G s b sa s ===∑∑,其物理实现存在的条件是 。

(传递函数为s 的真有理分式函数或m n ≤)2. 系统的状态方程为齐次微分方程x Ax =,若初始时刻为0,x (0)=x 0则其解为___________。

其中, _____称为系统状态转移矩阵。

(0()e ,0A x x t t t =≥;e A t )3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___________________。

(线性系统的稳定性与初值无关,只与系统的特征根有关)4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是__________的。

(能观)5. 能控性与能观性的概念是由__________提出的,基于能量的稳定性理论是由__________构建的。

(卡尔曼李亚普诺夫)6. 线性定常连续系统x Ax Bu =+,系统矩阵是___________,控制矩阵是__________。

(A ; B )7. 系统状态的可观测性表征的是状态可由 完全反映的能力。

(输出)8. 线性系统的状态观测器有两个输入,即_________和__________。

(原系统的输入和原系统的输出)状态空间描述包括两部分,一部分是_________,另一部分是__________。

(状态微分方程;输出方程)9. 系统状态的可控性表征的是状态可由 完全控制的能力。

(输入)10. 由系统的输入-输出的动态关系建立系统的_______________,这样的问题叫实现问题。

(状态空间描述)11. 某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?__________。

(存在)12. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为______原理。

现代控制理论试题

现代控制理论试题

现代控制理论试题(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除现代控制理论试题一、名词解释(15分)1、能控性2、能观性3、系统的最小实现4、渐近稳定性二、简答题(15分)1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质?2、如何判断线性定常系统的能控性如何判断线性定常系统的能观性3、传递函数矩阵的最小实现A、B、C和D的充要条件是什么?4、对于线性定常系统能够任意配置极点的充要条件是什么?5、线性定常连续系统状态观测器的存在条件是什么?三、计算题(70分)1、RC无源网络如图1所示,试列写出其状态方程和输出方程。

其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y。

图1:RC无源网络2、计算下列状态空间描述的传递函数g(s)3、求出下列连续时间线性是不变系统的时间离散化状态方程:其中,采样周期为T=2.4、求取下列各连续时间线性时不变系统的状态变量解和5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的取值范围:6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近稳定:7、给定一个单输入单输出连续时间线性时不变系统的传递函数为试确定一个状态反馈矩阵K,使闭环极点配置为,和。

现代控制理论试题答案一、概念题1、何为系统的能控性和能观性?2、答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。

(2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t),就称系统在t0时刻是能观测的。

若在任意初始时刻系统都能观测,则0称系统是状态完全能观测的,简称能观测的。

现代控制理论试题与答案

现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。

广西大学现代控制理论期末考试题库之填空题含答案

广西大学现代控制理论期末考试题库之填空题含答案

广西大学现代控制理论期末考试题库之填空题含答案1. 对任意传递函数00()m nj j j j j j G s b sa s ===∑∑,其物理实现存在的条件是。

(传递函数为s 的真有理分式函数或m n ≤)2. 系统的状态方程为齐次微分方程x Ax =,若初始时刻为0,x (0)=x 0则其解为___________。

其中, _____称为系统状态转移矩阵。

(0()e ,0A x x t t t =≥;e A t )3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___________________。

(线性系统的稳定性与初值无关,只与系统的特征根有关)4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是__________的。

(能观)5. 能控性与能观性的概念是由__________提出的,基于能量的稳定性理论是由__________构建的。

(卡尔曼李亚普诺夫)6. 线性定常连续系统x Ax Bu =+,系统矩阵是___________,控制矩阵是__________。

(A ; B )7. 系统状态的可观测性表征的是状态可由完全反映的能力。

(输出)8. 线性系统的状态观测器有两个输入,即_________和__________。

(原系统的输入和原系统的输出)状态空间描述包括两部分,一部分是_________,另一部分是__________。

(状态微分方程;输出方程)9. 系统状态的可控性表征的是状态可由完全控制的能力。

(输入)10. 由系统的输入-输出的动态关系建立系统的_______________,这样的问题叫实现问题。

(状态空间描述)11. 某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?__________。

(存在)12. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为______原理。

《现代控制理论》考试题A

《现代控制理论》考试题A

中南大学二0一一年下学期二O 一0级电气工程专业(专升本) 《 现代控制理论》期末考试卷(A 卷)涟钢站 姓名 计分1、 已知系统传递函数10(1)()(1)(3)s W s s s s -=++ 试求出系统的约旦标准型的实现,并画出相应的模拟结构图。

2、 给定下列状态空间表达式.11.22.330100230.11132x x x x x u x ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦; []123001x y x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1) 画出其模拟结构图。

(2)求系统的传递函数。

3.已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R 2上的电压为输出量的输出方程。

并画出相应的模拟结构图。

(10分)4、.线性系统的传递函数为32()()102718y s s au s s s s +=+++ (2) 试确定a 的取值,使系统不能控或不能观。

(3) 在上述a 的取值下,求使系统为能控的状态空间表达式。

5、设系统的状态方程及输出方程为110001010111x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦[]001y x = 试判定系统的能控性和能观性。

(10分)6、 ①已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。

(5分)② 判定系统11221223x x x x x x =-+⎧⎨=--⎩ 在原点的稳定性。

(5分)。

《现代控制理论》期末复习试题4套含答案(大学期末复习试题)

《现代控制理论》期末复习试题4套含答案(大学期末复习试题)

第 1 页 共 1 页西 安 科 技 大 学2004—2005 学 年 第2 学 期 期 末 考 试 试 题(卷)电控 院系: 班级: 姓名: 学号:装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线第 2 页 共 1 页现代控制理论A 卷答案 1. 解:系统的特征多项式为2221()21(1)1s f s s s s s+-==++=+其特征根为-1(二重),从定理知系统是渐近稳定的。

2 解:Bode 图略解得:开环截止频率:)/(1.2s rad c =ω; 相角裕量:)(40rad r ≈3 解:1)系统的传递函数阵为:2231231))((1))()((1][)(du a s a s a s a s a s Du B A sI C s G +⎥⎦⎤⎢⎣⎡-----=+-=-第 3 页 共 1 页2)系统的状态结构图,现以图中标记的321,,x x x 为u 2u 14解:1)列写电枢电压u 为输入,以电流i 和旋转速度n 为输出的状态空间表达式。

由于ω.πωn 559260==,可得dtdn J dt d J55.9=ω, 22)2(Dg G mR J ==式中, m 为一个旋转体上的一个质点的质量,质量m 为该质量的重量G 和重力加速度g 之比,R 和D 分别为旋转体的半径和直径,综合上两式可推得dtdn GD dt dn D G dt d J 37548.955.922=⨯⨯⨯=ω 2)从而可得到电机电枢回路电压平衡和电机运动平衡的一组微分方程式第 4 页 共 1 页⎪⎪⎩⎪⎪⎨⎧=+=++i C n K dtdn GD u n C Ri dtdiL m b e 3752式中,摩擦系数55.9/B K b =。

选择状态变量n x i x ==21,,则系统得状态空间表达式为u L x x GD K GD C L C L R x x b me ⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡01375375212221 ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=211001x x y5 略西 安 科 技 大 学2004—2005学 年 第 2 学 期 2 期 末 考 试 试 题(卷)院系: 班级: 姓名: 学号:装 订 线 装 订 线 以 内 不 准 作 任 何 标 记 装 订 线第 6 页 共 1 页现代控制理论B 卷答案:2 解:所给系统为能控标准形,特征多项式为32()det()1f s sI A s s =-=-+ 所希望的闭环系统特征多项式32()(1)(1)(1)342d f s s s j s j s s s =++-++=+++ 从而可得321134,044,121k k k =--=-=-=-=-=-故反馈增益阵k 为[][]123144k k k k ==--- 所求的状态反馈为[]144u kx v x v =+=---+该闭环系统状态方程为()v x v x bk A x +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=++=342100010对应的结构图如题.2图所示。

广西大学现代电气控制与PLC期末考试复习题库

广西大学现代电气控制与PLC期末考试复习题库

现代电气控制与PLC期末考试复习题库一.单选题(共25题)1、分析图示控制电路,当接通电源后其控制作用正确的是()。

A按SB2,接触器KM通电动作;按SB1,KM断电恢复常态B按着SB2,KM通电动作,松开SB2,KM即断电C按SB2,KM通电动作,按SB1,不能使KM断电恢复常态,除非切断电源正确答案:C2、FP1与上位机之间的通信采用()的通信方式。

ARS232CBRS422CRS485DC-NET正确答案:C3、图示梯形图为某电梯间人数控制系统,进电梯一个人X0就闭合一次,出电梯一个人X1就闭合一次,当电梯人数超过()后Y0才接通。

A10人B14人C15人D16人正确答案:C4、在图示的梯形图中,X0闭合()后Y0才接通。

A15秒B100秒C150秒D1500秒正确答案:C5、计算机与多台FP1之间的通信采用()的通信方式。

ARS232CBRS422、CRS485、DC-NET正确答案:D6、Z3040摇臂钻床其摇臂升降过程为()。

A夹紧摇臂→摇臂升降运动→摇臂到位后自动停止并松开摇臂B松开摇臂→摇臂升降运动→摇臂到位后自动停止并夹紧摇臂C夹紧摇臂→摇臂升降运动→摇臂到位后自动停止D松开摇臂→摇臂升降运动→摇臂到位后自动停止正确答案:B7、为使某工作台在固定的区间作往复运动,并能防止其冲出滑道,应当采用()。

A时间控制B速度控制和终端保护C行程控制和终端保护正确答案:C8、下面为采用D/A转换模块的梯形图,则DT0中的内容从()通道输出。

ACH0(NO.0)BCH1(NO.0)CCH0(NO.1)DCH1(NO.1)正确答案:D9、在电动机的继电器接触器控制电路中,零压保护的功能是()。

A防止电源电压降低烧坏电动机B防止停电后再恢复供电时电动机自行起动C实现短路保护正确答案:B10、在图示控制电路中,SB是按钮,KM是接触器,KM1控制辅电动机M1,KM2控制主电动机M2,且两个电动机均已起动运行,停车操作顺序必须是()。

现代控制理论期末考试复习题

现代控制理论期末考试复习题

现代控制理论期末考试复习题uy现代控制理论复习题1.自然界存在两类系统:静态系统和动态系统。

2.系统的数学描述可分为外部描述和内部描述两种类型。

3.线性定常连续系统在输入为零时,由初始状态引起的运动称为自由运动。

4.稳定性、能控性、能观测性均是系统的重要结构性质。

5.互为对偶系统的特征方程和特征值相同。

6.任何状态不完全能控的线性定常连续系统,总可以分解成完全能控子系统和完全不能控子系统两部分。

7.任何状态不完全能观的线性定常连续系统,总可以分解成完全能观测子系统和完全不能观测子系统两部分。

8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解成能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。

9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有零极点对消。

10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。

11.经典控制理论讨论的是在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是动态系统各平衡态附近的局部稳定性问题。

12.状态反馈和输出反馈是控制系统设计中两种主要的反馈策略。

13.综合问题的性能指标可分为优化型和非优化型性能指标。

14.状态反馈不改变被控系统的能控性;输出反馈不改变被控系统的能控性和能观测性实对称矩阵P为正定的充要条件是P的各阶顺序主子式均大于零。

15.静态系统:对于任意时刻t,系统的输出唯一地却绝育同一时刻的输入,这类系统称为静态系统。

16.动态系统:对于任意时刻t,系统的输出不仅和t有关,而且与t时刻以前的累积有关,这类系统称为动态系统。

17.状态;状态方程:状态:系统运动信息的合集。

状态方程:系统的状态变量与输入之间的关系用一组一阶微分方程来描述的数学模型称之为状态方程。

18.状态变量:指能完全表征系统运动状态的最小一组变量。

状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档