系统的能控性、能观测性、稳定性分析

合集下载

第三章 线性系统的能控性与能观测性

第三章 线性系统的能控性与能观测性



。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2

~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。

系统的能控性能观测性稳定性分析报告

系统的能控性能观测性稳定性分析报告

实 验 报 告课程 线性系统理论基础 实验日期 年 月 日专业班级 学号 同组人实验名称 系统的能控性、能观测性、稳定性分析及实现 评分批阅教师签字一、实验目的加深理解能观测性、能控性、稳定性、最小实现等观念。

掌握如何使用MATLAB 进行以下分析和实现。

1、系统的能观测性、能控性分析;2、系统的稳定性分析;3、系统的最小实现。

二、实验容(1)能控性、能观测性及系统实现(a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。

gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ;(b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;(c )已知系统矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]201=C ,判别系统的能控性与能观测性;(d )求系统1827101)(23++++=s s s s s G 的最小实现。

(2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:)20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性(b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为)22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。

(c )Bode 图法判断系统稳定性已知两个单位负反馈系统的开环传递函数分别为ss s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。

(d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。

控制系统的能控性和能观测性

控制系统的能控性和能观测性


根据定理3-5, 系统(1)能控 ; 系统(2)不能控
(定理(3-4)、定理(3-5)不仅可以判断系统能控性,而且对 于不能控的系统,可以知道哪个状态分量不能控。) 说明:1.上面通过几个定理给出判断系统能控性的判据。虽然它们 的表达形式、方法不同,但是,在判断线性定常系统能控性时是等 价的。
2.在线性连续定常系统中,由于能达性和能控性是等价的,因此, 能控性判据同样可以判断能达性。
一般情况下,系统方程可以表示为
Ax Bu x y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y(t )为输出量,两个电 例3-3 电路如下图所示。选取 u(t )为输入量, 感上的电流分别作为状态变量,则系统方程为
λi Ji 0
1 λi
0 1 阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
0 4 1 0 (1) x 0 4 0 x 4 u 0 2 0 3 0 4 1 4 2 (2) x 0 4 0 x 0 0 u 0 2 0 3 0
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu( τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)

线性离散系统的分析

线性离散系统的分析

§10-4 线性离散系统的分析前面讨论了线性离散系统的数学模型:一种是输入输出模型,一种是状态空间模型。

本节将要根据这些数学模型来分析线性离散系统的特性,例如稳定性、能控性和能观测性。

一、稳定性稳定性是动力学系统的一个十分重要的性质。

本节只讨论线性定常系统的稳定性,而时变系统的稳定性问题是比较复杂的。

有两大类的稳定性分析方法。

一类是分析离散系统极点在z 平面内的位置。

一个闭环系统是稳定的充分必要条件是其特征方程的全部根都必须分布在z 平面内以原点为圆心的单位圆内。

当然,我们可以用直接的方法求出特征方程,然后再求出其根(例如用贝尔斯特-牛顿叠代法)。

但是在工程上希望不经过解特征方程而找到一些间接的方法,例如代数判据法,基于频率特性分析的奈奎斯特法,或通过双线性变换把z 平面问题变成s 平面的问题,再用连续系统的稳定判据。

另一类研究稳定性的方法是李雅普诺夫第二方法,它规定了关于稳定性的严格定义和方法。

本节只介绍代数判据法。

Routh 、Schur 、Cohn 和Jury 都研究过相类似的稳定判据。

如果已知一个系统的特征多项式()n n na za z a z A +++=- 110 (10.87)Jury 把它的系数排列成如下的算表:11110a a a a a a a a a a nn n nn n =--α―――――――――――――――――――10111101211111110-------------=n n n n n n n n n n n n n a a aaaa a a α――――――――――――――――――――――――――――――――――――――10111110a a a a 10111a a =α―――――――――――――――――――0a 其中kk i k kik k k i k i a a a a a a 01=-=--α表中第一行和第二行分别是(10.87)中的系数按正序和倒序排列的。

计算机控制技术-13离散系统的能控(观测)性及稳定性

计算机控制技术-13离散系统的能控(观测)性及稳定性


rank

CG

CG 2

2 rank 1
4
0 2 0
0 0 2 3 0
系统状态 不完全能观测


0 4 0
3/3/2020
12
3、能观测性判别准则二(标准型法) 同线性连续定常系统的标准型判据:
1)对角线标准型:特征值互异时,C中不包含元素全为0的列; 重特征根时,一定不可观测。
(1)
如果G非奇异阵,则式(1)是系统状态完全能控的充分必要条件; 如果G是奇异阵,则式(1)是系统 状态完全能控的充分条件。
3/3/2020
3
线性定常离散系统 x(k 1) Gx(k) Hu(k)
k 1
解为 x(k) G k x(0) G ki1Hu(i) i0
n1
端状态的控制序列是否存在,不涉及具体转移几步。 2)对于n阶SI定常系统,若在第n步上不能将初始状态(零
态)转移到零态(任意终端状态),则在n+1及以后的任 何一步都不能转移。
[例]:系统的状态方程如下,试判定系统的状态能达性和能控性。
x1(k 1) 1 0 0 x1(k) 1
所以 x(n) G n x(0) G ni1Hu(i) i0
证明:对能达性,有 x(0) 0
n1
所以 x(n) G ni1Hu(i) G n1Hu(0) GHu(n 2) Hu(n 1) i0
u(n 1)

H GH Gn1H
统,也可能可控。所以:可达系统一定可控,可控系统
不一定可达。
结论2:如果一个离散时间系统为连续时间线性时不变系统的时

(整理)控制系统的能控性和能观测性

(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

现代控制理论能控性和能观测性

现代控制理论能控性和能观测性

I A1
B
I A
B f
(3-21)
式中B 为元素埏是I A的伴随矩阵。方程(3-21)两端右 乘 I A得:
BI A f I
(3-22)
由于 B 的元素 I A代数余子式,均为 n 1 次多项式,
故据矩阵加法运算规则,可将其分解为n个矩阵之和:
B
B n1 n1
B n2 n2
Bn1 I
Bn2 Bn1A an1I
Bn3 Bn2A an2I
M
B0 B1A a1I
B0A a0I
Bn1An An
Bn2An1 Bn1An an1An1
Bn3An2 Bn2An1 an2An2 M
0 1 M 1 -2 M 2 3
S2 G2 G2 L 2G2 0 0 M 0 1 0 M 0
0 M 0 0 1 M 1 -2
显见出现全零行,rankS2 2 3 ,故不能控。
多输入系统能控阵 S2,其行数小于列数,在计算列写能控阵时, 若有显时见可通过矩计S阵2算的秩为Sn的2,秩S便T2 是不否必为把n来判矩断S阵2多的输所入有系列统都的写能出控。性。 这只是需因计为算,一当次n阶非行奇列S异式2 时即,可确定能必S控非2 性奇ST2,异但,在而计算 为S方2 S阵T2 ,
系统矩阵 的阶数,或系统特征方程的阶次数。
以上研究假定了终态 x 0 0。若令终态为任意给定状态xn
则方程(3-2)变为:
n 1
nx 0 x n n1igu i
i0
(3-9)
方程两端左乘 n ,有
x 0-nx n 1g 2g L
u0
ng
u 1
M
u n 1
(3-10)

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析

系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。

如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。

对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。

控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。

如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。

能控性的分析可以帮助我们选择合适的控制策略和控制器设计。

当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。

2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。

一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。

对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。

观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。

如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。

能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。

当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。

3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。

对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。

零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。

有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。

无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。

第5章现代控制理论之系统运动的稳定性分析

第5章现代控制理论之系统运动的稳定性分析
当然,对于线性系统, 从不稳定平衡状态出发的轨 迹,理论上趋于无穷远。
由稳定性定义知,球域S(δ) 限制着初始状态x0的取值,球域
S(ε)规定了系统自由运动响应 xt xt; x0的, t0边 界。
简单地说:1.如果 x t; x0, t0 有界,则称 xe 稳定;
2.如果 x t; x0, t0 不仅有界,而且当t→∞时收敛于原点,则
5.1.1 平衡状态
李雅普诺夫关于稳定性的研究均针对平衡状态而言。
1. 平衡状态的定义
设系统状态方程为: x f x,t , x Rn
若对所有t ,状态 x 满足 x 0 ,则称该状态x为平衡状
态,记为xe。故有下式成立:f xe ,t 0
由平衡状态在状态空间中所确定的点,称为平衡点。
2.平衡状态的求法
由定义,平衡状态将包含在 f x,t 这样0 一个代数方程组
中。
对于线性定常系统 x A,x其平衡状态为 xe 应满足代数
方程 。Ax 0
只有坐标原点处是线性系统的平衡状态点。
对于非线性系统,方程 方程而定。
如:
x1 x2
x1 x1
x2
x
3 2
f x的,t 解 可0 能有多个,视系统
稳定性是系统的重要特性,是系统正常工作的必要条件。
稳定性是指系统在平衡状态下受到扰动后,系统自由运动 的性质。因此,系统的稳定性是相对于系统的平衡状态而 言的。它描述初始条件下系统方程是否具有收敛性,而不 考虑输入作用。
1. 线性系统的稳定性只取决于系统的结构和参数,与系统 初始条件及外作用无关; 2. 非线性系统的稳定性既取决于系统的结构和参数,也与 系统初始条件及外作用有关;
当稳定性与 t0 的选择无关时,称一致全局渐近稳定。

能控性及能观测性

能控性及能观测性

第三章:控制系统的能控性及能观测性(第五讲)内容介绍:能控性和能观测性定义、判据、对偶关系、标准型、结构分解。

能控性和能观测性是现代控制理论中最基本概念,是回答:“输入能否控制状态的变化”及“状态的变化能否由输出反映出来”这样两个问题。

换句话说,能控性是“能否找到一向量u(t)有效控制x(t)变化”。

能观测性问题是:“能否通过输出y(t)观测到状态的变化。

”一、能控性定义及判据 给出一个多变量系统(多输入、多输出)若系统G(s)在适当的控制u(t)作用下,每个状态都受影响,亦在有限的时间内能使系统G 由任意初始状态转移到零状态,或者说在有限的时间内能使系统由零状态转移到任意指定状态。

这说明:输入对状态的控制能力强,反之若G 的某一状态根本不受影响,那么在有限时间内就无法利用控制使这个状态变量发生变化。

说明输入对状态控制能力差。

可见:反映输入对状态控制能力的概念是能控性概念。

1. 定义:若对系统,在时刻的任意状态x()都存在一个有限的时间区间(ξt t ,0)(0t t 〉ξ)和定义在[]ξt ,t 0上适当的控制u(t),使在u(t)作用下x()=0。

则称系统在时刻是状态能控的。

如果系统在有定义的时间区域上的每一时刻都能控,称系统为完全能控。

()x u x 01011012=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=考查能控性?状态变量图(信号流图):y2由于u 的作用只影响不影响,故()t x 2为不能控。

某一状态不能控,则称系统不能控。

2.判据:u 1 : y1:对线性定常系统=Ax+Bu ,若对某一时刻能控,则称系统完全能控。

设: p输出 n n A *、p n B *、n m C *给出一定理:由=Ax+Bu 所描述的系统是状态完全能控的必要且充分条件为下列n ×np 阵的秩等于n 。

=BAB ……B A n 1-称为能控性阵。

换言之:系统的状态完全能控的必要且充分的条件是能控性阵的秩为n 。

线性系统理论第四章 线性系统的能控性和能观测性分解

线性系统理论第四章 线性系统的能控性和能观测性分解

引言
主要内容
能控性和能观测性的数学定义
线性系统能控性和能观测性的判别准则
完全能控、完全能观测的规范型
系统结构分解
4
引言
重点难点
能控性和能观测性的定义和判别准则
系统结构分解
第4章 线性系统的能控性和能观测性

4.1 能控性和能观测性的定义
4.2 线性连续时间系统的能控性判据 4.3 线性连续时间系统的能观测性判据 4.4 连续时间线性时变系统的能控性和能观测性判据
8
4.1 能控性和能观测性的定义
系统的能控性Байду номын сангаас能达性关系
对连续时间线性时不变系统,能控性和能达性等价;
对离散时间线性时不变系统和线性时变系统,若系统矩
阵为非奇异,则能控性和能达性等价;
对连续时间线性系统,能控性和能达性一般为不等价。
9
4.1 能控性和能观测性的定义
A(t ) x B(t )u, t J 定义:对连续时间线性时变系统 x
Wc (t0 , t1 ) 为非奇异时,系统能控
u(t ) BT (t )e A tWc 1 (0, t1 ) x0
t
采用构造法:构造相应控制输入u(t)为
x(t1 ) e At1 x0 t 1 e A(t1 ) Bu( )d
t
0
e
At1
At1 t1 At T AT t x0 e t e BB e Wc 1 (0, t1 ) x0 d 0
刻t0为不能观测;如果状态空间中所有非零状态在时刻t0
都不为不能观测,则称系统在时刻t0为完全能观测; 如果状态空间中存在一个非零状态或一个非零状态集合在

线性系统理论(第四章)线性系统的能控性和能观测性

线性系统理论(第四章)线性系统的能控性和能观测性

An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!

能控性和能观测性分析

能控性和能观测性分析

.1.2 能控性判据 按定义,要求寻找到一个具体的控制律。 由 可得 矩阵指数函数 可以表示成有限项的和 记 则转化成线性方程组的求解问题
例检验由以下状态方程描述的系统的能控性: 解 能控性检验矩阵 不是满秩的,故系统不能控。
例3.1.2 倒立摆系统线性化状态空间模型的系数矩阵是 能控性检验矩阵 故系统是能控的。
3.3 能控能观性的对偶原理
由于 定理3.3.1 能控的充分必要条件是 能观 能观标准型(能控标准型的转置)是能观的
对于互为对偶的系统 系统(I)能控(能观)的充分必要条件是系统(II)能观(能控)。 优点:能观(能控)性问题可以转化为能控(能观)性问题来处理。 例 能观与能控标准型互为对偶系统(特征多项式同)
2。若 非奇异,则可以构造出将非零初始状态转移到零状态的控制律
3。若系统能控,由(1),可在任意短时间内将非零状态转移到零状态 称为能控格拉姆矩阵
定理的说明
.1.3 能控性的性质 能控性基于状态方程系数矩阵A、B定义。 定理3.1.3 等价的状态空间模型具有相同的能控性。 由T是非奇异矩阵可得结论。
在 中的零极相消 考虑 没有零极相消的充分必要条件是 ,能控!
在 中无零极相消 考虑 类似可得 是能观的充分必要条件。 例 判别系统的能控性 显然系统不能控!
例3.1.8 判断以下系统的状态和输出能控性 系统的状态能控性矩阵 由于 ,故系统不是状态完全能控的。 输出能控性矩阵 显然它是行满秩的,故输出能控。 结论:系统输出能控,但不是状态能控的。
3.2 系统的能观性
所考虑的系统 状态变量未必都可以从外部观测到! 1。检测手段的限制; 2。一些状态变量不是物理量。 问题:如何(可否)通过输入输出信息来了解系统内部的状态?

现代控制工程-第5章能控性和能观性分析

现代控制工程-第5章能控性和能观性分析

传递函数判据
如果系统的传递函数的极点和零 点都位于复平面的左半部分,则 该系统是能控的。
能控性的应用
系统设计和ห้องสมุดไป่ตู้化
在系统设计和优化过程中,能控性分析可以帮助确定系统的可控性 和可观性,从而更好地选择和设计控制器和观测器。
控制性能评估
通过能控性分析,可以对系统的控制性能进行评估和比较,从而选 择更优的控制方案。
现代控制工程-第5章能控性 和能观性分析
目录
• 能控性分析 • 能观性分析 • 能控性和能观性的关系 • 系统设计中的能控性和能观性 • 现代控制工程其他章节概述
01
能控性分析
定义与概念
能控性定义
对于一个给定的线性时不变系统,如果存在一个状态反馈控制器,使得系统的任何初始状态都能通过 该控制器在有限的时间内被控制到任意指定的状态,则称该系统是能控的。
快速性
系统应具有快速的响应能力,以便在短时间 内达到设定值或消除外部扰动。
准确性
系统应具有高精度的输出,以满足各种控制 要求和保证产品质量。
可靠性
系统应具有高的可靠性和稳定性,以确保长 期稳定运行和减少故障率。
系统设计中的能控性和能观性考虑
能控性考虑
在系统设计中,需要考虑系统的能控性,即 能否通过输入信号控制系统的输出状态。对 于不能控制的系统,需要采取措施进行改进 或重新设计。
描述
分解性是控制系统分析中的一个重要性质。在大型复杂系统中,如果系统具有分解性, 那么我们可以将系统分解为若干个子系统,分别对子系统进行能控性和能观性分析,从
而简化系统分析和设计的难度。
04
系统设计中的能控性和能观 性
系统设计的基本原则
稳定性

现代控制理论实验报告三系统的能控性、能观测性分析

现代控制理论实验报告三系统的能控性、能观测性分析
end
nc =
3
system is completely state controllable
system is completely state observe
(3)
A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];
Uc=ctrb(A,B);
p1=[0,0,1]*inv(Uc);
else
disp('system is not completely state controllable')
end
if nc==n2
disp('system is completely state observe')
else
disp('system is not completelystate observe')
3、构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。
六、数据处理
题3.1已知系数阵A和输入阵B分别如下,判断系统的状态能控性

解:
A=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];B=[0;1;1];
Uc=ctrb(A,B)
n=det(Uc);%de计算矩阵对应的行列式的值,abs为求n的绝对值
Co=C*T
T =
-0.5000 0 -1.0000
0.5000 0 2.0000
1.0000 1.0000 0
Ao =
0 0 -10
1 0 12
0 1 1
Co =
0 0 1
七、分析讨论
1、掌握了能控性和能观测性的概念。学会了用MATLAB判断能控性和能观测性。

现代控制理论-4-线性系统的能控性和能观测性-第7讲

现代控制理论-4-线性系统的能控性和能观测性-第7讲

能控性的定义
能控性是指对于一个线性系统,如果 存在一个控制输入,使得系统状态能 够在有限的时间内从任意初始状态转 移到任意目标状态,则称该系统为能 控的。
能控性的判断依据是系统的能控性矩 阵,如果该矩阵满秩,则系统能控。
能观测性的定义
能观测性是指对于一个线性系统,如果存在一个观测器,能够通过系统的输出测量并估计出系统的所有状态,则称该系统为 能观测的。
传递函数判据
对于线性时不变系统,如果传递 函数的零点和极点个数满足一定 条件,则系统能观测;否则系统 不能观测。
03
能控性和能观测性的应用
在控制系统设计中的应用
系统性能分析
通过分析系统的能控性和能观测性,可以评估系统的稳定 性和动态性能,从而优化系统设计。
控制器设计
在控制器设计中,需要考虑系统的能控性和能观测性,以 确保控制器能够有效地控制系统的状态并观测系统的状态。
初始状态和目标状态
系统初始和目标状态的定义,以及它们对最优控 制策略的影响。
最优控制问题的求解方法
动态规划
将最优控制问题分解为一系列子问题, 通过求解子问题的最优解逐步逼近原问
题的最优解。
极大值原理
通过求解极值条件来找到最优控制输 入,适用于具有特定性能指标的最优
控制问题。
线性二次调节器
通过最小化状态和控制输入的二次范 数来求解最优控制问题,适用于线性 二次最优控制问题。
现代控制理论-4-线性系统 的能控性和能观测性-第7讲
目录
• 线性系统的能控性和能观测性的 定义
• 能控性和能观测性的判定方法 • 能控性和能观测性的应用 • 线性系统的状态反馈和状态观测
器设计
目录
• 线性系统的最优控制问题 • 现代控制理论的发展趋势和前沿

现代控制理论线性控制系统的能控与能观性

现代控制理论线性控制系统的能控与能观性

判断线性控制系统稳定性的方法有多 种,如劳斯判据、赫尔维茨判据等。
03
能控性与能观性概念
能控性概念
能控性是指对于一个线性控制系统,如果存在一个控 制输入,使得状态变量从任意初始状态能够被驱动到
任意目标状态,则称该系统是能控的。
能控性的判断依据是系统的能控性矩阵,如果该矩阵 非奇异,则系统是能控的,否则系统不能控。
线性控制系统是控制系统的一种重要 类型,其能控性和能观性是评价系统 性能的重要指标。
研究意义
能控性和能观性是现代控制理论中的基本概念,对线性控制系统的分析和设计具有重要意义。
研究线性控制系统的能控性和能观性有助于深入了解系统的动态行为,为优化控制策略和控制系统的 稳定性提供理论支持。
02
线性控制系统基础
04
线性控制系统的能控性分析
能控性的判断方法
矩阵判据
通过判断线性系统的状态矩阵是否满足能控性矩阵的 条件,从而判断系统的能控性。
传递函数判据
根据线性系统的传递函数,通过分析其极点和零点, 判断系统的能控性。
状态方程判据
通过分析线性系统的状态方程,判断其是否具有能控 性。
能控性的改善方法
增加控制输入
能观性分析
能观性分析在智能交通系统中同样重要,它 有助于确定交通系统的状态是否能被其传感 器完全监测。这涉及到对传感器精度、道路 条件以及传感器布局等因素的考虑。
07
结论与展望
研究结论
1
线性控制系统能控性与能观性是现代控制理论中 的重要概念,对于系统的分析和设计具有重要意 义。
2
通过研究线性控制系统的能控性和能观性,可以 深入了解系统的动态特性和行为,为控制系统设 计和优化提供理论支持。

多变量系统的可控性、可观测性和稳定性分析

多变量系统的可控性、可观测性和稳定性分析

《现代控制理论》实验报告学校:西安邮电大学班级:自动1101姓名:(31)学号:06111031实验二 多变量系统的可控性、可观测性和稳定性分析一、实验目的1. 学习多变量系统状态可控性及稳定性分析的定义及判别方法;2. 学习多变量系统状态可观测性及稳定性分析的定义及判别方法;3. 通过用MA TLAB 编程、上机调试,掌握多变量系统可控性及稳定性判别方法。

二、实验要求1.掌握系统的可控性分析方法。

2.掌握可观测性分析方法。

3.掌握稳定性分析方法。

三、实验设备1.计算机1台2.MATLAB6.X 软件1套。

四、实验原理说明1. 设系统的状态空间表达式q p n R y R u R x D Cx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (2-1)系统的可控性分析是多变量系统设计的基础,包括可控性的定义和可控性的判别。

系统状态可控性的定义的核心是:对于线性连续定常系统(2-1),若存在一个分段连续的输入函数U (t ),在有限的时间(t 1-t 0)内,能把任一给定的初态x (t 0)转移至预期的终端x (t 1),则称此状态是可控的。

若系统所有的状态都是可控的,则称该系统是状态完全可控的。

2. 系统输出可控性是指输入函数U (t )加入到系统,在有限的时间(t1-t0)内,能把任一给定的初态x (t0)转移至预期的终态输出y (t1)。

可控性判别分为状态可控性判别和输出可控性判别。

状态可控性分为一般判别和直接判别法,后者是针对系统的系数阵A 是对角标准形或约当标准形的系统,状态可控性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态可控性分为一般判别是应用最广泛的一种判别法。

输出可控性判别式为:[]q D B CA CAB CB Rank RankS n o ==-1 (2-2) 状态可控性判别式为:[]n B A AB B Rank RankS n ==-1 (2-3)系统的可观测性分析是多变量系统设计的基础,包括可观测性的定义和可观测性的判别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ro =
4
Lyap:解lyapunov方程
A=[0 0 -6;1 0 -11;0 1 -6];
B=[1 2 3;4 5 6;7 8 0];
X=lyap(A,B)
X =
-3.2833 -3.9000 -0.1167
-5.5000 -8.6500 -0.4000
0.2833 -0.0000 -0.0333
五、程序源代码
1.(a)了解以下命令的功能;自选对象模型,进行运算,并写出结果。
gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal;
gram:求解用状态空间表示的系统的可控或客观Gramian矩阵
num=[6 -0.6 -0.12];
Байду номын сангаасden=[1 -1 0.25 0.25 -0.125];
A=[-2.2 -0.7 1.5 -1;0.2 -6.3 6 -1.5;0.6 -0.9 -2 -0.5;1.4 -0.1 -1 -3.5]
B=[6 9;4 6;4 4;8 4];
Tc=ctrb(A,B);
rank(Tc)
A =-2.2000 -0.7000 1.5000 -1.0000
0.2000 -6.3000 6.0000 -1.5000
已知两个单位负反馈系统的开环传递函数分别为
用Bode图法判断系统闭环的稳定性。
(d)判断下列系统是否状态渐近稳定、是否BIBO稳定。
三、实验环境
1、计算机120台;
2、MATLAB6.X软件1套。
四、实验原理(或程序框图)及步骤
1、系统能控性、能观性分析
设系统的状态空间表达式如(1-1)所示。
系统的能控性、能观测性分析是多变量系统设计的基础,包括能控性、能观测性的定义和判别。
Discrete-time transfer function.
Lc =10.7651 7.8769 3.6759 -0.0000
7.8769 10.7651 7.8769 1.8379
3.6759 7.8769 10.7651 3.9385
-0.0000 1.8379 3.9385 2.6913
Ctrb:计算矩阵可控性
H=tf(num,den,'Ts',0.1)
Lc=gram(ss(H),'c')
H = 6 z^2 - 0.6 z - 0.12
-------------------------------------
z^4 - z^3 + 0.25 z^2 + 0.25 z - 0.125
Sample time: 0.1 seconds
系统状态能控性定义的核心是:对于线性连续定常系统(1-1),若存在一个分段连续的输入函数u(t),在有限的时间(t1-t0)内,能把任一给定的初态x(t0)转移至预期的终端x(t1),则称此状态是能控的。若系统所有的状态都是能控的,则称该系统是状态完全能控的。
能控性判别分为状态能控性判别和输出能控性判别。
Ctrbf:对线性系统进行能控性分解
二、实验内容
(1)能控性、能观测性及系统实现
(a)了解以下命令的功能;自选对象模型,进行运算,并写出结果。
gram, ctrb, obsv, lyap, ctrbf, obsvf,minreal;
(b)已知连续系统的传递函数模型, ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;
(c)已知系统矩阵为 , , ,判别系统的能控性与能观测性;
状态能观测性也分为一般判别和直接判别法,后者是针对系统的系数阵A是对角标准形或约当标准形的系统,状态能观性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能观测性分为一般判别是应用最广泛的一种判别法。
状态能观测性判别式为:
(2-3)
系统的传递函数阵和状态空间表达式之间的有(1-2)式所示关系。已知系统的传递函数阵表述,求其满足(1-2)式所示关系的状态空间表达式,称为实现。实现的方式不唯一,实现也不唯一。其中,当状态矩阵A具有最小阶次的实现称为最小实现,此时实现具有最简形式。
状态能控性分为一般判别和直接判别法,后者是针对系统的系数阵A是对角标准形或约当标准形的系统,状态能控性判别时不用计算,应用公式直接判断,是一种直接简易法;前者状态能控性分为一般判别是应用最广泛的一种判别法。
输出能控性判别式为:
(2-1)
状态能控性判别式为:
(2-2)
系统状态能观测性的定义:对于线性连续定常系统(2-1),如果对t0时刻存在ta,t0<ta< ,根据[t0,ta]上的y(t)的测量值,能够唯一地确定系统在t0时刻的任意初始状态x0,则称系统在t0时刻是状态完全能观测的,或简称系统在[t0,ta]区间上能观测。
0.6000 -0.9000 -2.0000 -0.5000
1.4000 -0.1000 -1.0000 -3.5000
ans =
3
Obsv:计算可观察性矩阵
A=[-2.2 -0.7 1.5 -1;0.2 -6.3 6 -1.5;0.6 -0.9 -2 -0.5;1.4 -0.1 -1 -3.5]
B=[6 9;4 6;4 4;8 4];
实 验 报 告
课程线性系统理论基础实验日期年月日
专业班级姓名学号同组人
实验名称系统的能控性、能观测性、稳定性分析及实现评分
批阅教师签字
一、实验目的
加深理解能观测性、能控性、稳定性、最小实现等观念。掌握如何使用MATLAB进行以下分析和实现。
1、系统的能观测性、能控性分析;
2、系统的稳定性分析;
3、系统的最小实现。
C=[1 2 3 4];
Qo=obsv(A,C);
Ro=rank(Qo)
A =-2.2000 -0.7000 1.5000 -1.0000
0.2000 -6.3000 6.0000 -1.5000
0.6000 -0.9000 -2.0000 -0.5000
1.4000 -0.1000 -1.0000 -3.5000
(d)求系统 的最小实现。
(2)稳定性
(a)代数法稳定性判据
已知单位反馈系统的开环传递函数为: ,试对系统闭环判别其稳定性
(b)根轨迹法判断系统稳定性
已知一个单位负反馈系统开环传递函数为 ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。
(c)Bode图法判断系统稳定性
相关文档
最新文档