高中数学 第一章《计数原理》二项式定理(二)

合集下载

高中数学 第1章 计数原理 1.3 二项式定理 1.3.1 二项式定理 新人教B版选修2-3

高中数学 第1章 计数原理 1.3 二项式定理 1.3.1 二项式定理 新人教B版选修2-3

(2)化简(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
解 原式=C05(x-1)5+C15(x-1)4+C25(x-1)3+C35(x-1)2 +C45(x-1)+C55-1
=[(x-1)+1]5-1=x5-1.
规律方法 运用二项式定理展开二项式,要记准展开式的 通项公式,对于较复杂的二项式,有时先化简再展开更简 捷;要搞清楚二项展开式中的项以及该项的系数与二项式 系数的区别.逆用二项式定理可将多项式化简,对于这类问 题的求解,要熟悉公式的特点、项数、各项幂指数的规律 以及各项的系数.
要点二 二项展开式通项的应用 例2 若 ( x+ 1 )n展开式中前三项系数成等差数列,求:
4 2x (1)展开式中含x的一次项; 解 由已知可得 C0n+C2n·212=2C1n·12, 即n2-9n+8=0, 解得n=8,或n=1(舍去).
Tr+1=Cr8(
x)8-r·(
1
4
)r=Cr8·2-r·x 4-34r,

C
2 2n+1
×142n

1×52



C22nn+1×14×52n-C22nn+ +11×52n+1+52n+1

14(142n

C
1 2n+1
×142n

1×5

C
22n+1×142n

2×52



C22nn+1×52n).
上式是14的倍数,能被14整除,所以34n+2+52n+1能被14整除 .
10-2r 令 3 =2,得
r=12(10-6)=2.
故 x2 项的系数为 C210(-3)2=405.

高中数学 第一章 计数原理 1.3 二项式定理 1.3.3 二项式定理习题课教案 新人教A版选修2-

高中数学 第一章 计数原理 1.3 二项式定理 1.3.3 二项式定理习题课教案 新人教A版选修2-

二项式定理习题课教学目标知识与技能1.能熟练地掌握二项式定理的展开式及其有关概念.2.会用二项式定理解决与二项展开式有关的简单问题.3.能熟练掌握杨辉三角及二项式系数的有关性质.4.会用二项式系数的性质解决一些简单问题,并能熟练地使用赋值法.过程与方法1.能解决二项展开式的有关概念问题:项、二项式系数、系数、有理项、无理项、常数项、整数项等.2.能用二项式定理解决诸如整除、近似值、求和等有关问题.3.能用二项式系数的有关性质,解决诸如:最值、二项式系数和、系数和等问题.情感、态度与价值观1.培养学生对整个数学知识的驾驭能力,能在一定高度上进行数学知识的应用.2.培养学生观察、归纳的能力以及分析问题与解决问题的能力.3.进一步提升学生学好数学用好数学的积极性,进一步提升学生学习数学的兴趣.重点难点教学重点:掌握二项展开式,掌握二项式系数的有关性质,掌握解决二项式定理性质等有关问题的方法.教学难点:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题.教学过程复习巩顾前面我们学习了二项式定理,请回顾:1.(a+b)n=________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的______________,其中C r n(r=0,1,2,…,n)叫做______________,通项是指展开式的第__________________项,共有____________项.其中二项式系数是____________,系数是____________.2.二项式系数的四个性质(杨辉三角的规律) (1)对称性:____________________. (2)性质2:______________________.(3)二项式系数的最大值________________________.(4)二项式系数之和____________________,所用方法是____________________. 答案:1.(a +b)n=C 0n a n+C 1n an -1b +C 2n an -2b 2+…+C r n an -r b r+…+C n n b n(n∈N )、展开式、二项式系数、r +1、n +1、C rn 、变量前的常数2.(1)C mn =-mn (2)C rn +1=C r -1n +C rn(3)当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n 最大(4)C 0n +C 1n +C 2n +…+C rn +…+C nn =2n赋值法典型示例类型一:二项展开式的有关概念 例1试求:(1)(x 3-2x 2)5的展开式中x 5的系数;(2)(2x 2-1x)6的展开式中的常数项;(3)在(3x +32)100的展开式中,系数为有理数的项的个数.思路分析:理解二项展开式的有关概念,什么是二项式系数,什么是系数,什么是项,什么是常数项、有理项、无理项等,其实都是由通项入手,根据变量的系数、指数进行判断,当指数为0时是常数项,当指数是整数时是有理项,当指数是分数时是无理项.解:(1)T r +1=C r5(x 3)5-r(-2x2)r =(-2)r C r 5x 15-5r ,依题意15-5r =5,解得r =2.故(-2)2C 25=40为所求x 5的系数.(2)T r +1=C r 6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r ,依题意12-3r =0,解得r =4.故(-1)4·22C 26=60为所求的常数项.(3)T r +1=C r 100(3x)100-r(32)r =C r100·350-r 2·2r 3x 100-r ,要使x 的系数为有理数,指数50-r 2与r 3都必须是整数,因此r 应是6的倍数,即r =6k(k∈Z ),又0≤6k≤100,解得0≤k≤1623(k∈Z ),∴x 的系数为有理数的项共有17项.点评:求二项展开式中具有某特定性质的项,关键是确定r 的值或取值X 围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.[巩固练习]试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(|x|+1|x|-2)3的展开式中的常数项.解:(1)∵(x+2)10=x 10+20x 9+180x 8+…,∴(x+2)10(x 2-1)的展开式中x 10的系数是-1+180=179.(2)∵(|x|+1|x|-2)3=(|x|-1|x|)6,∴所求展开式中的常数项是-C 36=-20.类型二:二项展开式的有关应用——简单应用例2求(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数. 解:∵(x-1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=x -1{1-[-x -1]5}1-[-x -1]=x -1+x -16x ,∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数-C 36=-20.点评:这是一组将一个二项式扩展为假设干个二项式相乘或相加,或扩展为简单的三项展开式的问题,求解的关键在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.能够最大限度地考查学生对知识的把握程度.[巩固练习](1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中x 3项的系数是( )A .74B .121C .-74D .-121 解析:先求和:(1-x)5+(1-x)6+(1-x)7+(1-x)8=1-x 5[1-1-x4]1-1-x=1-x5[4x -6x 2+4x 3-x 4]x,分子的展开式中x 4的系数,即为原式的展开式中x 3项的系数,(-1)×1+4×(-C 15)-6C 25+4×(-C 35)=-1-20-60-40=-121,所以选D.答案:D类型三:二项展开式的有关应用:整除、不等式、近似值等问题 例3证明:(1)2≤(1+1n)n <3,其中n∈N *;(2)证明:对任意非负整数n,33n-26n -1可被676整除.思路分析:对于二项式中的不等式,通过展开式,分析其中的特殊项,可以证明一些简单的不等式问题;对于整除问题同样如此,关键是把二项式拆成676的形式;对于比较麻烦的数列问题,我们经常采用的方法就是数学归纳法,此题也不例外.证明:(1)(1+1n )n =1+C 1n ·1n +C 2n (1n )2+…≥2(当且仅当n =1时取等号).当n =1时,(1+1n)n=2<3显然成立;当n≥2时,(1+1n )n =C 0n +C 1n ·1n +C 2n ·1n 2+…+C nn ·1n n =2+n(n -1)2!1n 2+n(n -1)(n -2)3!1n 3+…+n(n -1)…2·1n !1n n =2+12!n n n -1n +13!n n n -1n n -2n +…+1n !n n n -1n …2n 1n <2+12!+13!+…1n !<2+11×2+12×3+…+1n(n -1)=2+(1-12)+(12-13)+…+(1n -1-1n )=3-1n <3.综上所述:2≤(1+1n)n <3,其中n∈N *.(2)当n =0,n =1时33n-26n -1=0,显然33n-26n -1可被676整除.当n≥2时,33n-26n -1=27n-26n -1=(1+26)n-26n -1=1+26n +C 2n ·262+…+C nn ·26n-26n -1=C 2n ·262+C 3n ·263+…+C nn 26n=676(C 2n +26C 3n +…+26n -2C nn).综上所述:对任意非负整数n,33n-26n -1可被676整除.点评:用二项式定理解决整除问题是二项式定理的一大特色,这是二项展开式的一种基本应用,通过对二项式的拆解,我们可以解决一些看似很难但易解决的问题.[巩固练习]m ,n 是正整数,f(x)=(1+x)m+(1+x)n的展开式中x 的系数为7, (1)试求f(x)中的x 2的系数的最小值;(2)对于使f(x)中的x 2的系数为最小的m ,n ,求出此时x 3的系数; (3)利用上述结果,求f(0.003)的近似值(精确到0.01). 解:根据题意得:C 1m +C 1n =7,即m +n =7.(*)(1)x 2的系数为C 2m+C 2n=m(m -1)2+n(n -1)2=m 2+n 2-m -n2.将(*)变形为n =7-m 代入上式得:x 2的系数为m 2-7m +21=(m -72)2+354.故当m =3或4时,x 2的系数的最小值为9.(2)当m =3,n =4或m =4,n =3时,x 3的系数为C 33+C 34=5. (3)f(0.003)≈2.02.类型四:二项式系数的最大值、系数的最大值问题 例4求(x -1)9的展开式中系数最大的项.思路分析:二项式系数最大的项我们可以根据公式求解,但是系数最大的项怎么求呢?观察此题中二项式系数与系数之间的关系,我们发现它们只不过相差一个负号而已,所以可以通过二项式系数的大小反映系数的大小,只不过要注意正负号.解:T r +1=(-1)r C r 9x 9-r .∵C 49=C 59=126,而(-1)4=1,(-1)5=-1,∴T 5=126x 5是所求系数最大的项.点评:此类问题仍然是利用二项展开式的通项公式来求解,但在解题过程中要注意一些常用方法和数学思想的应用.[巩固练习] 求(x +124x)8展开式中系数最大的项.解:记第r 项系数为T r ,设第k 项系数最大,那么有⎩⎪⎨⎪⎧T k ≥T k -1,T k ≥T k +1,又T r =C r -182-r +1,那么有⎩⎪⎨⎪⎧C k -182-k +1≥C k -282-k +2,C k -182-k +1≥C k 82-k ,即⎩⎪⎨⎪⎧8!(k -1)!(9-k)!≥8!(k -2)!(10-k)!×2,8!(k -1)!(9-k)!×2≥8!k !(8-k)!,∴⎩⎪⎨⎪⎧1k -1≥2k -2,29-k ≥1k .解得3≤k≤4,∴系数最大的项为第3项T 3=7x 52和第4项T 4=7x 72.类型五:二项式系数之和、系数之和等问题例5假设(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,那么(a 0+a 2+a 4)2-(a 1+a 3)2的值等于__________;思路分析:注意到与系数的和差有关,所以可以用赋值法求得奇数项的系数之和与偶数项的系数之和,注意使用平方差公式.解:令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=[(3+2)(3-2)]4=1.点评:在二项式系数的性质应用中,尤其是系数和的问题,我们经常使用赋值法,这是一种奇妙的方法,可以帮助我们在不用计算每一个系数的前提下,求出各个系数的和.[巩固练习](1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7, 求(1)a 0+a 1+…+a 7的值;(2)a 0+a 2+a 4+a 6及a 1+a 3+a 5+a 7的值; (3)各项二项式系数和.解:(1)令x =1,那么a 0+a 1+…+a 7=-1.(2)令x =-1,那么a 0-a 1+a 2-a 3+…+a 6-a 7=2 187. 那么a 1+a 3+a 5+a 7=-1 094;a 0+a 2+a 4+a 6=1 093. (3)各项二项式系数和C 07+C 17+…+C 77=27=128. [拓展实例]例1(1+3x)6(1+14x)10的展开式中的常数项为( )A.1 B.46 C.4 245 D.4 246思路分析:对于非一般的二项式问题,要注意转化成二项式问题解决.此题虽然有两个式子相乘,只要我们写出整个式子的通项,令指数为0,即可求得常数项.解:先求(1+3x)6的展开式中的通项.T r+1=C r6(x13)r=C r6xr3,r=0,1,2,3,4,5,6.再求(1+14x )10的展开式中的通项.T k+1=C k10(x-14)k=C k10x-k4,k=0,1,2,3,4,…,10.两通项相乘得:C r6x r3C k10x-k4=C r6C k10xr3-k4,令r3-k4=0,得4r=3k,这样一来,(r,k)只有三组:(0,0),(3,4),(6,8)满足要求.故常数项为:1+C36C410+C66C810=4 246.点评:对于乘积的式子或者三项的式子的展开问题,我们可以通过化归思想,将其转化成二项展开式问题.要注意此题中,常数项的位置有三处.[巩固练习](1+x+x2)(x+1x3)n的展开式中没有..常数项,n∈N*,且2≤n≤8,那么n=______.解析:依题意(x+1x3)n,对n∈N*,且2≤n≤8中,只有n=5时,其展开式既不出现常数项,也不会出现与x、x2乘积为常数的项.故填5.答案:5[变练演编](1)对于9100你能编出什么样的整除问题?如9100被________整除的余数是________.(2)(2x2-1x)6的展开式中的常数项是第____________项,整数项是第______________项,x的最高次项是第______________项,二项式系数之和是______________,系数之和是______________.将你能得到的所有正确的答案一一列举出来.答案:(1)这是一个开放性的问题,学生可以有多种答案,比如说9100被8整除的余数是1,9100被80整除的余数是1等等.(2)T r +1=C r6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r .依题意12-3r =0,解得r =4,所以常数项是第5项;整数项是第1,2,3,4,5项;x 的最高次项是第1项;二项式系数之和为64;系数之和为1.设计意图:变练演编——这种开放性的设计,能够有效地提高学生学习的积极性,使得编题不仅仅是老师的专利,学生在编题解题的过程中,领悟知识,提高能力,增长兴趣,增强信心,不仅有助于训练同学们的常规思维,还能培养同学们的逆向思维,最终提高学生的数学成绩.[达标检测] 1.(x -13x)12展开式中的常数项为( )A .-1 320B .1 320C .-220D .220 2.(1-x)6(1+x)4的展开式中x 的系数是( ) A .-4 B .-3 C .3 D .4 3.假设(1-2x)2 005=a 0+a 1x +a 2x 2+…+a 2 005x2 005(x∈R ),那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2 005)=________(用数字作答).答案:1.C 2.B 3.2 003反考老师:即由学生出题,教师现场解答(约8分钟).(活动设计:请学生到黑板板书题目,要求别太烦琐,且与本节习题课内容相符.一般不多于3道题,教师尽可能全部解答,具体解答数目视题目难度和时间而定.教师要边做边讲,以向学生现场展示解题思路的发现过程和解题能力.做完后,请学生给“阅卷〞)课堂小结活动设计:先给学生1~2分钟的时间默写本节的主要基础知识、方法,例题、题目类型、解题规律等;然后用精练的、精确的语言概括本节的知识脉络,思想方法,解题规律等.活动成果:(板书)1.知识收获:二项式定理、二项展开式、二项式系数的性质.2.方法收获:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题. 3.思维收获:合作意识,创新精神,增加了学习数学的积极性,提升学习数学的兴趣. 设计意图:通过学生自己总结所学、所识、所想,不但能充分表达新课程的理念,还能充分发挥学生在课堂上的“主人翁〞精神,真正表达了学生的主体地位.不仅可以使学生更好地掌握本节所学,而且还能提高学生学习的主动性,提高学生学习数学的兴趣,久而久之,学生的数学水平与数学素养必定会得到长足的提高!补充练习[基础练习]1.计算1-3C 1n +9C 2n -27C 3n +…+(-1)n 3n C nn . 2.(x +1x -2)3的展开式中,常数项是________.3.(3x -13x2)n ,n∈N *的展开式中各项系数和为128,那么展开式中1x3的系数是( )A .7B .-7C .21D .-21 4.求(x -13x)10的展开式中有理项共有________项.1.解:原式=C 0n +C 1n (-3)1+C 2n (-3)2+C 3n (-3)3+…+C 3n (-3)n=(1-3)n=(-2)n. 2.解析:(x +1x -2)3=[(x -1)2x ]3=(x -1)6x 3. 上述式子展开后常数项只有一项C 36x3-13x3,即-20.3.解析:由条件可得:(3-1)n=128,n =7. ∵T r +1=(-1)r C r7(3x)7-r(13x2)r =(-1)r C r 737-rx7-53r.令7-5r3=-3,那么有:r =6.所以二项展开式中1x 3的系数是:T 7=(-1)6C 6737-6=21,应选C.4.解析:∵T r +1=C r10(x)10-r(-13x)r =C r 10(-1)rx5-56r.∴当r =0,6时,所对应的项是有理项.故展开式中有理项有2项. [拓展练习]5.(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,那么k =____________. 6.设n∈N ,那么C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=____________.5.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r6(kx 2)r=C r 6k r x 2r,我们知道x 8的系数为C 46k 4=15k 4,即15k 4<120,也即k 4<8,而k 是正整数,故k 只能取1.6.解:C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=16C 0n +C 1n +C 2n 6+…+C n n 6n -1-16C 0n =16(C 0n +C 1n 6+C 2n 62+…+C n n 6n -1)=16[(1+6)n-1]=16(7n -1).设计说明二项式定理的内容,是各地高考中经常要考查的内容之一,其形式主要是选择题和填空题,题型往往相对稳定,思路方法常常是利用二项展开式的通项公式、二项式系数的有关性质等.常见的二项式问题有:求二项展开式中某一项或某一项的系数,求所有项系数的和或奇(偶)数项系数和,求展开式的项数,求常数项,求近似值,证明不等式等.实际教学的过程中,要努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生发挥其创造意识,以使他们能在创造的氛围中学习.二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘方的展开式.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习、深化作用,又可以为进一步学习概率统计做好必要的知识储备.所以有必要掌握好二项式定理的相关内容.备课资料 二项式定理 同步练习选择题1.C 7n +1-C 7n =C 8n ,那么n 等于( )word11 / 11 A .14 B .12 C .13 D .152.C 0n +3C 1n +9C 2n …+3n C nn 的值等于( )A .4nB .3·4n C.4n 3-1 D.4n-133.C 111+C 311+…+C 911的值为( )A .2 048B .1 024C .1 023D .5124.(x +1)(2x +1)(3x +1)……(nx+1)展开式中x 的一次项系数为( )A .C n -1nB .C 2nC .C 2n +1D .不能用组合数表示5.设(1+x +x 2)n =a 0+a 1x +a 2x 2+…a 2n x 2n,那么a 0+a 1+a 2+…+a 2n 等于 …() A .22n B .3n C.3n -12 D.3n+126.假设n 是正奇数,那么7n +C 1n 7n -1+C 2n 7n -2+…C n -1n 7被9除的余数为( )A .2B .5C .7D .87.(1+x)2+(1+x)3+…+(1+x)10展开式中x 4的系数为( )A .C 511 B .C 411 C .C 510D .C 410填空题8.(a +b)n 展开式中第r 项为__________.9.11100-1的末位连续零的个数为__________.参考答案1.A 2.A 3.C 4.C 5.B 6.C 7.A5.提示:令x =1即可.8.T r =C r -1n a n +1-rb r -19.3。

高中数学 第一章 计数原理 1.3 二项式定理 1.3.1 二项

高中数学 第一章 计数原理 1.3 二项式定理 1.3.1 二项

1.3.1 二项式定理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *) (1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n的二项式的展开式,展开式中一共有____项.(3)二项式系数:各项的系数__(k ∈{0,1,2,…,n })叫做二项式系数. 2.二项展开式的通项(a +b )n展开式中第k +1项____________(k ∈{0,1,2,…,n })称为二项展开式的通项. 预习交流(1)二项展开式的特点有哪些?(2)(x +1)n的展开式共有11项,则n 等于( ). A .9 B .10 C .11 D .12(3)⎝ ⎛⎭⎪⎫2x -1x 7的展开式中第3项的二项式系数为__________,第6项的系数为__________,x 的次数为5的项为__________.答案:1.(2)n +1 (3)C kn2.T k +1=C k n a n -k b k预习交流:(1)提示:①项数:n +1项;②指数:字母a ,b 的指数和为n ,字母a 的指数由n 递减到0,同时b 的指数由0递增到n ;③通项公式T r +1=C r n a n -r b r指的是第r +1项,不是第r 项;④某项的二项式系数与该项的系数不是一个概念,C rn 叫做二项式系数,而某一项的系数是指此项中除字母外的部分,如(1+2x )3的二项展开式中第3项的二项式系数为C 23=3,而该项的系数为C 23·22=12.(2)提示:B(3)提示:21 -84 -448x 5一、二项式定理的直接应用求⎝⎛⎭⎪⎫3x +1x 4的展开式.思路分析:直接利用二项式定理处理是基本的方法.但考虑到处理起来比较复杂,因此可以考虑将原式变形后再展开.化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).熟记二项式(a +b )n的展开式,是解决此类问题的关键,我们在解较复杂的二项式问题时,可根据二项式的结构特征进行适当变形,简化展开二项式的过程,使问题的解决更加简便.二、二项展开式中特定项(项的系数)的计算1.(2011山东高考,理14)若⎝⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为__________.思路分析:利用二项式定理的通项公式求出不含x 的项即可.2.(2011天津高考,理5)在⎝ ⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( ).A .-154B .154C .-38D .38思路分析:利用二项展开式的通项公式求.1.(2011陕西高考,理4)(4x -2-x )6(x ∈R )展开式中的常数项是( ). A .-20 B .-15 C .15 D .202.(2011广东高考,理10)x ⎝⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答)求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解. 三、二项式定理的应用(整除问题)试判断7777-1能否被19整除.思路分析:由于76是19的倍数,可将7777转化为(76+1)77用二项式定理展开.证明:32n +2-8n -9是64的倍数.用二项式定理解决a n+b 整除(或余数)问题时,一般需要将底数a写成除数m 的整数倍加上或减去r (1≤r <m )的形式,利用二项展开式求解.答案:活动与探究1:解法1:⎝ ⎛⎭⎪⎫3x +1x 4=C 04(3x )4⎝ ⎛⎭⎪⎫1x 0+C 14(3x )3·⎝ ⎛⎭⎪⎫1x +C 24(3x )2⎝ ⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44(3x )0⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x 2.解法2:⎝⎛⎭⎪⎫3x +1x 4=3x +14x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x2.迁移与应用:解:原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-1=[(x -1)+1]5-1=x 5-1.活动与探究2:1.4 解析:由二项式定理可知T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫-a x 2r =C r 6(-a )r x 6-3r, 令6-3r =0,得r =2,∴T 3=C 26(-a )2=60. ∴15a =60.∴a =4.2.C 解析:设含x 2的项是二项展开式中第r +1项,则T r +1=C r 6⎝ ⎛⎭⎪⎫x 26-r·⎝⎛⎭⎪⎫-2x r=C r 6⎝ ⎛⎭⎪⎫126-r (-2)r x 3-r.令3-r =2,得r =1.∴x 2的系数为C 16⎝ ⎛⎭⎪⎫125(-2)=-38.迁移与应用:1.C 解析:设第r +1项为常数项,T r +1=C r 622x (6-r )(-2-x )r =(-1)r ·C r 6212x -2rx -rx, ∴12x -3rx =0, ∴r =4.∴常数项为T 5=(-1)4C 46=15.2.84 解析:⎝ ⎛⎭⎪⎫x -2x 7的通项T r +1=C r 7x 7-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 7x 7-2r.令7-2r =3得r =2.因而⎝ ⎛⎭⎪⎫x -2x 7展开式中含x 3项的系数为(-2)2·C 27=4×7×62=84.故x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数为84.活动与探究3:解:7777-1=(76+1)77-1=7677+C 177·7676+C 277·7675+…+C 7677·76+C 7777-1=76(7676+C 1777675+C 2777674+…+C 7677).由于76能被19整除,因此7777-1能被19整除.迁移与应用:证明:∵32n +2-8n -9 =9n +1-8n -9=(8+1)n +1-8n -9 =8n +1+C 1n +1·8n +…+C n -1n +1·82+C nn +1·8+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82+8(n +1)+1-8n -9=8n +1+C 1n +1·8n +…+C n -1n +1·82=(8n -1+C 1n +1·8n -2+…+C n -1n +1)·64,故32n +2-8n -9是64的倍数.1.⎝⎛⎭⎪⎫x -1x 16的二项展开式中第4项是( ). A .C 216x 12B .C 316x 10 C .-C 316x 10D .C 416x 82.(2012天津高考,理5)在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-403.(2012山东省实验中学诊断,理6)二项式⎝⎛⎭⎪⎫x 2+2x 10的展开式中的常数项是( ).A .第10项B .第9项C .第8项D .第7项4.(2012湖南高考,理13)⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________.(用数字作答)5.在(x +43y )20的展开式中,系数为有理数的项共有__________项. 6.(1-x )4·(1-x )3的展开式中x 2的系数是__________.答案:1.C 解析:展开式的通项公式为T r +1=C r 16·(x )16-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·C r 16·x 16-2r , ∴第4项为T 4=(-1)3C 316·x 10=-C 316x 10. 2.D 解析:T r +1=C r5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 25-r C r 5x 10-3r ,∴当10-3r =1时,r =3.∴(-1)325-3C 35=-40.3.B 解析:展开式的通项公式为T r +1=C r 10x 20-2r ⎝ ⎛⎭⎪⎫2x r =2r C r 10·x 20-5r 2,令20-5r 2=0,得r =8.∴常数项为第9项.4.-160 ⎝ ⎛⎭⎪⎫2x -1x 6的通项为T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r=(-1)r C r 626-r x 3-r .当3-r =0时,r =3.故(-1)3C 3626-3=-C 3623=-160.5.6 解析:∵T r +1=3r4C r 20x20-r y r(r =0,1,2,…,20)的系数为有理数,∴r =0,4,8,12,16,20,共6项.6.-6 解析:展开式中的x 2项为C 14·(-x )1·C 23·(-x )2+C 24(-x )2C 03=-6x 2.。

高中选修2-3第一章计数原理知识点总结与训练

高中选修2-3第一章计数原理知识点总结与训练

第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。

用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。

用符号 表示。

6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质:m n A mn A ()()()()!!121m n n m n n n n A mn -=+---= .,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=.,,*n m N m n ≤∈并且m n n m n C C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x,则可以得到公式:2、性质:02413512nn n n n n nC C C C C C-=+++=+++=奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+CCCCC求值:。

高中数学第一章计数原理1.3.1二项式定理课件2新人教A选修2_3

高中数学第一章计数原理1.3.1二项式定理课件2新人教A选修2_3

C41

1 x


C42

1 x
2

C43

1 x
3

C44

1 x
4
1 4 6 4 1 x x2 x3 x4
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
(2)解法一:(2
x
1 x
x x2 x3
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考:
①展开式中的第3项的系数为多少?
②展开式中的第3项的二项式系数为多少?
③你能直接求展开式的第3项吗?
④你能直接求展开式中 x2的系数吗?
解:①展开式中的第3项的系数为240
②展开式中的第3项的二项式的系数为 C62 15
(a b)4 C40a4 C41a3b C42a2b2 C43ab3 C44b4
探究4
(a b)n (?a b)(ab) (a b)
n个

an an1b ankbk bn
系数 Cn0
Cn1 Cnk
Cnn
(a

b)n
k 2 所以展开式中x3的系数是22 C72 84
二项式定理:
(a b)n Cn0an Cn1an1b Cnkankbk Cnnbn(n N * ) (1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk a b nk k
x 1.解 : T4 C63 163 (3x)3
540x3
所以展开式中第4项的系数为 540

高中数学第一章计数原理13131二项式定理同步课件新人教A版选修2

高中数学第一章计数原理13131二项式定理同步课件新人教A版选修2

2.正确区分二项式系数与该项的系数. 二项式系数与项的系数是两个不同的概念,前者仅与 二项式的指数及项数有关,与二项式无关,后者与二项式、 二项式的指数及项数均有关.
[变式训练] (1)x+ax5展开式中 x3 的系数为 10,则 a 的值等于( )
17·山东卷)已知(1+3x)n 的展开式中含有 x2 项
(2)因为第 3r 项的二项式系数为 C31r0-1, 第 r+2 项的二项式系数为 C1r+0 1, 所以 C310r-1=Cr1+0 1,故 3r-1=r+1 或 3r-1+r+1= 10, 解得 r=1 或 r=2.5(不合题意,舍去),所以 r=1.
1.注意区分项的二项式系数与系数的概念. 2.要牢记 Cknan-kbk 是展开式的第(k+1)项,不要误 认为是第 k 项. 3.求解特定项时必须合并通项公式中同一字母的指 数,根据具体要求,令其为特定值.
解得 n=4(舍去 n=-1).
设(x- 2)4 展开式中 Tr+1=Crnx4-r(- 2)r.
由 4-r=2,得 r=2. 故(x- 2)4 展开式中含 x2 的项为 T3=C24x2(- 2)2= 12x2. 答案:12x2
[类题尝试] 已知二项式x- 2x10. (1)求展开式中含 x4 项的系数; (2)如果第 3r 项和第 r+2 项的二项式系数相等,求 r 的值. 解:(1)设第 k+1 项为 Tk+1=Ck10(-2)kx10-32k. 令 10-32k=4,解得 k=4, 故展开式中含 x4 项的系数为 C410(-2)4=3 360.
类型1 求二项展开式中的特定项或其系数(自主研析)
[典例❶]
已知在
12x2-
1 x
n
的展开式中,第9项为常

2019_2020学年高中数学第1章计数原理1.3二项式定理1.3.1二项式定理课件新人教B版选修2_3

2019_2020学年高中数学第1章计数原理1.3二项式定理1.3.1二项式定理课件新人教B版选修2_3

所以 r=5 时有n-32r=0,所以 n=10.
(2)令n-32r=2.得 r=12(n-6)=2,
所以所求的系数为 C210(-12)2=445.
(3)根据通项公式,由题意得:100≤-3r≤2r∈10Z, r∈N
令10-3 2r=k(k∈Z),则 10-2r=3k, 即 r=10-2 3k=5-32k. 因为 r∈N,且 k 应为偶数, 所以 k 可取 2,0,-2,所以 r=2,5,8, 所以第 3 项、第 6 项与第 9 项为有理项. 它们分别为 C210·(-12)2·x2,C510(-12)5,C810·(-12)8·x-2. 即445x2,-683,24556x-2.
2.二项式(2x-21x)6 的展开式中的常数项为________. 解析:Tr+1=Cr6(2x)6-r(-1)r(21x)r =(-1)rC6r 26-r(12)rx6-2r, 令 6-2r=0,得 r=3, 所以 T4=(-1)3C36=-20.
答案:-20
整除性问题
试判断 7777-1 能否被 19 整除?
答案:(1)× (2)× (3)× (4)√
2.(x-1x)5 的展开式中含 x3 项的二项式系数为(
)
A.-10
B.10
C.-5
D.5
答案:D
3.(1+2x)5 的展开式的第三项的系数为________,第三项的 二项式系数为________.
答案:40 10
二项式定理的正用、逆用
(1)求(3 x+ 1x)4 的展开式; (2)化简:(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).
(1)求二项展开式特定项的步骤
(2)正确区分二项式系数与该项的系数 二项式系数与项的系数是两个不同的概念,前者仅与二项式 的指数及项数有关,与二项式无关,后者与二项式,二项式 的指数及项数均有关.

第1讲计数原理二项式定理

第1讲计数原理二项式定理

第1讲计数原理二项式定理计数原理是组合数学中的一个重要分支,它研究的是对一些数量进行计数的方法和原理。

而二项式定理是计数原理的一个经典定理,它在数学和实际生活中都有着广泛的应用。

二项式定理是由法国数学家帕斯卡在17世纪提出的,他是计数原理的奠基人之一、二项式定理的具体内容是指出了如何求一个二项式的n次方。

一个n次方的二项式可以表示为(a+b)^n,其中a和b是任意常数。

二项式定理告诉我们可以通过展开这个二项式,得到它的展开式。

(a+b)^n的展开式的一般形式是:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n)b^n其中C(n,0),C(n,1),C(n,2),...,C(n,n)被称为组合数,它表示从n 个元素中取k个元素的组合数。

组合数的计算可以借助计数原理中的排列组合问题来解决。

组合数C(n,k)的计算公式为:C(n,k)=n!/(k!(n-k)!)其中n!表示n的阶乘,k!表示k的阶乘。

阶乘是一个非常重要的数学概念,它表示从1到一些正整数的连乘积。

阶乘的计算可以通过递归或迭代的方式进行。

二项式定理通过组合数的计算,将一个n次方的二项式展开为多个项的和,其中每个项都包含了a和b的不同次数的幂。

这个展开式的应用非常广泛,几乎涉及到了所有领域的数学问题。

在代数中,二项式定理可以求解多项式的展开式,简化复杂表达式的计算。

在概率论中,二项式定理可以用来计算事件的可能性,求解二项分布等概率分布。

在组合数学中,二项式定理可以用来计算组合数,求解排列组合问题。

总之,二项式定理是计数原理中的一个重要定理,它通过组合数的计算,将一个n次方的二项式展开为多个项的和。

二项式定理的应用涉及到了代数、概率论、组合数学等多个领域。

深入理解和掌握二项式定理,对于推导和解决各种数学问题都具有重要意义。

高中数学第一章计数原理1.5二项式定理课件北师大版选修2_3

高中数学第一章计数原理1.5二项式定理课件北师大版选修2_3

3. 二项式展开式中, 偶数项的二项式系数和等于奇数项的二项
1 + C 3 + CC 4 +…=2n-1 . 式系数和, 即C������ ������ ������ ������ ������ ������


【做一做 3】 设 n∈N+, 则
0 2n - C 1 2n-1 +…+(-1)kC ������ 2n-k+…+(-1)n C ������ = C������ ������ ������ ������ 0 2n -C 1 2n-1 +…+( -1)kC ������ 2n-k+…+( -1)n C ������ = 解析:C������ ������ ������ ������ 0 n 1 n-1 ������ n-k ������ 0 C������ 2· (-1)0 +C������ 2 · (-1)1+…+C������ 2 · (-1)k+…+C������ 2 (-1)n =(2-1)n =1.
+
(2)每一行中, 与首末两端“等距离”的两个数相等. 这就是说, 二项展开式中, 与首末两端“等距离”的两项的二项式
������ 系数相等, 实际上反映了组合数的性质C������ = C������ ������ -������
.


名师点拨1.如果二项式的幂指数是偶数,中间一项的二项式系数 最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并 且最大. 0 1 2 ������ 2. 二项式系数的和等于 2n, 即C������ + C������ + C������ +…+C������ =2n.

2019高考数学考点突破——计数原理:二项式定理

2019高考数学考点突破——计数原理:二项式定理

[ 答案 ] 40
[ 解析 ] 由二项式定理可得,展开式中含

40x
3y
3
,则
x3 y3 的系数为
40.
x3y3 的项为 x·C35(2 x) 2( - y) 3+y· C25(2 x) 3( -y) 2
考点二、二项式系数的和与各Байду номын сангаас的系数和
【例
4】 (1) 若二项式
3x2- 1 x
n 的展开式中各项系数的和是
x) 3y2,又 ( x2+ x) 3 的展开式的通项为
k
C3(
x 2)
· 3- k
x
k

x Ck 6-k 3
,令
6- k=5,则
k=1,所以 ( x2 +x
+ y) 5 的展开式中, x5y2 的系数为 C25C13= 30,故选 C.
【类题通法】
求形如
(
a+ b+ c)
n
展开式中特定项的步骤
【对点训练】 ( x+ y)(2 x- y) 5 的展开式中 x3y3 的系数为 ________.
B
. 243
512 ,则展开式中的常数项为
()
A.- 27C39
B
. 27C39
C
.- 9C49
D
. 9C49
(2)(1 - 3x) 5 = a0 + a1x+ a2x2+ a3x3+ a4x4+ a5x5,则 | a0| + | a1| + | a2| + | a3| + | a4| + | a5| =
()
A. 1 024
[ 答案 ] 10
[ 解析 ]
由 (2 x+ x ) 5 得 Tr +1= Cr5(2 x) 5-r (

人教版高中数学章节目录

人教版高中数学章节目录
人教版高中数学必修一目录
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
人教版高中数学必修二目录
第一章空间几何体
空间几何体的结构
空间几何体的三视图和直观图
空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
人教版高中数学选修1-2目录
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
2.2 二项分布及其应用
2.3 离散型随机变量的均值与方差
2.4 正态分布
第三章 统计案例
3.1 回归分析的基本思想及其初步应用
3.2 独立性检验的基本思想及其初步应用
人教版高中数学选修4-1目录
第一讲 相似三角形的判定及有关性质
一 平行线等分线段定理
二 平行线分线段成比例定理
三 相似三角形的判定及性质
2.2 直接证明与间接证明
2.3 数学归纳法
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
人教版高中数学选修2-3目录
第一章 计数原理
1.1 分类加法计数原理与分步乘法计数原理
1.2 排列与组合
1.3 二项式定理

二项式定理

二项式定理

栏目导航
(2)设第 r+1 项含 x3 项,
则 Tr+1=Cr9( x)9-r-2xr=(-2)rCr9x

所以9-23r=3,r=1,
所以第二项为含 x3 的项:T2=-2C19x3=-18x3. 二项式系数为 C19=9.
栏目导航
1.(变结论)在本例条件不变的情况下,求二项展开式的常数项. [解] 通项公式为: Tk+1=(-2)kCk9x . 由9-23k=0 得 k=3. ∴展开式中的常数项为(-2)3C39=-672.
单问题.(重点、难点)
运算素养.
栏目导航
自主预习 探新知
栏目导航
1.二项式定理 (a + b)n = _C__0na_n_+__C_1n_a_n_-_1b_+__C__2na_n_-_2_b_2+__…__+__C_kn_a_n_-_kb_k_+__…__+__C_nn_b_n_ (n∈N*). (1)这个公式所表示的规律叫做二项式定理. (2)展开式:等号右边的多项式叫做(a+b)n 的二项展开式,展开 式中一共有_n_+__1__项. (3)二项式系数:各项的系数_C__kn_ (k∈{0,1,2,…,n})叫做二项 式系数.
B.10
C.11
D.12
B [由二项式定理的公式特征可知 n=10.]
栏目导航
2.C0n·2n+C1n·2n-1+…+Ckn·2n-k+…+Cnn等于(
)
A.2n
B.2n-1
C.3n
D.1
C [原式=(2+1)n=3n.]
栏目导航
3.(1+2x)5 的展开式的第 3 项的系数为________,第 3 项的二 项式系数为________.
栏目导航
2.(1)(2017·高考全国卷)1+x12(1+x)6 展开式中 x2 的系数为 ()

高中数学(人教选修2-3)配套课件第一章 1.3.1 二项式定理与二项展开式

高中数学(人教选修2-3)配套课件第一章 1.3.1 二项式定理与二项展开式

栏 目 链

(2)S=C40(x-1)4+C41(x-1)3×21+C42(x-1)2×22+C34(x-
1)×23+C4424=[(x-1)+2]4=(x+1)4.故选 D.
答案:(1)1+4x+x62+x43+x14 (2)D
点评:解决这一问题的关键是弄清二项式展开式左右两边的结 构特征,这样我们就能够将一个二项式展开,若一个多项式符合二项 展开式右边的结构特征,我们也能够将它表示成左边的形式.
(1)展开式的第四项的二项式系数为 =120.
(2)展开式的第四项的系数为 ·37-323=-77 760. 点评:根据二项展开式的通项公式,即可求展开式中的特定项.
变式 训练
2.(2013·揭阳一模)若二项式x+21xn 的展开式中,第 4 项与第
7 项的二项式系数相等,则展开式中 x6 的系数为________(用数字作
基础 梳理
(3)其中各项的系数_____C__rn_(r=0,1,2,…,n)叫做
_________二__项_式__系__数____.
(4)式中的______________叫做二项展开式的通项,用Tr+1
表示.
Crnan-rbr

(5)通项是展开式的第________项.


2.二项式定理的应用.
10-(2)2 40 .
答案: C
栏 目 链 接
题型一 二项式定理的正用、逆用
例 1 (1)用二项式定理展开1+1x4=________;
(2)设 S=(x-1)4+4×2(x-1)3+6×4(x-1)2+4×8(x-1)+16,
根据二项式定理得 S=( )

r+1 例如:(1)(x+1)4的展开式中常数项是________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、教学重难点:掌握二项式定理及二项式展 开式的通项公式 三、教学方法:探析归纳,讨论交流 四、教学过程
温故而知新
1.(a+b)n的二项展开式 是_________. 2.通项公式是 _T_r_+1__=_C__rn_a_n-_rb_r___.
2 3 、 C n 0 + C 1 n + C n 2 ++ C n r++ C n n n
r
系数
3
C
3 9
,∴ x 3
84 。
的系数
(1)3C93
84

92r3, 3 的二项式
例6、 求 x 3 x 9展开式中的有理项
解: Tr1C 9 r(x1 2)9r(x1 3)r (1)rC9rx276r
令 27-rZ,即 4+3-rZ (r0,1 9)
6
6
r3或 r9

r 3 ,2 7 6 r 4 ,T 4 ( 1 ) 3 C 9 3 x 4 8 4 x 4
数第 4 项 。
解:( x a)12 的展开式中共1 3 项,它的倒数第
4 项是第1 0 项,.
T 9 1 C 1 9 2 x 1 2 9 a 9 C 1 3 2 x 3 a 9 2 2 0 x 3 a 9
2.求(1)(2a 3b)6 ,(2)(3b 2a)6
的展开式中的第 3 项.
解:(1)T 2 1 C 6 2 (2 a )4 (3 b )2 2 1 6 0 a 4 b 2;
x (2)求( x 1 ) 9 的展开式中 3
的系数及二项式系数x 。
解:(1 2 x )7 的展开式的第四项是T31C73(2x)3280x3
,∴(1 2 x)7 的展开式的第四项的系数是 2 8 0 。
(2)∵( x
1 )9 x
的展开式的通项是
x T r 1C 9 rx9r(1 x)r( 1)rC 9 rx92r ,∴
(2)12C n 14C n 2...2nC n n
利用反构二项式(1)(x1)151x51
(2)(12)n=3n
例4、求 (1x)6(1x)4 的展开式中的 x 3 系数。
解:C 6 0 C 4 3 C 6 1 C 4 2 C 6 2 C 4 1 C 6 3 C 4 0 8
例5.(1)求(1 2 x)7 的展开式的第4项的系数;
C

3 7
35
,第4项的系数 C7323 280 】
五、教后反思:
T5=T4 +1= C140 ·x10-4· (-

10987 2)4 4321 · x6·1
=3360x6 6
它的二项式系数是 C140 =210
例解(2:2.)∵(求1T )r(31 x求 (C 3x9 3rx(3 x ) 93)x的9 )r9展(的3 开x展)式r开 的式C 中9 r常间3 数2r两 项9项x9 ;3 2r,
常 数 项
r 9 ,2 7 6 r 3 ,T 1 0 ( 1 ) 9 C 9 9 x 3 x 3
吗 ?
原式的有理项为: T4 84x4 T10 x3
课堂小结:本课学习了二项式定理及二项式 展开式的通项公式的应用。 课堂练习:课本第33页练习
课后作业: 1.求( x a )12的展开式中的倒
北师大版高中数学选修2-3 第一章《计数原理》
二项式定理(二)
一、教学目标:1、知识与技能:进一步掌握 二项式定理和二项展开式的通项公式。 2、过程与方法:能解决二项展开式有关的简 单问题。 3、情感、态度与价值观:教学过程中,要让 学生充分体验到归纳推理不仅可以猜想到一般 性的结果,而且可以启发我们发现一般性问题 的解决方法。
(2)T 2 1 C 6 2 (3 b )4 (2 a )2 4 8 6 0 b 4 a 2 。
r 点评:(2a 3b)6 ,(3b 2a)6
的展开后结果相同,但展开式中的第
项不相同。
3.求 x3 2x 7
的展开式的第4项的二项式系数,并求第4项的
系数。
提示:用二项式定理展开。
【3.展开式的第4项的二项式系数
∴(1)当9 3r 0,r 6
2
6 两;时(项展2分开)别(式3x 是是第3常x )5 数9 项的项、展,第开即式常项共数,1 T项05 为项CT,9473它8C 9的96x9中3132间24x22368
,T6C9 53109x912 5378x3 。
例3、计算:
(1)( x 1 ) 5 5 ( x 1 ) 4 1 0 ( x 1 ) 3 1 0 ( x 1 ) 2 5 ( x 1 )
4、(1+x)n 1 + C 1 n x + C n 2 x 2 ++ C r n x r++ C n n x n
10
5是、_在______x__ _
1 3x
展开式中的常数项
例题探析
例1.求(x-2)10的展开式中的第五项,并求出它的 二项式系数。
解:∵a=x,b=-2,n=10
根据通项公式Tr+1= Cnran-rbr 得
相关文档
最新文档