频分复用及应用实例
正交频分复用
峰值平均功率
由于OFDM信号在时域上为N个正交子载波信号的叠加,当这N个信号恰好都以峰值出现并将相加时,OFDM信号 也产生最大峰值,该峰值功率是平均功率的N倍。这样,为了不失真地传输这些高峰均值比的OFDM信号,对发送 端和接收端的功率放大器和A/D变换器的线性度要求较高,且发送效率较低。解决方法一般有下述三种途径:
同步技术
与其它数字通信系统一样,OFDM系统需要可靠的同步技术,包括定时同步、频率同步和相位同步,其中频率 同步对系统的影响最大。移动无线信道存在时变性,在传输过程中会出现无线信号的频率偏移,这会使OFDM系统 子载波间的正交性遭到破坏,使子信道间的信号相互干扰,因此频率同步是OFDM系统的一个重要问题。
应用
数字声广播工程
欧洲的数字声广播工程(DAB)-DABEUREKA147计划已成功的使用了OFDM技术。为了克服多个基站可能产生 的重声现象,人们在OFDM的信号前增加了一定的保护时隙,有效的解决了基站间的同频干扰,实现了单频广播, 大大减少了整个广播占用的频带宽度。
HFC
HFC(Hybrid Fiber Cable)是一种光纤/同轴混合。近来,OFDM被应用到有线电视中,在干线上采用光纤传 输,而用户分配络仍然使用同轴电缆。这种光电混合传输方式,提高了图像质量,并且可以传到很远的地方,扩 大了有线电视的使用范围。
⑴可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;
⑵通过各子载波的联合编码,具有很强的抗衰落能力;
⑶各子信道的正交调制和解调可通过离散傅利叶反变换IDFT和离散傅利叶变换DFT实现;
⑷OFDM较易与其它多种接入方式结合,构成MC-CDMA和OFDM-TDMA等。
发展
OFDM的概念于20世纪50—60年底提出,1970年OFDM的专利被发表,其基本思想通过采用允许子信道频谱重 叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。OFDM早期的应用有AN/GSC_10高频可变速率数传 调制解调器等。早期的OFDM系统中,发信机和相关接收机所需的副载波阵列是由正弦信号发生器产生的,系统复 杂且昂贵。1972年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和调解功能的建议, 简化了振荡器阵列以及相关接收机本地载波之间严格同步的问题,为实现OFDM的全数字化方案做了理论上的准备。
正交频分复用技术及其在无线网络中的应用
正交频 分复 用技术及其在无 线网络 中的应用
吉淑娇 ,高林林
( 长春大学 电子信息工程学院 ,吉林 长春 10 2 ) 3 0 2
摘
要: 正交频分 复 用技 术 ( F M) 一 种特 殊 的 多载 波传 输 方 案。 它 能 够有 效地 克服 频 率 选择 OD 是
性 衰 落, 因此 目前 它是 在 宽带无 线通信 中广泛 应 用的 一种技 术。本 论 文主 要是 介 绍 O D 的一 些 FM
为零 。
关键 词 : 交频 分复 用技 术 ( F M) H p rA / ; T A 正 O D ; ieL N 2 MA L B 中图分 类 号 : N 1 . 2 T 997 文献标 识码 : A
OD F M它 可 以被看作 是一 种调制 技 术 , 也可 以当作 一 种 复用 技术 。O D 把 高速 的 数据 流通 过 串并 变 FM 换 , 配到 速度 相对 较低 的若 干个 频率 子信 道 中进 行传 输 , 分 而且 O D F M技 术很 好 地利 用控 制方 法 , 频 率利 使 用率有 所 提高 。 目前 O D 技术 已经 被广 泛应 用于 广播式 的音 频 和视频 领 域和 民用 通信 系统 中, 如数 字 FM 例 视频广 播 、 高清 晰度 电视 、 线局域 网等 … 。 无 Ma a tb是集 数值计 算 、 l 符号运 算及 图形处 理 等强 大 功 能于 一体 的科 学 计 算 语 言 , 以直接 处 理矩 阵 或 可 者数组 , 句精炼 , 程效率 高 ,i l k软件 包是 Maa 境下 的仿 真工具 , 语 编 S i mun tb环 l 它可 以进行 动态 系统建模 、 仿 真及综 合分 析 。Sm l k提供 了 s函数 , iui n 即系统 函数 , 使 用户 可 以 利用 M tb C 语 言 , 它 al , a C+ +语 言 以及 FRR O T AN等语 言 的程序 创建 自定 义的 S l k模块 。 i i mun
频分复用原理及其应用研究
2015届学士学位论文频分复用原理及其应用研究频分复用原理及其应用研究摘要频分复用(FDM)是通信系统中信号多路复用方式中的一种,本质上是依据频率来分隔信道的。
频分复用技术在当今通信领域有着很重要的地位。
根据性质和特点的不同频分复用还可以被细分为传统的频分复用(FDM)和正交频分复用(OFDM)。
本论文主要由以下几个部分组成。
第一部分介绍频分复用基本原理,系统实现以及其应用特点;第二部分介绍正交频分复用的基本原理及DFT的实现;第三部分主要介绍在实际应用中当载波频率接近时,频谱会发生重叠,传统的频分复用解调效果容易出现失真,正交频分复用由于其载波的正交性特点,在频谱发生重叠时可以保证解调效果;最后通过MATLAB程序中的SIMULINK仿真图来表现正交频分复用的优越之处。
关键词频分复用;正交频分复用;MA TLAB仿真Frequency division multiplexing principle and its applicationresearchAbstract Frequency division multiplexing (FDM) is a kind of signal multiplexing mode in communication system, which is divided by frequency channel essentially. Frequency division multiplexing technology is very widely used in today's communication. Frequency division multiplexing can also be divided into the traditional frequency division multiple(FDM) and orthogonal frequency division multiplexing(OFDM) depending on the nature and characteristics.This paper consists of the following parts. The basic principle of frequency division multiplexing, system implementation and its application characteristics are introduced in the first part . The basic principle of orthogonal frequency division multiplexing and its realization of DFT are introduced in the second part .Due to its characteristics ,orthogonal frequency division multiplexing can guarantee the demodulation compare with the traditional frequency division multiplexing when the carrier frequency is close to in the practical application, spectrum overlap happens ,which is introduced in the third part .Finally by SIMULINK of MA TLAB simulation diagram to show the superiority of the orthogonal frequency division multiplexing.Keywords Frequency division multiplexing; Orthogonal frequency division Multiplexing ;MA TLAB simulation淮北师范大学2015届学士毕业论文频分复用原理及其应用目录1.引言 (1)2频分复用基本原理及实现 (2)2.1频分复用的基本原理 (2)2.2 频分复用系统应用及其特点 (2)3正交频分复用基本原理及实现 (4)3.1正交频分复用原理 (4)3.2 DFT的实现 (6)3.3 正交频分复用的优缺点 (8)4频分复用原理的应用 (9)4.1系统仿真主要模块的介绍 (9)4.2频分复用系统仿真的实际应用分析 (9)4.3 仿真结果分析 (14)结论 (15)参考文献 (16)致谢 (17)淮北师范大学2015届学士毕业论文频分复用原理及其应用1.引言在通信系统中,一般情况下用来传输信号的物理信道的传输能力是比一路传输信号的需求要大的很多,这时候就可以让多路信号共同来利用该物理信道。
正交频分复用
正交频分复用(OFDM)是多载波传输技术之一,近年来受到广泛关注。
目前,这项技术已在许多高速信息传输领域得到应用,并且有可能成为下一代蜂窝移动通信系统的物理层传输技术。
本讲座将分3讲来介绍OFDM技术的基本原理及其应用。
第1讲首先介绍OFDM的基本原理,第2讲介绍OFDM中的相关信号处理技术,第3讲介绍OFDM中的多址方式及其在通信系统中的应用情况。
1 引言近些年来,以正交频分复用(OFDM)为代表的多载波传输技术受到了人们的广泛关注。
多载波传输把数据流分解为若干个独立的子比特流,每个子数据流将具有低得多的比特速率。
用这样低比特率形成的低速率多状态符号去调制相应的子载波,就构成了多个低速率符号并行发送的传输系统。
OFDM是多载波传输方案的实现方式之一,在许多文献中,OFDM 也被称为离散多音(DMT)调制。
OFDM利用逆快速傅立叶变换(IFFT)和快速傅立叶变换(FFT)来分别实现调制和解调,是实现复杂度最低、应用最广的一种多载波传输方案。
除了OFDM方式之外,人们还提出了许多其他的实现多载波调制的方式,如矢量变换方式、基于小波变换的离散小波多音频调制(DWMT)方式等,但这些方式与OFDM相比,实现复杂度相对较高,因而在实际系统中很少采用。
OFDM的思想最早可以追溯到20世纪50年代末期。
60年代,人们对多载波调制作了许多理论上的工作,论证了在存在符号间干扰的带限信道上采用多载波调制可以优化系统的传输性能;1970年1月有关OFDM的专利被首次公开发表;1971年,Weinstein和Ebert在IEEE杂志上发表了用离散傅立叶变换实现多载波调制的方法;80年代,人们对多载波调制在高速调制解调器、数字移动通信等领域中的应用进行了较为深入的研究,但是由于当时技术条件的限制,多载波调制没有得到广泛的应用;90年代,由于数字信号处理技术和大规模集成电路技术的进步,OFDM技术在高速数据传输领域受到了人们的广泛关注。
浅析频分复用技术及在数字电视中的应用.doc
浅析频分复用技术及在数字电视中的应用作者:曹勇来源:《大陆桥视野·下》2013年第06期摘要复用是一种将若干个彼此独立的信号合并为一个可在同一信道上传输的复合信号的方法。
譬如,在电话系统中,传输的语音信号的频谱一般在300 Hz~3400 Hz内。
为了使若干个这种信号能在同一信道上传输,可以使它们的频谱调制到不同的频段,合并在一起而不致相互影响,并能在接收端分离开来,本文就此技术进行详细阐述。
关键词信道复用频分复用技术一、常见的信道复用技术及其原理常见的信道复用采用按频率区分或按时间区分信号。
按频率区分信号的方法称为频分复用;按时间区分信号的方法称为时分复用。
通常,在通信系统中,信道所能提供的带宽往往要比传送一路信号所需的带宽宽得多。
因此,一个信道只传送一路信号有时是非常浪费的。
为了充分利用信道的带宽,因而提出了信道频分复用的问题。
见图1。
合并后的复用信号原则上可以在信道中传输,但有时为了更好地利用信道的传输特性,也可以再进行一次调制。
再频分复用系统的接收端,可以利用相应的带通滤波器来区分开各路信号的频谱。
然后,通过各自的相干解调器便可恢复各路的调制信号。
频分复用系统的最大优点是信道复用率高,容许复用的路数多,同时分路也很方便。
因此。
它成为目前模拟通信中最主要的一种复用方式,特别是在有线和微波通信系统中,应用十分广泛。
由于基带传输系统采用串行传输的方法传输数字信号,不能在带宽上划分。
TDM技术在信道使用时间上进行划分,按一定原则把信道连续使用时间划分为一个个很小的时间片,把各个时间片分配给不同的通信过程使用;由于时间片的划分一般较短暂,可以想象成把整个物理信道划分成了多个逻辑信道交给各个不同的通信过程来使用,相互之间没有任何影响,相邻时间片之间没有重叠,一般也无须隔离,信道利用率更高。
二、STDM同步时分多利复用技术和ATDM异步时分多路复用技术STDM同步时分多利复用技术和ATDM异步时分多路复用技术,是通常采用的技术。
频分复用技术在生活中的例子
频分复用技术在生活中的例子频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。
频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。
频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。
频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
1.1传统的频分复用传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。
1.2正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。
OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。
OFDM系统比FDM系统要求的带宽要小得多。
由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。
另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。
目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。
[编辑本段]时分复用时分复用(TDM,Time Division Multiplexing)就是将提供给整个信道传输信息的时间划分成若干时间片(简称时隙),并将这些时隙分配给每一个信号源使用,每一路信号在自己的时隙内独占信道进行数据传输。
正交频分复用OFDM在水声通信中的应用
正交频分复用【O FD M)在水声通信中的应用王青春戴荣涛(92823部队,海南三亚572021)摘要:本文介绍了正交频分复用(0FD H)技术的基本原理,介绍了水声通信的历史,水声通信的发展特点。
讨论了O FD M系统在水声系统实现方法,分析了水声正交频分复用的调制和解调过程,并简要分析了O FD M水声通信系统的性能特点。
关键词:正交频分复用(O FD M);水声通信;调制;解调1引言在水声通信中,随着探潜区域从沿海大陆架延伸到深水区,以及探潜距离和精度的提高,要求水声数据传输的传输距离更远,传输速率更高,传输误码率更低。
同时水下武器系统的日益智能化,要求对其进行相应的指挥控制。
对水下航行器和探测器进行监测和导航,以及对潜通信等使得水下通信技术的研究得到人们的高度重视,水声通信技术的重要性也日益突出。
与此同时,其他领域的技术,尤其是电信、电子以及计算机技术的飞速发展给水声通信的研究提供了强大的技术支持并极大的促进了水声通信的发展。
近10多年来,水声通信发生了深刻的变化。
其研究手段和实现方法发生了根本的变化。
在水声通信系统中,如何高速和可靠地传输信息成为人们关注的一个焦点。
虽然现在数据传输理论和实践已经取得了相当大的进展,但是随着通信的发展,特别是无线通信业务的增长,可以利用的频率资源E l趋紧张。
O FD M调制技术的出现为实现高效的抗干扰调制技术和提高频带利用率开辟了一条的新路径。
O FD M调制技术的应用可以追溯到二十世纪60年代,主要用于军用的高频通信系统,也曾被考虑应用于高速调制解调器。
目前O FD M技术已经被广泛应用于广播式的音频和视频领域和民用通信系统中,主要的应用包括:非对称的数字用户环路(A D S L)、ET SI标准的数字音频广播(D A B)、数字视频广播(D V B)、高清晰度电视(H D T V)、无线局域网(W L A N)等。
2O FD M基本原理O FD M是一种无线环境下的高速传输技术,该技术的基本原理是将高速串行数据变换成多路相对低速的并行数据并对不同的载波进行调制。
《频分多路复用》课件
PART 05
总结与展望
REPORTING
频分多路复用的总结
频分多路复用是一种利用频率划分信 道,将多个信号调制到不同频率载波 上,实现并行传输的通信技术。
频分多路复用的应用场景广泛,包括 广播、电视、卫星通信道利用 率高、抗干扰能力强、频带资源丰富 等。
随着技术的发展,将出现更高效的调制方式,进 一步提高频分多路复用的传输速率和频谱利用率 。
与其他技术的融合
未来,频分多路复用将与其他通信技术如MIMO 、协同通信等融合,以提供更可靠、高速的数据 传输服务。
PART 04
频分多路复用的实际应用 案例
REPORTING
频分多路复用在通信网络中的应用
《频分多路复用》 PPT课件
REPORTING
• 频分多路复用概述 • 频分多路复用的技术实现 • 频分多路复用的优势与挑战 • 频分多路复用的实际应用案例 • 总结与展望
目录
PART 01
频分多路复用概述
REPORTING
定义与特点
定义
频分多路复用是一种利用不同的 频率通道传输多个信号的通信技 术。
频分多路复用在广播电台中的应用
广播节目的频分多路复用
在广播电台中,频分多路复用技术用于将多个不同的广播节 目调制到不同的频段上,然后通过一个共同的载波进行传输 。这样可以让多个节目在同一时间共享同一频段,提高了频 谱利用率。
广告和音乐的插播
在广播节目中,广告和音乐通常会被安排在不同的频段上进 行插播,以避免干扰主要节目的播放。频分多路复用技术使 得这些插播内容可以在不影响主节目质量的情况下进行传输 。
频分多路复用在雷达系统中的应用
雷达信号的频分多路复用
在雷达系统中,频分多路复用技术用于将多个不同的雷达信号调制到不同的频段 上,以提高雷达的探测能力和分辨率。通过将不同的目标反射的回波信号解调到 不同的频段上,可以实现多目标跟踪和识别。
频分复用及应用实例
频分复用及应用实例
频分复用
频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。
频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。
频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。
频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。
频分复用及应用实例
一、频分复用
概念:多路复用是将若干路彼此无关的消息信号合并在一起,在一个信道中进行传输。
信道复用方式
信道复用方式信道复用是一种将不同的通信信号通过同一个信道传输的方式。
它是为了提高通信效率和节省资源而采取的一种技术手段。
在通信领域中,信道复用有多种形式,包括频分复用、时分复用、码分复用和波分复用等。
本文将分别介绍这些信道复用方式的原理和应用。
频分复用是一种将不同频率上的信号进行复用的方式。
在频分复用中,不同的通信信号被调制到不同的频率上,然后通过同一个信道进行传输。
接收端根据频率的不同,将不同的信号进行解调,从而实现多路复用。
这种方式适用于频谱资源丰富但传输速率较低的场景,如无线电广播和卫星通信。
时分复用是一种将不同时间段上的信号进行复用的方式。
在时分复用中,不同的通信信号在不同的时间段上进行传输,接收端根据时间的不同,将不同的信号进行解调。
这种方式适用于传输速率较高但频谱资源有限的场景,如移动通信中的TDMA技术。
码分复用是一种将不同的码型进行复用的方式。
在码分复用中,不同的通信信号使用不同的编码序列进行调制,并通过同一个信道进行传输。
接收端根据编码序列的不同,将不同的信号进行解码。
码分复用适用于传输速率较高且对频谱资源要求较严格的场景,如CDMA技术在移动通信中的应用。
波分复用是一种将不同波长的光信号进行复用的方式。
在波分复用中,不同的通信信号使用不同的波长进行调制,并通过同一根光纤进行传输。
接收端根据波长的不同,将不同的信号进行解调。
波分复用适用于光纤通信中的长距离传输,能够实现高速率的传输。
信道复用技术的应用非常广泛。
在无线通信领域,频分复用、时分复用和码分复用被广泛应用于移动通信系统中,如2G、3G和4G网络。
这些技术能够提高频谱利用率,增加系统容量,提高通信质量。
在光纤通信领域,波分复用技术被广泛应用于长距离传输系统中,如光纤通信网和光传送网。
这些技术能够实现高速率的传输和多路复用。
信道复用是一种重要的通信技术,能够提高通信效率和节省资源。
不同的信道复用方式适用于不同的场景和需求,能够满足不同的通信要求。
CH8-频分多路复用技术及其应用
2011年1月11日星期二
-兰州大学信息科学与工程学院电信、通信工程系-
17
§ 8.3.3 调频广播
普通单声道的调频广播中, 普通单声道的调频广播中,取调制信号的最高频 率fH=15kHz,最大频偏 ,最大频偏∆fmax=75kHz,调频 , 信号的带宽B=180kHz,各电台频道间隔 信号的带宽 ,各电台频道间隔∆B= 200kHz。 。 双声道立体声与单声道是兼容的,左声道信号L 双声道立体声与单声道是兼容的,左声道信号 和右声道信号R的最高频率也为 的最高频率也为15kHz。 和右声道信号 的最高频率也为 。 在立体声的调频广播中, % 在立体声的调频广播中,10%的频偏分配给 19kHz导频,其余 %分配给(L+R)和(L-R) 导频, 导频 其余90%分配给( ) ) 两个声道。 两个声道。 调频广播使用载频为87MHz~108MHz,与地面 调频广播使用载频为 , 电视的载频同处于甚高频( 电视的载频同处于甚高频(VHF)频段。 )频段。
2011年1月11日星期二 -兰州大学信息科学与工程学院电信、通信工程系10
多级调制示意图
第1路 SSB 调制器
w11
第2路 SSB 调制器 带通 SSB 调制器 带通
w 21
w
2
图8-2 SSB/SSB多级调制组成方框图
2011年1月11日星期二 -兰州大学信息科学与工程学院电信、通信工程系11
3fdm的相关参数2012年3月6日星期二兰州大学信息科学与工程学院电信通信工程系7nifi1路的载频的频率f路和第i1f分别为第ii路和第为每一路的最高频率g称为一路信号所占用带宽称为一路信号所占用带宽fgmccii21路的载频的频率1邻路间隔防护频带m分别为第为每一路的最高频率邻路间隔防护频带ficf1icfmfgfwsgwmw1cw2cw3cww0nn路单边带信号的总频带宽度最小应等于g路单边带信号的总频带宽度最小应等于mmmgmnfbnfffnfnnfb1111fb12012年3月6日星期二兰州大学信息科学与工程学院电信通信工程系8lpf1tm1cwlpflpf2tmtmn2sbfnsbf2cwcnw相加器信道lpf1bpflpflpf1tm2tmtmn1sbf2bpfnbpf1cw2cwcnw图81频分多路复用系统组成示意图fdm2012年3月6日星期二兰州大学信息科学与工程学院电信通信工程系9fdm4fdm的基本特点相邻载波之间的间隔为bbsbg式中bs为已调信号带宽bg为防卫防护间隔
正交频分复用(OFDM)技术在军事遥控遥测系统中的应用
正交频分复用(OFDM)技术在军事遥控遥测系统中的应用摘要:在当代的高科技战争中,信息电子的对抗非常激烈。
敌方会采用各种方式,不遗余力地干扰我方的信息系统。
OFDM 技术可以有效地对抗载波间的干扰和多径干扰。
本文分析了OFOM技术在军事遥控遥测系统中的应用。
关键词:OFDM 无线信号遥控遥测子载波1 OFDM技术的原理正交频分复用技术是对单载波上调制的高速数据流进行分流,成为多股低速子数据流,在多个子载波上并列进行传输。
由于各子数据流速率均仅占原数据流的小部分,也就意味着符号周期增大到原来的许多倍,要比信道极限延迟扩展要大得多,于是宽频选择信道就被划分成了多个窄平衰落信道,这样就具备了较强的抗脉冲干扰以及抗多径衰落的性能,在高速无线数据的传递输送中尤为适用。
1.1 系统结构比特流在发信端经调制、串并等可变为多个支路,这样就使数据流到多个子信道上开展正交调制,其中快速傅立叶逆转换为其核心,将信息从频域转至时域,此外为令调制系统克服符号间干扰,需在调制输出符号间插入循环前缀,从而令各子信道在通过多径信道之后仍保持之间的正交性,经射频将调制信号放大之后再发送。
接收端的操作与发送端是正好相反的,用的是快速傅立叶转换,这样就重新变成频域信号,之后采集出子载波相位以及幅度并且将其变为数字信号。
1.2 子载波的调制正交频分复用技术为多载波调制方式,因信道不一样,各子载波自适应选择各自调制方式。
子载波实现自适应调制,需经过信道估计等环节。
其中信道估计的目的是得到信道状态信息,信道状态信息通常用信噪比以及传输函数来描述。
选择发送参数的选用能改变调制方式以及发送功率等。
最适参数的选择即特定条件之下的目标最优化。
[1]1.3 循环前缀符号间保护间隔的插入,可有效的去除符号间干扰。
插人的方法一般为符号间加零,也就是在发送符号之后的一段时间内不发任何信息,这段时间之后再开始下一符号的发送。
这样,虽可有效去除符号间干扰,但会对子载波之间正交性产生一定的破坏,导致子载波间干扰。
时分复用和频分复用
时分复用频分复用简介数据通信系统或计算机网络系统中, 传输媒体的带宽或容量往往超过传输单一信号的需求, 为了有效地利用通信线路, 希望一个信道同时传输多路信号, 这就是所谓的多路复用技术(MultiplexiI1g) 。
采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输, 在远距离传输时可大大节省电缆的安装和维护费用。
频分多路复用FDM (Frequency Division Multiplexing) 和时分多路复用TDM (Time Di-vision MultiplexiIIg) 是两种最常用的多路复用技术。
举个例最简单的例子:从A地到B地坐公交 2 块。
打车要20 块为什么坐公交便宜呢这里所讲的就是“多路复用”的原理。
频分复用(FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。
因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。
在频分复用系统中,发送端的各路信号m1(t) ,m2(t) ,,,mn(t) 经各自的低通滤波器分别对各路载波f1(t) ,f2(t) ,, ,fn(t) 进行调制, 再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。
在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t) ,f2(t) ,, ,fn(t) 相乘,实现相干解调, 便可恢复各路信号, 实现频分多路通信。
为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。
根据国际电报电话咨询委员会(CCITT) 建议, 基础群分为前群、基群、超群和主群。
①前群,又称3路群。
它由3个话路经变频后组成。
各话路变频的载频分别为12,16,20千赫。
取上边带,得到频谱为12〜24千赫的前群信号。
②基群,又称12路群。
它由4个前群经变频后组成。
各前群变频的载频分别为84,96,108,120 千赫。
计算机网络应用 波分多路复用
计算机网络应用 波分多路复用波分多路复用(Wavelength Division Multiplexing ,WDM )其本质上是频分多路复用,是指在一根光纤内传输多路不同波长的光信号,以提高单根光纤的传输能力。
在波分多路复用中,由于是使用不同的波长传输各自的信息,因此各路光信号间的传输互不干扰,在传输的最后阶段,使用波长分离器将不同的波长分解出来,在转换成电信号后还可以保持每一个波长所传输信息的独立。
其基本原理如图2-33所示。
组合器分离器波长λ1波长λ2波长λ3波长λ4波长λ5波长λ5波长λ4波长λ3波长λ2波长λ1λ1+λ2+λ3+λ4+λ5光纤图2-33 波分多路复用原理光波是指波长在零点几毫米到大约零点一微米范围内的电磁波,其不同频率、波长和名称的相应关系如图2-34所示。
1021041061081010101210141016 1018 1020 10221024频率(Hz )102104106 110-2 10-4 10-610-810-1010-1210-14波长(m )KHz MHzGHz 1um 1nm 长波中波短波超短波微波毫米波红外线可见光紫外线X 射线r 射线波名称图2-34 不同频率、波长和名称的相应关系目前,在光纤通信网络的扩充中,主要使用波分多路复用技术。
因为它具有良好的经济性和有效性。
波分多路复用通常有3种复用方式。
它们分别为粗波分复用(Coarse Wavelength Division Multiplexing ,CWDM )、密集波分复用(Dense Wavelength Division Multiplexing ,DWDM )和1310nm 和1550nm 波长的波分复用三种。
1.粗波分复用粗波分复用也称为稀疏波分复用,具有更宽的波长间隔,其业界同行的标准间隔为20nm ,常用的波长为:1470nm 、1490nm 、1510nm 、1530nm 、1550nm 、1590nm 以及1610nm 。
信道多路复用技术
信道多路复用技术一、概述信道多路复用技术(Channel Multiplexing)是指在同一个物理信道上同时传输多个信号的技术,它可以提高信道利用率,节省通信资源。
常见的信道多路复用技术有时分复用、频分复用、码分复用和波分复用等。
二、时分复用技术1. 原理时分复用技术是将时间划分为若干个时隙,每个用户在一个时隙中传输自己的信息,以达到共享同一物理通道的目的。
时分复用可以采用固定式和动态式两种方式。
2. 应用时分复用技术广泛应用于移动通信领域,如GSM系统中就采用了TDMA(Time Division Multiple Access)时分多址技术。
三、频分复用技术1. 原理频分复用技术是将频带划分为若干个子载波,每个用户占据一个或多个子载波进行传输。
因为不同用户使用不同的子载波进行传输,所以可以实现不同用户之间的数据隔离。
2. 应用频分复用技术广泛应用于有线电视网络和数字音频广播等领域。
四、码分复用技术1. 原理码分复用技术是将多个用户的数据通过不同的伪随机码进行编码,然后在同一频率上进行传输。
接收端通过相应的伪随机码解码,从而恢复出原始数据。
2. 应用码分复用技术广泛应用于CDMA(Code Division Multiple Access)系统中。
五、波分复用技术1. 原理波分复用技术是将光纤通信中的光信号按照不同的波长进行划分,每个用户占据一个或多个波长进行传输。
因为不同用户使用不同的波长进行传输,所以可以实现不同用户之间的数据隔离。
2. 应用波分复用技术广泛应用于光纤通信领域,如DWDM(DenseWavelength Division Multiplexing)系统中就采用了波分复用技术。
六、总结信道多路复用技术可以提高通信资源利用率,节省通信成本。
各种信道多路复用技术各有特点,在实际应用中需要根据具体情况选择合适的技术。
OFDM的优势特点和应用
OFDMOFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM 是MCM Multi-CarrierModulation,多载波调制的一种。
其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。
正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰ICI 。
每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。
而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
OFDM1、基本原理OFDM ——OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM Multi-CarrierModulation,多载波调制的一种。
其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。
正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰ICI 。
每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。
而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。
包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM,多带-OFDM。
2、发展历史第四代移动通信系统上个世纪70年代,韦斯坦(Weistein)和艾伯特(Ebert)等人应用离散傅里叶变换(DFT)和快速傅里叶方法(FFT)研制了一个完整的多载波传输系统,叫做正交频分复用(OFDM)系统。
正交频分复用(OFDM)原理及相关分析综述
正交频分复用(OFDM)原理及其实现一、OFDM基本原理OFDM是一种无线环境下的高速传输技术,该技术的基本原理是将高速串行数据变换成多路相对低速的并行数据并对不同的载波进行调制。
这种并行传输体制大大扩展了符号的脉冲宽度,提高了抗多径衰落的性能。
传统的频分复用方法中各个子载波的频谱是互不重叠的,需要使用大量的发送滤波器和接受滤波器,这样就大大增加了系统的复杂度和成本。
同时,为了减小各个子载波间的相互串扰,各子载波间必须保持足够的频率间隔,这样会降低系统的频率利用率。
而现代OFDM系统采用数字信号处理技术,各子载波的产生和接收都由数字信号处理算法完成,极大地简化了系统的结构。
同时为了提高频谱利用率,使各子载波上的频谱相互重叠(如图一所示),但这些频谱在整个符号周期内满足正交性,从而保证接收端能够不失真地复原信号。
当传输信道中出现多径传播时,接收子载波间的正交性就会被破坏,使得每个子载波上的前后传输符号间以及各个子载波间发生相互干扰。
为解决这个问题,在每个OFDM传输信号前面插入一个保护间隔,它是由OFDM信号进行周期扩展得到的。
只要多径时延不超过保护间隔,子载波间的正交性就不会被破坏。
图1 正交频分复用信号的频谱示意图二、OFDM系统的实现由上面的原理分析可知,若要实现OFDM,需要利用一组正交的信号作为子载波。
我们再以码元周期为T的不归零方波作为基带码型,经调制器调制后送入信道传输。
OFDM调制器如图2所示。
要发送的串行二进制数据经过数据编码器形成了M个复数序列,此复数序列经过串并变换器变换后得到码元周期为T的M路并行码,码型选用不归零方波。
用这M路并行码调制M个子载波来实现频分复用。
图2 OFDM调制器在接收端也是由这样一组正交信号在一个码元周期内分别与发送信号进行相关运算实现解调,恢复出原始信号。
OFDM解调器如图3所示。
然而上述方法所需设备非常复杂,当M很大时,需要大量的正弦波发生器,滤波器,调制器和解调器等设备,因此系统非常昂贵。
频分复用
一、频分多路复用原理
目的:充分利用信道的频带资源, 目的:充分利用信道的频带资源,提高信道 利用率 原理
Fdm.swf
二、频分多路复用的应用
1、载波电话系统 、 每路电话信号的频带限制在300—3400Hz,在各 , 每路电话信号的频带限制在 路已调信号间留有防护频带,每路电话信号取4 路已调信号间留有防护频带,每路电话信号取 kHz为标准带宽。 为标准带宽。 为标准带宽
3、调频立体声广播 、
立体声广播信号的产生
立体频分多路复用的特点
1、优点 、 信道复用率高, 分路方便, 因此, 频分多路复用 信道复用率高 , 分路方便 , 因此 , 是目前模拟通信中常采用的一种复用方式, 是目前模拟通信中常采用的一种复用方式 , 特别 是在有线和微波通信系统中应用十分广泛。 2、缺点 、 各路信号之间的相互干扰,即串扰。 各路信号之间的相互干扰,即串扰。引起串扰的主 要原因是滤波器特性不够理想和信道中的非线性 特性造成的已调信号频谱的展宽。 特性造成的已调信号频谱的展宽 。 因而在频分多 路复用系统中对系统线性的要求很高。 路复用系统中对系统线性的要求很高 。 合理选择 载波频率, 载波频率 , 并在各路已调信号频谱之间留有一定 的保护间隔,也是减小串扰的有效措施。 的保护间隔,也是减小串扰的有效措施。
表1 多路载波电话分群等级
⋯⋯
f (kHz)
图 基群频谱结构图
2、有线电视传输系统 、
彩色电视频谱图
目前,有线电视采用同轴电缆作为传输媒介, 目前,有线电视采用同轴电缆作为传输媒介,同轴 电缆的传输带宽约为500MHz,一路模拟电视信号 电缆的传输带宽约为 , 的带宽为8MHz。因此,一条同轴电缆可以同时承 的带宽为 。因此, 个电视频道。 载62个电视频道。 个电视频道