八年级数学上册 第十三章 轴对称 13.2 画轴对称图形 第2课时 在直角坐标系中画关于坐标轴对称的
八年级数学上册13.2.2 用坐标画轴对称图形课件
动手试一试
在一 张半透明的纸的左边部分, 画一只左脚印,在把这张纸对折 后描图,打开对折的纸。就能得
到相应的右脚印,
动脑想一 想
左脚印和右脚印有什么关系?
成轴对称
对称轴是 折痕所在的 直线,即直线 L
图中的PP’与l有什么关系?
归纳:轴对称变换的特征:
1、由一个平面图形可以得到它关于 一条直线L成轴对称的图形,这个图形与 原图形的形状、大小完全相同;
2、新图形上的每一点,都是原图 形上的某一点关于直线L的对称点;
3、连接任意一 对对应点的线段被对 称轴垂直平分。
尝试探究
l
已知对称轴 l 和一
个点A,如何画出点A
关于 l 的对称点A′ ? A O
A′
作法:
过点A作直线l的垂线在垂线上截取 OA’=OA,垂足为点O,点A’就是点A 关于直线l的对称点.
分别写出下列各点关于x轴和y轴对称的点的坐标
(-2,6) (1,-2) (-1,3) (-4,-2) (1,0)
关于x轴
对称点 (-2,-6)
关于y轴
对称点 (2, 6)
(1, 2) (-1, -3) (-4, 2) (-1, -2) (1, 3) (4, -2)
(1,0) (-1, 0)
横对横不变,纵对纵不变
布置作业
课本P71 练习题 第3题 复习巩固 第2、3题.
实物图案
几何图案
花边艺术
• 如果在黑板上写一个P字,拿一面 镜子人背对黑板,你看到镜子里出 现的还会是P吗?
如果再在黑板上写出如下时间, 那么镜子里出现的是几点 ?
火眼金睛
利用轴对称变换设计美丽图案
数学人教版八年级上册第13章轴对称第二节画轴对称图形第二课时课件 (共21张PPT)
做一做
请在图上画出四边形ABCD 关于x 轴对称 的图形. C y
D
A
B
1
O
1
x
巩固训练
1、点M (a, -5)与点N(-2, b)关于x -2 5 轴对称,则a=_____, b =_____.
b 1 (a 2)
点P的坐标为( 2,1 ) .
巩 固 训 练 6、如下图,利用关于坐标轴对称的点的坐标的
特点,分别作出与△ABC关于x轴和y轴对称的图形
课堂小结
点(x,y)关于x 轴对 称的点的坐标为(___, x ); -y ____ 点(x,y)关于y 轴对 称的点的坐标为( ___, -x y ____).
3 2 a b 2、已知点A(a-1, 2)与点B(2, b+1) 0 关
于y轴对称,求
=_______.
3、设P(2m-3,3-m 2 )关于y轴的对 称点在第二象限,则整数m为 ________.
巩 固 训 练 4、以正方形ABCD 的中心为原点建立平面直角
坐标系.点A 的坐标为(1,1),写出点B、C、D y 的坐标.
§13.2 第二课时
在平面直角坐标系内画 出相应的图形,已知点 A(-1, 4),B(-3, 1) (1)请画出线段AB 向右平移 3 个单位后 A B 1 1 的图形 ,并写出 A 1, B 1 点2)画出线段 的坐标 . 关于 ( AB A2 B2 X轴的对称图形
温故知新
A
B
y
13.2(2)画轴对称图形 教案
13.2画轴对称图形(第2课时)
【教材分析】
教
学
目
标
知识
技能
1、掌握点或图形的轴对称变换引起的点的坐标变化规律
2、能利用轴对称变换规律在平面直角坐标系中做出一个图形的轴对称图形.
过程
方法
在找关于坐标轴对称的点的坐标规律的过程中,培学生的语言表达能力、观察能力、归纳能力,养成良好的自觉探索习惯
2.已知点P(a,3),Q(-2,b)关于x轴对称,则a=_____,b=_____.
3.已知点P(4,8),Q(4,-8),则这两点关于_____对称.
探究2:请同学们在平面直角坐标系里画出下列各点关于y轴对称的点
A(2,-3),B(-1,2),C(-6,-5),
D(3,5),E(4,0),F(0,-3)
(2)写出点C关于y轴的对称点C′的坐标.
教师巡视指导,检查学生对所学知识的掌握情况,及时查漏补缺
学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.教师及时给与评价鼓励
成
果
展
示
(1)本节课学习了哪些内容?
(2)在平面直角坐标系中,已知点关于x轴或y轴的对称点的坐标有什么变化规律,如何判断两个点是否关于x轴或y轴对称?
教师出示例题,引导学生根据前面规律做出各对称点;
学生在前两个探究的基础上在学案上画出四边形关于x轴、y轴对称的图形,教师展示几名同学的学案,并出示正确答案,加以点评.
完成例题后,结合例题格式引导学生归纳:画一个图形关于x轴或y轴对称的图形的方法和步骤.
尝
试
应
用
知识点1关于坐标轴对称的点的坐标
1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在第()象限.
13.2画轴对称图形(2)同步习题精讲课件
16.(8分)如图,以长方形ABCD的两条对称轴为x轴和y轴 建立直角坐标系,若A点的坐标为(4,3).
(1)写出长方形的另外三个顶点B,C,D的坐标; (2)求该长方形的面积.
解:(1)B(4,-3) C(-4,-3) D(-4,3)
(2)S长=48
17.(10分)如图,已知A(1,1),B(-2,4),C(-4,4), D(-4,1).
8.(8分)如图,分别作出△ABC关于x轴和y轴对称的图形.
解:(1)△ABC关于x轴对称的 图形是△A1B1C1;(2)△ABC 关于y轴对称的图形是 △A2B2C2.
【易错盘点】
【例】如图,△ABC中,点A的坐标为(0,1),点C的坐标为 (4,3),如果要使△ABD与△ABC全等,那么点D的坐标是 _________________________
7.(8分)已知点M(2a-b,5+a),N(2b-1,-a+b). (1)若M,N关于x轴对称,试求a,b的值; (2)若M,N关于y轴对称,试求(b+2a)2 014的值.
解:(1)25+a-a3+b(=--1a+b)=0
解之a=-8 b=-5
(2)2a+a-5b=+-2ba+-b1=0解之ab==-3 1 ∴(b+2a)2013=1
第十三章 轴对称
习题精讲
13.2
数学 八年级上册
(人教版)
画轴对称图形
13.2 画轴对称图形 第2课时 用坐标表示轴对称
点P(a,b)关于x轴对称的点的坐标是 (a,-b) ;点 P(a,b)关于y轴对称的点的坐标是 (-a,b) ;点 P(a,b)关于原点对称的点的坐标是(-a,-b).
关于坐标轴对称点的坐标特征
D.将点A向x轴负方向平移一个单位得到A′
人教版八年级数学上册 第十三章 轴对称 13.2画轴对称图形课件(共30张PPT)
● 7.已知反比例函数和正比例函数在第一象限的交点为A(1,3),则在第三 象限的交点B为( )
● A.(-1,-3) B.(-3,-1) C.(-2,-6) D.(-6,-2)
● 8.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是( )
● A.(﹣3,﹣2)
B.(3,2) C.(2,﹣3) D.(3,﹣2)
● 延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长
● 为( )
● A.4.5cm
B.5.5cm
C.6.5cm
D.7cm
● 5.设点A与点B关于x轴对称,点A与点C关于y轴对称,则点B与点C( )
● A.关于x轴对称B.关于y轴对称 C.关于原点对称D.既关于x轴对称,又关于y轴对称
轴对称与轴对称图形的区别和联系:
区别: 轴对称是说两个图形的位置关系,涉及两个图形
轴对称图形是说一个具有特殊形状的图形,
是对一个图形说的。
轴对称与轴对称图形的区别和联系:
联系: 两个概念没有本质的区别,定义中都有一条直线, 都沿这条直线对折重合
轴对称与轴对称图形的基本特征
显然,轴对称图形(或成轴对称的两个图形)沿对称轴对 折后的两部分是完全重合的,所以
● 3.点P(a﹣1,b﹣2)关于x轴对称与关于y轴对称的点坐标相同,则P点坐标为( )
● A.(﹣1,﹣2) B.(﹣1,0) C.(0,﹣2) D.(0,0)
● 4.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对 称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的
y
△ABC全等的
5
△FED中,F点的 A(-2,3) 4
《画轴对称图形》轴对称PPT教学课件(第2课时)
巩固练习
平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4), B(2,4),C(3,–1). (1)试在平面直角坐标系中,标出A、B、C三点; (2)若△ABC与△A'B'C'关于x轴对称,画出△A'B'C',并 写出A'、B'、C'的坐标.
巩固练习 解:如图所示:
y
A (0,4)
B (2,4)
4.如图,在平面直角坐标系中,点P(–1,2)关于直线x=1的
对称点的坐标为( C )
A.(1,2) B.(2,2)
1 2
C.(3,2) D.(4,2)
-1
1
课堂检测 5.已知点P(2a+b,–3a)与点P′(8,b+2). 若点P与点P′关于x轴对称,则a=___2__, b=____4___. 若点P与点P′关于y轴对称,则a=___6__ ,b=___–_2_0__.
课堂检测
解:∵正方形ABCD,点A、B的坐标分别是(–1,–1)、(–3,–1), ∴根据题意,得第1次变换后的点B的对应点的坐标为(–3+2,1),即(–1,1), 第2次变换后的点B的对应点的坐标为(–1+2,–1),即(1,–1), 第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1), 第n次变换后的点B的对应点的为:当n为奇数时为(2n–3,1),当n为偶数时为 (2n–3,–1), ∴把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,则点B的对应 点B′的坐标是(11,1).
D.(–1,–4)
课堂检测
基础巩固题
1.平面直角坐标系内的点A(–1,2)与点B(–1,–2)关于( B )
人教版数学八年级上册13.2 画轴对称图形(2课时)教案与反思
13.2 画轴对称图形投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】,不迷路!第1课时画轴对称图形一、基本目标【知识与技能】掌握作已知图形关于直线的轴对称图形的方法.【过程与方法】在探索问题的过程中体会知识间的关系,并从实践中体会轴对称变换在实际生活中的应用,感受数学与生活的联系.【情感态度与价值观】经历实际操作、认真体验的过程,发展学生的思维空间,培养学生的应用意识和探究精神.二、重难点目标【教学重点】作出简单平面图形关于直线的轴对称图形.【教学难点】利用轴对称进行一些图案设计环节1 自学提纲,生成问题【5min阅读】阅读教材P67~P68的内容,完成下面练习.【3min反馈】1.画出下列轴对称图形的所有对称轴.略2.由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;新图形上一个点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.3.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连结这些对应点,就可以得到原图形的轴对称图形.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2 巩固练习(学生独学)1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( B )2.在3×3的正方形格点图中,格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.略活动3 拓展延伸(学生对学)【例2】如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB =60°,则∠CFD=( )A.20°B.30°C.40°D.50°【互动探索】根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD =90.∵∠EFB=60°,∴∠CFD=30°,故选B.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3 课堂小结,当堂达标(学生总结,老师点评)作与图形成轴对称的图形,关键在于将图形抽象出各点,然后作点的对称点,再连线即可.请完成本课时对应习!第2课时坐标中的轴对称一、基本目标【知识与技】理解并掌握关于x轴、y轴对称的点的坐标的规律.【过程与方法】1.在探索关于x轴、y轴对称的点的坐标的规律时,发展学生形象思维能力和数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.【情感态度与价值观】在探规律的过程中,培养学的应用意识和探究精神,提高学生的求知欲和好奇心.二、重难点目标【教学重点】直角坐标系中关于x轴、y轴对称的点的特征.【教学难点】能解决有关坐标中的轴对称问题.环节1 自学提纲,生成问题【5min阅读】阅读教材P68~P70的内容,完成下面练习.【3min反馈】1.(1)点(x,)关于x轴对称的点的坐标为(x,-y);(2)关于x轴对称的点的坐标的特点:横坐标不变,纵坐标互为相反数.2.(1)点(x,y)关于y轴对称的点的坐标为(-x,y);(2)关于x轴对称的点的坐标的特点:横坐标互为相反数,纵坐标不变.3.点P(-4,3)关于x轴的对称点为Q,则点Q的坐标为(-4,-3).4.点P(-3,4)关于y轴的对称点为M,则点M的坐标为(3,4).环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】在平面直角坐标系中,已知点A(-3,1)、B(-1,0)、C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.【互动探索】(引发学生思考)作已知图形关于坐标轴的对称图形的关键是什么?【解答】如图,△DEF是△ABC关于y轴对称的图形.【互动总结】(学生总结,老师点评)在坐标系中作出关于坐标轴的对称点,然后顺次连结,即可作出已知图形关于坐标轴的对称图形.活动2 巩固练习(学生独学)1.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).2.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.3.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2018的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2018=1.3.画出△ABC关于x轴对称的图形△A1B1C1,并指出△A1B1C1的顶点坐标.解:画图略.其中A1(3,-4)、B1(1,-2)、C1(5,-1).活动3 拓展延伸(学生对学)【例3】如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD的四个顶点在格点上.(1)若以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,画出四边形ABCD关于y轴对称的四边形A1B1C1D1;(2)点D1的坐标是________;(3)求四边形ABCD的面积.【互动探索】(1)以点B为原点,线段BC所在直线为x轴建立平面直角坐标系,然后作出各点关于y轴对称的点,顺次连结即可;(2)根据直角坐标系的特点,写出点D1的坐标;(3)把四边形ABCD分解为两个直角三角形,求出面积.【解答】(1)画图略.(2)点D1的坐标为(-1,1).(3)四边形ABCD的面积为×1×3+×1×2=.【互动总结】(学生总结,老师点评)轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连结对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
人教版八年级数学上册课件:13.2画轴对称图形(第二课时)
C.(9,-5)
D.(-9,-5)
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/302021/8/30Monday, August 30, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/8/302021/8/302021/8/308/30/2021 7:56:44 PM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/302021/8/302021/8/30Aug-2130-Aug-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/302021/8/302021/8/30Monday, August 30, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/302021/8/302021/8/302021/8/308/30/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月30日星期一2021/8/302021/8/302021/8/30 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/302021/8/302021/8/308/30/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/302021/8/30August 30, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/302021/8/302021/8/302021/8/30
新人教版教材八年级数学上册第13章《轴对称》全章教案
§13.1 轴对称(1)教学目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教学重、难点:轴对称的概念和性质教学过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?教师:你能说明其中的道理吗?上面的问题说明“如果△ABC 和△A′B′C′关于直线MN 对称,那么,直线MN 垂直线段AA′,BB′和CC′,并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l 是线段AA′,BB′的垂直平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:教科书60页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是什么?(3)成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?五、课后作业:教科书习题13.1第1、2、3、4、5题课后反思:13.1 轴对称(2)教学目标:1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.教学重、难点:线段垂直平分线的性质.教学过程:一、问题导入:探索并证明线段垂直平分线的性质如图,直线l 垂直平分线段AB,P1,P2,P3,…是l 上的点,请猜想点P1,P2,P3,…到点A 与点B 的距离之间的数量关系.教师:你能用不同的方法验证这一结论吗?二、课本精讲:请在图中的直线l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”已知:如图,直线l⊥AB,垂足为C,AC =CB,点P 在l 上.求证:PA =PB.用符号语言表示为:∵CA =CB,l⊥AB,∴PA =PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.教师:反过来,如果PA =PB,那么点P 是否在线段AB 的垂直平分线上呢?点P 在线段AB 的垂直平分线上.已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.用数学符号表示为:∵PA =PB,∴点P 在AB 的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.教师:你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?这些点能组成什么几何图形?在线段AB 的垂直平分线l 上的点与A,B 的距离都相等;反过来,与A,B 的距离相等的点都在直线l上,所以直线l 可以看成与两点A、B 的距离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:教科书62页练习1、2.四、课堂小结:(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?五、课后作业:教科书习题13.1第6、9题课后反思:13.1 轴对称(3)教学目标:1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点:作线段的垂直平分线.教学难点:作线段的垂直平分线.教学过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?例1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?教师:怎样作线段AB 的垂直平分线呢?作法:如图.(1)分别以点A,B 为圆心,以大于AB的为半径作弧,两弧相交于C,D 两点;(2)作直线CD.CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:教科书64页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教学目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教学重点:画轴对称图形.教学难点:画轴对称图形.教学过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师:如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例1 如图,已知△ABC 和直线l,画出与△ABC关于直线l 对称的图形.画法:(1)如图,过点A 画直线l 的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线l 的对称点;(2)同理,分别画点B,C 关于直线l 的对称点B′,C′;(3)连接A′B′,B′C′,C′A′,得到的△A′B′C′即为所求.教师:如何验证画出的图形与△ABC 关于直线l 对称?已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:教科书68页练习1、2四、课堂小结:(1)本节课学习了哪些内容?(2)一个平面图形和与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?五、课后作业:教科书习题13.2第1题.课后反思:13.2 画轴对称图形(2)教学目标:1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.教学重、难点:在平面直角坐标系中关于x 轴或y轴对称的点的变化规律和作出与一个图形关于x 轴或y轴对称的图形.教学过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律对于平面直角坐标系中任意一点,你能找出其关于x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?在平面直角坐标系中,画出下列已知点及其关于x 轴对称的点,把它们的坐标填入表格中.教师:观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?关于x 轴对称的每对对称点的横坐标相等,纵坐标互为相反数.教师:观察关于y 轴对称的每对对称点的坐标有怎样的变化规律?关于y 轴对称的每对对称点的横坐标互为相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.点(x,y)关于x 轴对称的点的坐标为(___,____);点(x,y)关于y 轴对称的点的坐标为(___,____).例如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.教师:归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤.先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)在平面直角坐标系中,已知点关于x 轴或y 轴的对称点的坐标有什么变化规律,如何判断两个点是否关于x 轴或y 轴对称?(3)说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教学目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教学重、难点:探索并证明等腰三角形性质.教学过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?已知:如图,△ABC 中,AB =AC.求证:∠B = ∠C.你还有其他方法证明性质1吗?可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教学目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教学重、难点:理解和运用等腰三角形的判定定理教学过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?已知:如图,在△ABC 中,∠B =∠C. 求证:AB =AC.教师:你还有其他证明方法吗?思考能作底边BC 上的中线吗?等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:∵在△ABC 中,∠B =∠C,∴AB =AC.思考与等腰三角形性质进行比较看有什么区别?例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1 =∠2,AD∥BC.求证:AB =AC.例2 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB =a;(2)作线段AB 的垂直平分线MN,与AB 相交于点D;(3)在MN上取一点C,使DC =h;(4)连接AC,BC,则△ABC 就是所求作的等腰三角形.三、巩固提高:教科书79页练习1、2、3、4四、课堂小结:(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.五、课后作业:教科书习题13.3第2、5题.课后反思:13.3 等腰三角形(3)教学目标:1.探索等边三角形的性质和判定.2.能运用等边三角形的性质和判定进行计算和证明.教学重、难点:探索等边三角形的性质与判定.教学过程:一、问题导入:问题满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特殊的性质呢?从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.思考将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形对应的结论吗?对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.已知:△ABC 是等边三角形求证:∠A =∠B =∠C =60°.证明:∵△ABC 是等边三角形,∴BC =AC,BC =AB.∴∠A =∠B,∠A =∠C.∴∠A =∠B =∠C .∵∠A +∠B +∠C =180°,∴∠A =60°.∴∠A =∠B =∠C =60°.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.例1 如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.三、巩固提高:教科书80页练习1、2四、课堂小结:(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.五、课后作业:教科书习题13.3第12、14题.课后反思:13.3 等腰三角形(4)教学目标:1.探索含30°角的直角三角形的性质.2.理解含30°角的直角三角形的性质,并会应用它进行有关的证明和计算.教学重、难点:探索并理解含30°角的直角三角形的性质.教学过程:一、问题导入:问题已知△ABC 中,∠A =60°,().请你在括号内补充一个条件,使△ABC 能成为等边三角形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.问题你能借助这个图形,找到含30°角的直角△ABC 的直角边BC 与斜边AB 之间有什么数量关系吗?猜想在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来.思考这个命题是真命题吗?请进行证明.已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC = AB.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵在Rt△ABC 中,∠C =90°,∠A =30°,∴BC = AB.例如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?三、巩固提高:教科书81页练习四、课堂小结:(1)本节课学习了哪些内容?(2)在应用含30°角的直角三角形的性质时,能解决哪些问题?需要注意哪些问题?五、课后作业:教科书习题13.3第15题.课后反思:。
人教版数学八年级上册第十三章《轴对称》教案
第十三章轴对称轴对称教课目的:1.认识轴对称图形和两个图形成轴对称的观点,知道轴对称图形和两个图形成轴对称的差别与联系.2.研究成轴对称的两个图形的性质和轴对称图形的性质,领会由详细到抽象认识问题的过程,感悟类比方法在研究数学识题中的作用.3.认识线段垂直均分线的观点.教课重、难点:轴对称的观点和性质教课过程:一、问题导入:前言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标记,甚至平时生活用品,都能够找到对称的例子,对称给我们带来美的感觉!二、课本精讲:问题 1 如图,把一张纸对折,剪出一个图案(折痕处不要完整剪断),再翻开这张对折的纸,就获取了漂亮的窗花.察看获取的窗花,你能发现它们有什么共同的特色吗?假如一个平面图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形对于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题 2察看下边每对图形(如图),你能类比前方的内容归纳出它们的共同特色吗?共同特色:每一对图形沿着虚线折叠,左侧的图形都能与右侧的图形重合.把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形对于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能联合详细的图形说明轴对称图形和两个图形成轴对称有什么差别与联系吗?二者的联系:把成轴对称的两个图形当作一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分红两个图形,这两个图形对于这条轴对称.二者的区:称形指的是一个形沿称折叠后个形的两部分能完整重合,而两个形成称指的是两个形之的地点关系,两个形沿称折叠后能重合.3如,△ ABC和△ A′ B′ C′对于直MN 称,点 A′,B ′,C′分是点 A, B, C 的称点,段 AA ′, BB ′, CC ′与直 MN 有什么关系?教:你能明此中的道理?上边的明“假如△ ABC 和△ A′ B′ C′对于直MN 称,那么,直 MN 垂直段 AA ′, BB ′和 CC ′,而且直 MN 均分段 AA ′, BB ′和 CC ′”.假如将此中的“三角形”改“四形”“五形”⋯其余条件不,上述成立?3 点 A,B, C 如,△ ABC 的称点,段和△ A′ B ′ C′对于直MNAA ′, BB ′, CC ′与直称,点 A′,B ′,C′分是MN 有什么关系?段中点而且垂直于条段的直,叫做条段的垂直均分.教:你能用数学言归纳前方的?成称的两个形的性:假如两个形对于某条直称,那么称是任何一点所段的垂直均分.即称点所段被称垂直均分;称垂直均分称点所段.4下是一个称形,你能什么?能明原因?:直 l 垂直段 AA′,BB ′,直 l 均分段 AA ′,BB′(或直 l 是段 AA ′, BB ′的垂直均分).教:你能用数学言归纳前方的?称形的性:称形的称,是任何一点所段的垂直均分.三、稳固提升:教科 601、2 。
部编版人教初中数学八年级上册《13.2 画轴对称图形 教学设计及反思》最新精品优秀教案
1.在平面直角坐标系中,会画出关于x轴、y轴对称的点,进而探求关于x轴、y轴对称点的坐标规律.
2.通过找关于坐标轴对称的点之间的规律,以及在验证规律正确的过程中,培养学生语言能力、观察能力、归纳能力,养成良好的科学研究方法.
3.在找点与绘图的过程中,发展学生数形结合的思维意识,使学生形成数形结合的思想.
【板书设计】
画轴对称图形(1)
1.作轴对称图形的基本特征:……贴剪纸用
2.作已知图形关于已知直线对称的图形的一般步骤:
(1)找点;(2)画点;(3)连线.
【教学反思】
本节课体现了以学生为主体,学生自己动手操作、演示,自己在画图中总结规律,学生动手、动口说得多,老师主要是以引导、启发为辅.
第2课时 画轴对称图形(2)
C(8,-5)
D(0,-1)
E(4,0)
关于x轴对称
关于y轴对称
3. 已知点P(2a+b,-3a)与点P′(8,b+2).
若点P与点P′关于x轴对称,则a=________,b=________.
若点P与点P′关于y轴对称,则a=________,b=________.
4.教师:接下来,我们一起来看看利用关于坐标轴对称的点的坐标变换规律,是否可以作出与一个图形关于x轴或y轴成轴对称的图形.
以北京地图为例引出新课,既可以激发学生的兴趣,又可以让学生感受到用坐标描述对称的重要性.
二、师生互动,探究新知
如图,在平面直角坐标系中你能画出点A(2,3)关于x轴、y轴的对称点吗?
说出你是怎么操作的?这么操作的依据是什么?
教师活动:出示点关于x,y轴对称点的坐标特点,进行知识小结.
强化结:关于坐标轴对称的点的坐标变换规律:
三、运用新知,解决问题
【人教版】八上数学:第13章《轴对称》全章教案
第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线AB和AB外一点C.(如下图)求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C ,D 两点;(2)作直线CD.CD 就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图. 教师引导学生思考:(1)在作法中为什么有CA =CB ,DA =DB?(2)可以用这种方法找线段的中点吗?四等分点呢? 三、举例分析例2 如图(1),△ABC 和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.已知点A(2,-3)B(-1,2)C(-6,-5)D(3,5)E(4,0)F(0,-3)关于x轴的对称点关于y轴的对称点【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为()A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC中,若AB=AC,则△ABC是等腰三角形,AB,AC是腰,BC是底边,∠A 是顶角,∠B和∠C是底角.【活动2】把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角从上表中你能发现等腰三角形具有什么性质吗?学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC 中,AB =AC.求证:∠B =∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B =∠C ,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC 边上的中线AD ,证明△ABD 和△ACD 全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC 边上的中线AD ,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°. 从而AD ⊥BC ,这也就证明了等腰△ABC 底边上的中线平分顶角∠A 并垂直于底边BC. 添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2. 三、应用提高例1 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC =∠ACB =∠CDB =∠A +∠ABD ; (2)∠A =∠ABD ; (3)∠A +2∠C =180°.若设∠A=x,则有x+4x=180°,得到x=36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时等腰三角形的判定1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法.难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”.学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系?学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等.如何证明?二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证.已知:在△ABC中,∠B=∠C.求证:AB=AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD⊥BC,或AD平分∠BAC,但不能作BC边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC中,∠B=∠C,作△ABC的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB =AC.可先证明∠B =∠C.因为∠1=∠2,所以可以设法找出∠B ,∠C 与∠1,∠2的关系.证明:∵AD ∥BC ,∴∠1=∠B(______________________),∠2=∠C(______________________). 而已知∠1=∠2,所以 ∠B =∠C.∴AB =AC(______________). 2.出示教材例3.让学生自学例3.例3 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.重点等边三角形的性质和判定.难点等边三角形的性质的应用.一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1.等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形.2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?边:三条边都相等.角:三个角都相等,并且每一个角都等于60°.3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么?你从中能得到什么结论?三个角都相等的三角形是等边三角形.4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是等边三角形;(2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论还成立吗?(3)由上你可以得到什么结论?。
最新人教版初中八年级上册数学【第十三章 13.2画轴对称图形(第二课时)】教学课件
13.2 画轴对称图形(第二课时)
学习目标:
1.探究在平面直角坐标系中关于x轴和y轴的对称点的坐标特点 .
2.能在平面直角坐标系中画出简单的关于x轴和y轴的对称图形 .
3.能运用坐标系中的轴对称特点解决简单的问题.
学习重点:
理解图形上点的坐标变化与图形的轴对称变换之间的关
横坐标相等,纵坐标互为相反数
知识归纳
关于x轴对称的点的坐标的特点是:
(x , y)
( x , -y)
横坐标相等,纵坐标互为相反数. 练习2: 1.点P(-2.5, 6)与点Q关于x轴对称,则点Q的坐标为(- 2.5 , -6 ). 2.点M(a, -5)与点N(-2, b)关于x轴对称,则a=_-_2 ,b = 5 .
又∵P关于x轴对称点P′在第一象限
a10 2a10
解得 1a0.5
即a的取值范围是 1a0.5
例2.已知点P的坐标为P(a+1,2a-1)
1 若点P与点A (2a-b,5+a)关于y轴对称,求a、b的值;
2 若点P关于x 轴的对称点P′在第一象限,求a的取值范围.
解:(2)依题意得:P点在第四象限,
系并能灵活运用坐标系中的轴对称特点解决简单的问题.
温故知新
问题1:已知点A和一条直线MN,你能画出这个点关于已知
直线的对称点吗?
M
A
O
A′
N 过点A作AO⊥MN于点O,延长AO至A′,使OA′=OA.
则点A′就是点A关于直线MN的对称点.
思考: 平面直角坐标系是数形结合的一个桥梁,如果
我们在平面直角坐标系中作轴对称图形,能不能 从数量的角度刻画轴对称呢?
于y 轴对称的点坐标分别为:
八年级上册第十三章13.2画轴对称图形课件
A’
为点O,在垂线上截取OA’=OA,
C’
点A’就是点A关于直线l的对称
B’
点;
∴△A’B’C’即为所求。
2、类似地,分别作出点B、C关 于直线l的对称点B’、C’;
3、连接A’B’、B’C’、C’A’。8
例1:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B A A
C
B
C
ABCD关于y轴和x轴对称的图形。
解:点(x,y)关于y轴对称的 点坐标为(-x,y),因此 A,B,C,D关于y轴对称的点 分别为A’( ,5 1), B’( 2 , 1),C’( , 2 )5, D’( , ),依5次4连接即可得到关 于y轴对称的四边形 A’B’C’D’.
18
归纳:
对于这类问题,只要先求出已知图形中的一些 特殊点(如多边形的顶点)的对应点的坐标,描出并 连接这些点,就可以得到这个图形的轴对称图形.
· C``(3,2) ·A``(4,1)
· -4 -3 -2 -1 0 1 2
A`(-4,-1)
-1
B(-1,-1)
B``(1,-1)
3
4
5
C`(-3,-2)
-2
-3
-4 24
课本72页习题6
如图,小球起始时位于(3,0),沿所示的方向击球,小球运动轨迹如
图所示,用坐标描述这个运动,找出小球运动的轨迹上关于直线l对
标为 (- 5 , -6 ) .
2、点M(a, -5)与点N(-2, b)关于x轴对称,则
a= -2 , b = 5 .
3、点P(-5, 6)与点Q关于y轴对称,则点Q的坐
标为 ( 5 , 6 ) .
人教版八年级数学上册课件第十三章-画轴对称图形画轴对称图形
2.在平面直角坐标系中,将点A(-1,2)向右平
移3个单位长度得到点B,则点B关于x轴的对称点
C的坐标是( D )
A.(-4,-2)
B.(2,2)
C.(-2,2)
D.(2,-2)
3.设点M(x,y)在第二象限,且|x|=2,|y|=3,则点
M关于y轴的对称点的坐标是( A )
A.(2,3)
B.(-2,3)
解得 1<a< 1
2
即a的取值范围是
1<a<
1 2
方法总结:解决此类题,一般先写出对称点的坐 标或判断已知所在的象限,再由各象限内点的坐 标的符号,列不等式(组)求解.
当堂练习
1.平面直角坐标系内的点A(-1,2)与点B(-1,-2)
关于( B ) A.y轴对称
B.x轴对称
C.原点对称
D.直线y=x对称
边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
讲授新课
一 等腰三角形的的红线对折,并剪去 阴影部分(一个直角三角形),再把得到的直角三角形 展开,得到的三角形ABC有什么特点?
B
A
AB=AC
等腰三角形
C
折一折:△ABC 是轴对称图形吗?它的对称轴 是什么?
钝角都可以. 3.钝角三角形不可能是等腰三角形. 4.等腰三角形的顶角平分线一定垂直底边. 5.等腰三角形的角平分线、中线和高互相重合. 6.等腰三角形底边上的中线一定平分顶角.
(X)
(X) (X) (√) (X) (√)
典例精析
例1 如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
八年级数学上(RJ)
第十三章 轴对称
13.2 画轴对称图形