七年级数学有理数的乘除法测试
专题04 有理数的乘除法(专题测试)【2022-2023人教七上数学期末考点串讲】(解析版)
专题04 有理数乘除法(专题测试)满分:100分时间:90分钟一、选择题(每小题3分,共30分)1.(2022•张家界)﹣2022的倒数是()A.2022B.﹣C.﹣2022D.【答案】B【解答】解:﹣2022的倒数是:﹣.故选:B.2.(2022•邢台模拟)计算﹣1的结果是()A.1B.﹣1C.D.﹣【答案A】【解答】解:原式=(﹣)=1.故选:A.3.一个数的倒数等于﹣,这个数是()A.﹣2B.C.2D.﹣【答案】A【解答】解:﹣的倒数是﹣2,故选:A.4.(2021秋•青田县期末)若等式♦(﹣3)=1成立,则“♦”内的运算符号是()A.+B.﹣C.×D.÷【答案】C。
【解答】解:∵,∴A选项不符合题意,∵,∴B选项不符合题意,∵﹣,∴C选项符合题意.故选:C.5.(2021秋•兴山县期末)a,b在数轴上对应的点如图,下列结论正确的是()A.b﹣a<0B.a+b>0C.ab<0D.ab>0【答案】C【解答】解:根据数轴图知:a<0<b,|a|>|b|.∴b﹣a>0,故选项A不符合题意.a+b<0,故选项B不符合题意.ab<0,故选项C符合题意,选项D不符合题意.故选:C.6.(2021秋•临高县期末)若a+b>0,且ab<0,则以下正确的选项为()A.a,b都是正数B.a,b异号,正数的绝对值大C.a,b都是负数D.a,b异号,负数的绝对值大【答案】B【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值大,故选:B.7.(2021秋•银川校级期末)已知|x|=3,|y|=7,且x﹣y>0,xy<0,则x+y的值为()A.﹣10B.﹣4C.﹣10或﹣4D.4【答案】B【解答】解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x﹣y>0,xy<0,∴x=3,y=﹣7,∴x+y=3+(﹣7)=﹣4.故选:B.8.甲的等于乙的,那么甲、乙两数之比是()A.7:5B.5:7C.3:2D.2:3【答案】B【解答】解:∵甲数×=乙数×,∴甲数:乙数=:=÷=×59.(2021秋•万州区期末)对于有理数x,y,若<0,则++的值是()A.﹣3B.﹣1C.1D.3【答案】B。
七年级上册数学同步练习题库:有理数的乘除法(简答题:一般)
有理数的乘除法(简答题:一般)1、用简便方法计算:2、计算(1)简便计算:(2)计算:(3)先化简再求值:,其中x=,y=23、规定一种新的运算:a★b=a×b-a-+1.例如:3★(-4)=3×(-4)-3-+1.请用上述规定计算下面各式:(1)2★5;(2)(-2)★(-5).4、阅读材料题:式子“1×2×3×4×5×…×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×…×100”表示为n,这里“π”是求积符号.例如:1×3×5×7×9×…×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).5、在某地区,高度每升高100米,气温下降0.8 ℃.若在该地区的山脚测得气温为15 ℃,在山顶测得气温为-5 ℃,你能求出从山顶到山脚的高度吗?6、探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.7、已知:是最小的正整数,是最大的负整数,是的倒数.(1)直接写出:,,;(2)求的值.8、计算(1)(2)(3)(4)9、(1)计算(2)(3)(4)(用简便方法)10、已知,m、n互为相反数,p、q互为倒数,的绝对值为,求的值.11、阅读材料:对于任何数,我们规定符号的意义是.例如:. (1)按照这个规定,请你计算的值.(2)按照这个规定,请你计算当时,值.12、某食品厂从生产的袋装食品中随机抽样检测20袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2g,现记录如下:(2)若标准质量为100g/袋,则这次抽样检测的总质量是多少克?13、小刚在课外书中看到这样一道有理数的混合运算题:计算:她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,他顺利地解答了这道题。
七年级数学有理数的乘除法同步测试题
七年级数学有理数的乘除法同步测试题要想学好数学就必须大量反复地做题,为此,精品小编为大家整理了这篇七年级数学有理数的乘除法同步测试题,以供大家参考!一、填空题1.的相反数为,倒数为.考察说明:此题考察的知识点是相反数和倒数。
答案与解析:0.2,-5。
相反数就是改变符号,倒数就是相乘得1。
2.6.868。
同号得正,异号得负,并把绝对值相除,分数就是除法,再把除法化成乘法。
4.___________考察说明:此题考察多个有理数相乘时的符号法那么。
奇数个负号因数,积取负号。
另外还考察了利用乘法的结合律进展简化计算。
答案与解析:-100。
-2.5×1.25×40×0.8=-(2.5×40)×(1.25×0.8)=-100×1 =-100。
5. ___________考察说明:此题考察了两种非负数的性质,一种是“绝对值〞,一种是“完全平方〞,以及多个有理数相乘时的符号法那么。
答案与解析:6。
因为0,0,0,++=0,所以=0,=0,=0,所以a-1=0,b+2=0,c-2=0,所以a=2,b=-2,c=2,所以-abc=6。
二、选择题6. ,且的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或-1考察说明:此题主要考察绝对值意义,乘法法那么。
关键找好分组情况。
答案与解析:B。
因为,所以x=,y=2,因为xy0,所以xy异号,所以只有两种情况:x=3,y=-2或x=-3,y=2。
7. 以下说法正确的选项是()A.同号两数相乘符号不变B.异号两数相乘取绝对值较大因数的符号C.两数相除,商是正,被除数的绝对值大于除数的D.两数相除,假设商为正,那么这两数同号考察说明:此题把有理数加、减、乘、除四种法那么综合起来运用。
答案与解析:D。
A是错的,因为乘法法那么:同号得正,和加法法那么混淆了。
B是错的,因为乘法法那么:异号得负,和加法法那么混淆了。
人教版七年级上册数学有理数的加、减、乘、除混合运算测试题
人教版七年级数学测试卷(考试题)1.4 有理数的乘除法1.4.2 有理数的除法第2课时 有理数的加、减、乘、除混合运算1计算:1/5÷5等于( )A.1B.25C.1/25D.1/52、下列方程的解x 是正数的有( )(1)4x=-8; (2)-4x=12; (3)-4x=-36; (4)-1/5x=0.A.1个B.2个C.3个D.4个 3、一个非零的有理数和它的相反数之积( )A.符号必为正B.符号必为负C.一定不小于零D.一定不大于零4、当a <5时,|a-5|÷(5-a)=( ) (5题)A .4—2a ;B .0;C .1;D .—1.5、右图是一数值转换机,若输入的x 为-3,则输出的结果为( )A 、11B 、-11C 、-30D 、306、已知代数式x -5y 的值是100,则代数式2x -10y +5的值是( )A 、100B 、200C 、2005D 、不能确定7、已知a 、b 、c 都是非正数且∣x —a ∣+∣y —b ∣+∣z —c ∣=0,则(xyz )5的值是( )A 、负数B 、非负数C 、正数D 、非正数8、磁悬浮列车是一种科技含量很高的新型交通工具,它的速度快,爬坡能力强,能耗低等优点.它每个座位的平均能耗仅为飞机每个座位平均能耗的四分之一,汽车每个座位平均能耗的65%.那么,汽车每个座位的平均能耗是飞机每个座位平均能耗的( )A 、1/65B 、1/13C 、5/13D 、13/59、下列运算正确的是( )A .236222⨯=B .22÷2=1C .(-2)3÷1/2=-16D .842222÷=10、 ( )A .—1 B.1 C. —25 D. —62511、若a <0,则|4a÷(—2a )|的结果是_____。
12、已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于1,则(a+b )x 3+x 2-cdx =__。
人教版七年级上册数学 有理数的乘除法 同步测试卷
有理数的乘除法 同步测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项) 1. 计算1×23×(−32)的结果是( ) A. −1B. 1C. −94D. −492. 计算(−25)÷53的结果是( ) A. −15B. −5C. −53D. −153. 下列各式计算结果为负数的是( ) A. (−2)+(−3)B. (−2)−(−3)C. (−2)×(−3)D. (−2)÷(−3)4. 2023的倒数是( ) A. 2023B. −2023C. 12023D. −120235. −|−12|的倒数的相反数是( ) A. 12B. 2C. −2D. −126. −12023的倒数是( ) A. 12023B. −2023C. 2023D. −17. 从−4,−3,0,2,5这5个数中任取两个数相乘,所得的乘积中最大数与最小数的差为( ) A. 34B. 32C. 30D. 288. 下列各式的计算结果是负数的是( ) A. −2×3÷(−5) B. 3÷|−3|×2C. (−3)÷12×0D. (−2+5)×(−3)÷|−10|二.填空题(本大题共8小题,共24分) 9. −3的倒数是_______. 10. −313的倒数是 . 11. 计算(−1)÷6×(−16)= .12. 若|x|=4,y =12,且xy <0,则xy = .13. 已知两数相除所得的商是−1,那么这两个数的和是 . 14. 从数−6,1,−3,5,−2中任取二个数相乘,其积最小的是____. 15. (1)绝对值不大于π的所有整数的积等于 ,和等于 .(2)绝对值不大于3的所有负整数的积是 .16. 设有理数a ,b ,c 满足a +b +c =0,abc >0,则a ,b ,c 中正数的个数为 . 三.计算题(本大题共1小题,共8分) 17. 计算:(1) 2.5×0×(−300) (2)(−3)×313(3) 2×(−5) (4) (−825)×1.25(5)(−34)×(−43) (6) (+125)×(−10)×(−1)四.解答题(本大题共8小题,共64分。
七年级数学单元测试1.4 有理数的乘除法(含答案)新人教版
1.4 有理数的乘除法一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )C.为零D.可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )3.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )6.下列说法正确的是( )7.关于0,下列说法不正确的是( )8.下列运算结果不一定为负数的是( )( )A.13÷(-3)=3×(-3) B.1(5)5(2)2⎛⎫-÷-=-⨯-⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7) ( )A.113422⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭;B.0-2=-2;C.34143⎛⎫⨯-=⎪⎝⎭;D.(-2)÷(-4)=2二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.410,0a b >>,那么a b_____0. 5a>0,0.3b<0,0.7c<0,那么b ac____0. 7.-0.125的相反数的倒数是________.8.若a>0,则a a =_____;若a<0,则a a =____. 三、解答1.计算: (1)384⎛⎫-⨯ ⎪⎝⎭;(2)12(6)3⎛⎫-⨯- ⎪⎝⎭ ;(3)(-7.6)×0.5;(4)113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.2.计算. (1)38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭;(2) 38(4)(2)4-⨯-⨯-; (3)38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭.(1)111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2)111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(1)(+48)÷(+6); (2)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;(3)4÷(-2); (4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭;(3)1213(5)6(5) 33⎛⎫⎛⎫-÷-+-÷-⎪ ⎪⎝⎭⎝⎭.(1)111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭; (2)11181339⎛⎫-÷-÷- ⎪⎝⎭.答案一、ACBBA,DCCAB二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)1 8 62.(1)22;(2)2;(3)-48;3.(1)213;(2)584.(1)8;(2)23;(3)-2;(4)05.(1)-7;(2)375;(3)4 6.(1)14;(2)-240。
【新】人教版 七年级上册数学 有理数的乘除法 练习题
有理数的乘除法练习题课堂学习检测一、选择题1.下列计算正确的是( ).(A)911)311()311(=-⨯-(B)1172)218(=⨯- (C)766)71()7(-=+⨯-(D)1)31(3-=-⨯2.两个有理数之积是0,那么这两个有理数( ).(A)至少有一个是0 (B)都是0(C)互为倒数 (D)互为相反数3.,04.018)05.041110(54-+-=+-⨯-这个运算应用了( ).(A)加法结合律(B)乘法结合律 (C)乘法交换律 (D)分配律4.比较a 与3a 的大小,正确的是( ).(A)3a >a (B)3a =a(C)3a <a(D)上述情况都可能二、填空题5.式子)66()981()8.3(5.7)6(31-⨯-⨯+⨯⨯-⨯的符号为______.6.若a =4,b =0,c =-3,d =-5,则c -ad =______,(a -b )(c -d )=______. 三、计算题7.直接将答案写在横线上:(1)=-⨯)54(43______;(2)=-⨯-)4()85(______;(3)=⨯-38)1923(______; (4)=+⨯+)2.1()411(______.8.)720()103()32(-⨯-⨯- 9.)2.0()732()312(-⨯+⨯-10.)721()1179154238312(-⨯+- 11.)194(6)194(13)194(7-⨯--⨯+-⨯-综合、运用、诊断一、填空题12.若a <0,b <0,c >0,则(-a )·b ·(-c )______0. 13.若a +b <0,且ab >0,则a______0,b______0. 二、选择题14.已知(-ab )·(-ab )·(-ab )>0,则( ).(A)ab <0(B)ab >0(C)a >0,b <0 (D)a <0,b <015.|x -1|+|y +2|+|z -3|=0,则(x -1)(y -2)(z +3)的值为( ).(A)48 (B)-48 (C)0 (D)xyz三、计算题 16.)36()12765321(-⨯-+-17.)95.1(9)772.3()9(228.3⨯--⨯-+-⨯18.)83()154()52()433()322()211(-⨯-⨯+⨯+⨯-⨯-四、解答题 19.巧算下列各题:(1))200411)(120031()151)(411)(131)(211(--⋯----(2)666663333222299999⨯-⨯拓展、探宄、思考20.先观察下图,再解答下题:小李在街上碰到为救助失学儿童募捐的学生,于是将身上一半的钱捐了出来;接着他又碰到第二个募捐的学生,便又捐出了剩下钱的一半;跟着第三个,第四个,他每次都捐出了剩下钱的一半,身上还剩下一元.请你算一算,最初小李身上有多少元钱?21.用计算器计算下列各式,将结果写在横线上:999×21=______; 999×22=______; 999×23=______; 999×24=______. (1)你发现了什么规律?(2)不用计算器,你能直接写出999×29的结果吗?有理数的除法练习题学习要求理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.课堂学习检测一、填空题1.若两数之积为1,则这两数互为________;若两数之商为1,则这两数________;若两数之积为-1,则这两数互为________;若两数之商为-1,则这两数互为________. 2.零乘以________都得零,零除以________都得零.3.若ab >0,b <0,则a ________0,且ab________0;若ab <0,a >0,则b ________0,且a b ________0由此可知,ab 与ab的符号________. 一、选择题4.下列计算正确的是( ).(A)20)151(5-=-÷- (B)2)81()8(2-=-⨯-÷-(C)40)152()2(38-=-÷-⨯- (D)25)8()116387(-=-÷++-5.已知a 的倒数是它本身,则a 一定是( ).(A)0(B)1(C)-1(D)±16.一个数与-4的乘积等于531,这个数是( ).(A)52(B)52-(C)25 (D)25-7.填空:(1))21()12(-÷-=_______;(2))2533(2.5-÷=_______; (3)()=-÷⨯-÷-551)51(5 _______;(4))45(545445-⨯÷⨯-=_______;三、计算题 8.)3231(32⨯-÷ 9.)2131(15--÷-10.)434()322(+-÷--综合、运用、诊断一、选择题11.若xy >0,则(x +y )xy 一定( ).(A)小于0(B)等于0(C)大于0(D)不等于012.如果x <y <0,则化简xyxy x x ||||+的结果为( ). (A)0 (B)-2 (C)2 (D)3二、计算题13.)511()73(25.0--⨯-÷-14.)241()245836121(-÷+-+-15.)911(98999-÷16.)]53()32(1[)]53(32[-⨯-+÷-+-三、解答题17.当a =-2,b =0,c =-5时,求下列式子的值:(1)a +bc ;(2)(a -b )(a +c ).18.在10.5与它的倒数之间有a 个整数,在10.5与它的相反数之间有b 个整数,求(a +b )÷(a -b )+2的值.拓展、探究、思考19.式子||||||ab abb b a a ++的所有可能的值有( ). (A)2个 (B)3个 (C)4个 (D)无数个20.如果有理数a ,b ,c ,d 都不为0,且它们的积的绝对值等于它们积的相反数,你能确定a ,b ,c ,d 中最少有几个是负数,最多有几个是负数吗?21.一口枯井深64米,井底之蛙想从井底爬上来.第一天白天,它往上爬到井深一半,晚上又滑落了白天所爬路程的一半;第二天白天,它继续往上爬到剩下路程的一半,晚上又滑落了白天所爬路程的一半;每天这样爬,它需要多少天才能爬到井口?做完题后想一想:“一尺之棰,日取其半,万世不竭”这句话的含义.。
七年级数学上册《第一章 有理数的乘除法》练习题及答案-人教版
18.计算:
(1) ;
(2) .
19.计算:
(1)
(2)
20.七名学生的体重,以 为标准,把超过标准体重的千克记为正数,不足的千克记为负数,将其体重记录如下表:
学生
A
B
C
D
E
F
G
与标准体重之差(kg)
-3.0
+1.5
+0.8
-0.5
+0.2
七年级数学上册《第一章有理数的乘除法》练习题及答案-人教版
一、单选题
1.下列运算有错误的是( )
A.5﹣(﹣2)=7B.﹣9×(﹣3)=27
C.﹣5+(+3)=8D.﹣4×(﹣5)=20
2.如果 ,且 ,那么()
A. B.
C. D.a、b异号且其中负数的绝对值较小
3.下列计算正确的是()
A. B. C. D.
+1.2
+0.5
(1)最接近标准体重的学生体重是多少?
(2)求七名学生的总体重;
(3)请把七名学生按他们的体重从轻到重排列,然后写出体重恰好居中的那名学生.
参考答案
1.C
2.D
3.B
4.D
5.B
6.C
7.D
8.A
9.D
10.D
11.
12.2
13.-3或3/3或-3
14.5
15.21
16.(1)﹣4(2)﹣8(3)-2
三、解答题
16.(1)﹣3+4﹣5;
(2)3×(﹣2)+(﹣14)÷|+7|;
(3)16÷(﹣2)3﹣(﹣ )×(﹣4)
人教版七年级数学上册有理数乘除法试题(含答案)
人教版七年级数学上册有理数乘除法试题(含答案)1.有理数乘除法的基本法则如下:1) 乘法交换律:对于有理数a和b,有ab=ba。
2) 乘法结合律:对于有理数a、b和c,有(ab)c=a(bc)。
3) 乘法分配律:对于有理数a、b和c,有a(b+c)=ab+ac。
4) 有理数的乘法法则:对于有理数a和b,同号得正,异号得负,并将绝对值相乘。
5) 倒数的定义:乘积为1的两个数互为倒数。
6) 除以一个数等于乘以这个数的倒数。
2.单选题:1) 答案为C,因为只有①和①互为倒数。
2) 答案为B,因为1的倒数的绝对值是1.3) 答案为C,因为只有选项C是正确的。
4) 答案为B,因为-2×3=-6.5) 答案为C,因为0.24×(1/15)×(-14/61)=-0.016.6) 答案为B,因为a1=-1/2,a2=-3/2,a3=-1/2,a4=-5/2,依此类推,可得a2019=-1008.7) 答案为B,因为12-7×(-4)+8÷(-2)=36.8) 答案为D,因为-2①3=-2+(-2)×3=-8.9) 答案为A,因为取-5和4相乘得到最大积20.10) 答案为丙同学,因为他的计算是正确的。
二、填空题1.272.2019a - 2018b3.(1) 2.(2) -27.(3) -4.(4) -3a4.-145.-1三、解答题16.1) -0.31252) -0.517.1) 6802) -1/5618.1) 正确。
因为(-115)/(-1236) = 115/1236,(-)×(-12) = 12,所以(-115)/(-1236) = 12/1236 = 1/103,1/103 = 0.xxxxxxxx,所以(-)÷(-) = 0.xxxxxxxx。
2) (-1113)/(-) = 1113/,(-)×(-12) = 12,所以(-1113)/(-) = 12/ = 3/6092,3/6092 = 0.xxxxxxxx,所以(-1113)/(-) = 0.xxxxxxxx。
人教版初中数学七年级上册1.4有理数的乘除法测试试题
人教版初中数学七年级上册1.4有理数的乘除法测试题基础知识(测试时间:45分钟;满分:100分)一、精心选一选(每小题3分,共24分)1.数2的倒数是()A.2B.12C.-12D.-22.下列说法错误的是()A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同-1相乘,得原数的相反数D.互为相反数的两数之积为03.绝对值不大于4的所有负整数的积为()A.-24B.0C.+6D.244.下列运算结果为负值的是()A.(-7)×(-6)B.(-6)÷(-4)C.0×(-2)(-3)D.(-7)-(-15)×(-1)5.若干个不等于0的有理数相乘,积的符号()CA.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定6.算式(-334)×4可以化为()A.-3×4-34×4 B.-3×4+34×4 C.-3 3-3 D.-3-34×47.如果两个有理数的积小于零,和大于零,那么这两个有理数()A.符号相反B.符号相反,绝对值相等C.符号相反,且负数的绝对值较大D.符号相反,且正数的绝对值较大8.若a<b<0,那么下列各式中正确的是()A.1÷a<1÷bB.ab<0C.a÷b<1D.a÷b>1二、细心填一填(每小题4分,共32分)9.计算:0÷(-2.4)=__________.10.如果式子“□×(-34)=1”成立,那么“□”的数应该是__________.11.奇数个负数相乘,结果的符号是__________.12.偶数个负数相乘,结果的符号是__________.13.如果4÷a>0,1÷b>0那么a÷b__________0.14.如果5a>0,0.3b<0,0.7c<0,那么b÷ac__________0.15.若一个数与它的绝对值的商是1,则这个数是__________数;若一个数与它的绝对值的商是-1,则这个数是__________数.16.两个因数的积为1,已知其中一个因数为-72,那么另一个因数是__________.三、用心做一做(共44分)17.计算:(1)(-3)×(+56)×(-145)×(-4)×[-(-79)].(2)(-12+16-38+512)×(-24).(3)45×(-513)-(-35)×(-513)-513×(-135).18.(1)(-0.75)÷54÷(-0.3).(2)-1+5÷(-16)×(-6).(3)[(+17)-(-13)-(+15)]÷(-1105).19.计算:(1)[-43.8+(-314)×1213-76.6]÷2.(2)(13+56-37-914)÷142.(3)+1313÷5-(-623)÷5+(-19617)÷5+7617÷5.20.一只小虫沿一条东西方向放着的木杆爬行,先以每分钟2.5米的速度向东爬行,后来又以这个速度向西爬行,试求它向东爬行3分钟,又向西爬行5分钟后距出发点的距离.21.洋洋同学在将某数乘以-1.25时漏乘了一个负号,所得结果比正确结果小0.25,那么正确结果应是多少?22.在10.5与它的倒数之间有a个整数,在10.5与它的相反数之间有b个整数.求(a+b)÷(a -b)+2的值.能力提升(测试时间:30分钟;满分:50分)一、精心选一选(每小题4分,共8分)1.运算式:989×15=(10-19)×15=10×15-19×15=150-159=14813,这个运算应用了()A.加法结合律B.乘法结合律C.乘法交换律D.乘法分配律2.四个各不相等的整数a,b,c,d,它们的积abcd=49,那么a+b+c+d的值为()A.14B.-14C.13D.0二、细心填一填(每小题4分,共12分)3.计算:0÷(-m)=__________,m×0=__________.4.汽车每小时向东走40千米(向东为正),3小时走了(+40)×3=+120千米,如果速度不变,向西走3小时,共走__________千米.5.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:711516×(-8).不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上:解法一:原式=-115116×8=-920816=-575.解法二:原式=(71+1516)×(-8)=71×(-8)+1516×(-8)=-57512.解法三:原式=(72-116)×(-8)=72×(-8)+116×(-8)=-57512.对这三种解法,大家议论纷纷,觉得解法__________是错误的,解法__________最好,理由:__________,通过对本题的求解,你的启发是__________.三、用心做一做(共30分)6.如果规定符号“※”的意义是a※b=(ab)÷(a+b)(a+b≠0),求2※(-3)※4的值.7.有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…第n个数记为a n,若a1=-12,从第二个数起,每个数都等于“1与它前面那数的差的倒数”.试计算:a2,a3,a4,a2000,a2018的值.8.某校七年级(5)为庆祝元旦,搞了一个主题班会,其中有一个“二十四点”的趣味题:现在我给出1~13之间的自然数,你可以从中任取四个,将这四个数(四个数都用且只能用一次)进行“+”“-”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可作运算(1+2+3)×4=24.也可以写成4×(2+3+1),但视作相同方法的.(1)现有四个有理数-9,-6,2,7,你能用三种不同的算法计算出24吗?(2)若给你3、6、7、-13,你还能凑出24吗?参考答案:基础知识:一、1.B;2.D.点拨:互为相反数的两数之和为0;3.D.点拨:绝对值不大于4的负整数有-4,-3,-2,-1;4.D;5.C;6.A;7.D.点拨:积小于0,说明两数异号,和大于零,说明正数的绝对值较大;8.D.点拨:可用特殊值代入法代入比较,如a取-4,b取-2.二、9.0;10.-43;11.负;12.正;13.>;14.>;15.正、负.点拨:正数的绝对值是它本身,负数的绝对值是它的相反数;16.-27.点拨:另一个因数是1÷(-72)=-27.三、17.(1)(-3)×(+56)×(-145)×(-4)×[-(-79)]=(-3)×(+56)×(-95)×(-4)×79=-(3×56×95×4×79)=-14.(2)(-12+16-38+512)×(-24)=(-12)×(-24)+16×(-24)+38×(-24)+512×(-24)=12-4+9-10=7.(3)45×(-513)-(-35)×(-513)-513×(-135)=(-513)×[45-(-35)+(-135)]=(-513)×(45+35-85)=(-513)×(-15)=113.18.(1)(-0.75)÷54÷(-0.3)=-34×45×(-310)=2.(2)-1+5÷(-16)×(-6)=-1+5×(-6)×(-6)=-1+180=179.(3)[(+17)-(-13)-(+15)]÷(-1105)=(17+13-15)×(-105)=-15-25+21=-29.19.(1)[-43.8+(-314)×1213-76.6]÷2=-43.8÷2+(-134)×1213÷2-76.6÷2=-21.9-1.5-38.3=-61.7.(2)(13+56-37-914)÷142=13÷142+56÷142-37÷142-9 14÷142=13×42+56×42-37×42-914×42=14+35-18-27=4.(3)+1313÷5-(-623)÷5+(-19617)÷5+7617÷5=[+1313-(-623)+(-19617)+7617]÷5=[(1313+623)+(-19617+7617)]÷5=(20-120)÷5=-100÷5=-20.20.3×2.5+5×(-2.5)=-5(米),小虫距出发点的距离是5米.21.依题意,得正确的结果与错误的结果刚好是互为相反数,而正确的结果-错误的结果=0.25,所以正确的结果=0.25÷2=0.125.22.依题意,得a=10,b=21,所以(a+b)÷(a-b)+2的值为-9 11.能力提升一、1.D;2.D.点拨:这4个数分别为±1,±7.二、3.0、0;4.-120.点拨:向东为正,则向西为负;5.一;二和三;巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.三、6.依题意,得2※(-3)※4=[2×(-3)]÷[2+ (-3)]※4=[(-6)÷(-1)]※4=6※4=(6×4)÷(6+4)=2.4.7.23,3,-12,23,23.点拨:先由题意,求出a2,a3,a4,发现每三个数为一循环,而2000=3×666+2,2018=672×3+2,故a2000=a2018=a2.8.(1)①2+7-(-9-6)=24;②2×(-6)×(7-9)=24;③-6×(7-2-9)=24;④-9×2-(-6)×7=24.(2)6-(-13+7)×3=24.。
人教版七年级数学上1.4有理数的乘除法测试题含答案及解析
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
2022-2023学年七年级上数学:有理数的乘除法(附答案解析)
2022-2023学年七年级上数学:有理数的乘除法
一.选择题(共5小题)
1.下列说法中,正确的是()
A.3.6÷0.4=9,所以3.6能被0.4整除
B.12的因数有6个
C.一个素数和一个合数一定互素
D.在正整数中,偶数都是合数
2.甲、乙、丙三人从A地徒步去B 地,甲用了小时,乙用了0.4小时,丙用了小时,那么甲、乙、丙三人的速度之比为()
A.10:12:15B.15:12:10C.6:5:4D.4:6:5
3.下列说法中,错误的是()
A.3能整除15
B.在正整数中,除了奇数就是偶数
C.在正整数中,除2外所有的偶数都是合数
D.一个正整数乘以一个假分数,积一定大于它本身
4.表示有理数a,b的点在数轴上的位置如图所示,以下四个式子中正确的是()
A.a+b>0B.ab>0C.a+2>0D.a﹣b<0
5.有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是()
A.|a|>|b|B.a+b>0C.a﹣b>0D.ab>0
二.填空题(共5小题)
6.14与35的最小公倍数是.
7.求比值:0.25平方米:100平方分米.
8.计算:﹣2÷=.
9.六(4)班昨天有27人到校上课,另有3人请假没来,昨天六(4)班的出勤率是.
第1页(共10页)。
专题 有理数的乘除法计算题(八大题型共50题)(原卷版)-2024-2025学年七年级数学上册同步精
(苏科版)七年级上册数学《第二章 有理数》 专题 有理数的乘除法的计算题(50题)1.计算:(1)0×(﹣112); 题型一 两个数有理数相乘(2)(﹣0.25)×(−45);(3)85×(−154); (4)(﹣416)×0.2.2.计算:(1)(﹣3)×(﹣4);(2)(﹣3.2)×1.5;(3)49×(−32); (4)134×(﹣8).3.计算:(1)(﹣3)×(﹣4);(2)(+45)×(﹣114); (3)(﹣2022)×0;(4)(﹣0.125)×8;(5)25×(﹣1);(6)(−13)×(﹣3).4.计算:(1)0×(−56); (2)3×(−13);(3)(﹣7)×(﹣1);(4)(−16)×(−67).5.(−47)×23×(−114)×12.6.计算:(1)(﹣2)×(−12)×(﹣3);(2)(﹣0.1)×1000×(﹣0.01).7.(2022秋•宁远县校级月考)求值:(1)14×(﹣16)×(−45)×(﹣114); (2)(−511)×(−813)×(﹣215)×(−34). 题型二 多个有理数相乘8.计算:(1)(﹣8)×154×(−13); (2)(−37)×(−89)×(﹣6);(3)23×(−12)×(−45)×(﹣5).9.计算下列各题:(1)6)2.0()61()30(⨯-⨯-⨯- (2))98()321(87)53(-⨯-⨯⨯- (3)411)54()16(41-⨯-⨯-⨯ (4))]751([)91()2.1(45--⨯-⨯-⨯-10.计算:(1)3×(﹣1)×(−13).(2)﹣1.2×5×(﹣3)×(﹣4).(3)(−512)×415×(−32)×(﹣6). (4)54×(﹣1.2)×(−19).11.计算:(﹣8)×9×(﹣1.25)×(−19) 12.用简便方法计算:(﹣8)×(−43)×(﹣1.25)×54.13.(2022秋•惠城区月考)计算:45×(−25)×78×(−1115)÷14×(−117).14.计算:(﹣36)×99717215.计算:−(−595960)×60;题型三 利用乘法运算律简便计算16.用简便方法计算(1)﹣392324×(﹣12) (2)(23−112−115)×(﹣60)17.用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34(2)(−13−14+15−715)×(﹣60)18.用乘法运算律,将下列各式进行简便计算:(1)(﹣112)×(﹣7)×23; (2))25.1()541(8)5(-⨯-⨯⨯- (3)(﹣48)×(−34+56−712); (4)0.7×311−6.6×37−1.1×37+0.7×811.(5)﹣392324×(﹣12) (6)4.61×37−5.39×(−37)+3×(−37).19.计算:(1)(﹣6.5)÷(﹣0.5);(2)4÷(﹣2);(3)0÷(﹣1 000);(4)(﹣2.5)÷58.20.计算:(1)0÷(﹣2022);(2)(﹣27)÷9;(3)(−43)÷43;(4)−32÷1.521.计算:(1)(﹣68)÷(﹣17);(2)(﹣0.75)÷0.25;(3)(−78)÷(﹣1.75);(4)312÷(﹣7)题型四 两个有理数的除法(1)(+48)÷(+6);(2)(−323)÷(512);(3)4÷(﹣2);(4)0÷(﹣1000).23.计算:(1)(−47)÷(−314)÷(−23);(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).24.计算:(1)(﹣24)÷(﹣2)÷(﹣115); (2)﹣27÷214÷94÷(﹣24).题型五 多个有理数的除法(1)(−35)÷(﹣27)÷(﹣114)÷3; (2)(﹣8)÷23÷(﹣23)÷(﹣9).26.计算:(1)﹣3÷(−34)÷(−34);(2)(﹣12)÷(﹣4)÷(﹣115); (3)(−23)÷(−87)÷0.25;(4)(﹣212)÷(﹣5)÷(﹣310).27.计算:(1)(−23)÷(−85)÷(﹣0.25);(2)(﹣81)÷94÷94÷(﹣16); (3)(﹣6.5)÷(−12)÷(−25)÷(﹣5).28.计算:59÷20×185.29.(2022秋•榆树市期中)计算:(﹣54)÷34×43÷(﹣32).30.(2022秋•丰台区校级期中)计算:(−35)×(−27)÷37.31.计算:(﹣223)×1516÷(﹣1.5)题型六 有理数乘除混合运算32.计算:(﹣81)÷214×49÷(﹣16)33.(2022秋•香洲区校级月考)计算:(1)(−5)×6×(−45)×14;(2)−9÷(−0.1)÷(−335).34.计算:(1)(﹣32)÷4×(−116); (2)(−23)×(−85)÷(﹣178).35.计算:(1)(﹣134)×(﹣112)÷(﹣118). (2)(﹣1.25)×54×(﹣8)÷(−34).36.计算:(1)(−35)×(﹣312)÷(﹣114)÷3;(2)(﹣8)÷23×(﹣112)÷(﹣9).37.计算:(1)(−517)×(−34)÷9×(﹣325);(2)(−72)÷(﹣114)÷3×(−35);(3)(−320)×246÷910×(−341).38.(−73)÷(−79)+54×(−85).题型七有理数加减乘除混合运算39.计算:113×(−212+34)÷(−213).40.计算:1.25×(25−215)+125÷6.41.计算:(−73)÷(−76)+34×(−83).42.计算:(−72)×(16−12)×314÷(−12)43.计算:(1)[1124−(38+16−34)×24]×(−15)(2)−5×(−115)+11×(−115)−3×(−225).44.计算:(1)−1÷(−18)−3÷(−12);(2)−81÷13−13÷(−19).(3)−1+5÷(−16)×(−6);(4)(13−12)÷114÷110.45.计算.(1)1.25÷(−0.5)÷(−212);(2)(−45)÷[(−13)÷(−25)];(3)(13−56+79)÷(−118);(4)−32324÷(−112).46.计算:(1)75×(13−12)×37÷54; (2)(56−37+13−914)÷(−142).47.数学老师布置了一道思考题“计算:(−112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(﹣12)=﹣4+10=6, 所以(−112)÷(13−56)=16.(1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(−124)÷(13−16+38).48.请你认真阅读下列材料计算:(−130)÷(23−110+16−25) 解法1:原式=(−130)÷[23+16−(110+25)]=(−130)÷(56−12)=(−130)×3=−110 解法2:将原式的除数与被除数互换(23−110+16−25)÷(−130)=(23−110+16−25)×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=−110根据你对所提供的材料的理解,选择适当的方法计算下面的算式: (−142)÷(−16−314+23−47)题型八 利用“倒数法”解决问题49.(2022秋•徐州月考)认真阅读材料后,解决问题: 计算:130÷(23−110+16−25). 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算. 解:原式的倒数是(23−110+16−25)÷130 =(23−110+16−25)×30 =(23×30−110×30+16×30−25×30=20﹣3+5﹣12=10,故原式=110. 仿照阅读材料计算:(−120)÷(−14−25+910−32).50.阅读材料:计算130÷(23−110+16−25) 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算 解:原式的倒数是:=(23−110+16−25)×30 =(23−110+16−25)×30 =23×30−110×30+16×30−25×30 =10故原式=110请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23)。
七年级数学上册《第一章 有理数的乘除法》同步练习题含答案(人教版)
七年级数学上册《第一章 有理数的乘除法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.2.7-2.1÷3+3.2的计算结果正确的是( ) A .5 B .1.6 C .5.2 D .7 2.下列说法正确的是( )A .同号两数相乘,取原来的符合B .两个数相乘,积大于任何一个乘数C .一个数与0相乘仍得这个数D .一个数与-1相乘,积为该数的相反数 3.下列计算正确的是( ) A .()48- × 11168⎛⎫--⎪⎝⎭ =-8+6+1=-1 B .()24- × 11123⎛⎫-+- ⎪⎝⎭ =12+8+24=44 C .()18- × 12⎡⎤⎛⎫--⎪⎢⎥⎝⎭⎣⎦ =9D .-5×2× 2- =-204.按如图所示的运算程序,若输入m 的值是﹣2,则输出的结果是( )A .﹣1B .3C .﹣5D .75.在一张比例为1∶1000000的地图上,量得人民广场与淀山湖两地的距离为5.5厘米,那么人民广场到淀山湖的实际距离为( ) A .0.55千米 B .5.5千米 C .55千米 D .550千米 6.五个有理数的积为负数,则五个数中负数的个数是( ) A .1 B .3 C .5 D .1或3或5 7.网上一些推广“成功学”的主播,常引用下面这个被称为竹子定律的段子:“竹子前4年都用在扎根,竹芽只能长3cm ,而且这3cm 还是深埋于土下到了第五年,竹子终于能破土而出,会以每天30cm 的速度疯狂生长.此后,仅需要6周的时间,就能长到15米,惊艳所有人!”。
这段话的确很励志,须不知,要符合算理的话,需将上文“6周”中的整数“6”改为整数( ) A .5 B .7 C .8 D .9 8.有理数 ,a b 在数轴上的位置如图所示,则下列说法错误的是( )A .0a b +>B .0b a ->C .0ab <D .a b >二、填空题: 9.计算: 11112643⎛⎫-⨯+-=⎪⎝⎭. 10.乘积是10的两个负整数之和是 .11.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是 元.12.已知: ()()1210,210,210a b c ⎛⎫=-+-=---=-⨯- ⎪⎝⎭,请把a 、b 、c 按从大到小顺序排列为 .13.小强有10张写有不同的数的卡片,分别为+1,﹣1,﹣8,0,﹣3.5,+4,+7,﹣9,﹣2.+3从中抽取5张卡片,使得这5张卡片的积最小,请问最小的积为 . 三、解答题:14.简便运算: ()()1115777127333⎛⎫⎛⎫⎛⎫-⨯++⨯--+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.15.计算(1)24(16)(25)15--+--;(2)111311123124244⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++----+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(3)412(63)7921⎛⎫-+⨯- ⎪⎝⎭;(4)111(5)323(6)3333-⨯+⨯+-⨯16.(1)两数的积是1,已知一个数是327-,求另一个数; (2)两数的商是132-,已知被除数是142,求除数.17.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶100km 需用汽油6升,汽油每升5.5元,试估计小明家一个月(按30天计)的汽油费用是多少元?18.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:参考答案:1.C 2.D 3.D 4.D 5.C 6.D 7.C 8.A 9.-110.-11或-711.20012.b c a>>13.﹣705614.解:原式=()111-5777127333⨯-⨯+⨯=()1571273 --+⨯=1 073⨯=0.15.(1)解:原式= 24(16)(25)15--+-- =24+16-25-15=40-(25+15)=40-40=0;(2)解:原式=-1 12+114-212+334-114=-1 12-212+114-114+334=-4+3 3 4=1 4 -(3)解:原式=4126363637921-⨯+⨯-⨯ =-36+7-6=-42+7=-35(4)解:111(5)323(6)3333-⨯+⨯+-⨯ = []10(5)(6)3-+-⨯ =10(9)3-⨯ =-3016.(1)717-;(2)97-17.(1)解:总路程为:(50﹣8)+(50﹣11)+(50﹣14)+50+(50﹣16)+(50+41)+(50+8)=350(km)平均每天路程为:350÷7=50(km)答:这七天中平均每天行驶50千米.(2)解:估计小明家一个月的汽油费用是(50×30÷100×6)×5.5=495(元)答:估计小明家一个月的汽油费用是495元.18.(1)15(2)5 3 -(3)方法不唯一。
七年级数学有理数的乘除法计算题
七年级数学有理数的乘除法计算题题目 1计算:公式解析:两个负数相乘,结果为正数。
公式题目 2计算:公式解析:正数乘以负数,结果为负数。
公式题目 3计算:公式解析:任何数乘以 0 都得 0,所以公式题目 4计算:公式解析:一个负数乘以一个正数,结果为负数。
公式题目 5计算:公式解析:分数相乘,分子相乘作为分子,分母相乘作为分母,正负号根据乘法法则确定。
公式题目 6计算:公式解析:两个负数相除,结果为正数。
公式题目 7计算:公式解析:正数除以负数,结果为负数。
公式题目 8计算:公式解析:0 除以任何非 0 数都得 0,所以公式题目 9计算:公式解析:负数除以正数,结果为负数。
公式题目 10计算:公式解析:负数除以负数,结果为正数。
除以一个分数等于乘以它的倒数。
公式题目 11计算:公式解析:因为其中有一个因数 0,所以结果为 0。
题目 12计算:公式解析:先确定正负号,再约分计算。
公式题目 13计算:公式解析:先确定正负号为负,再计算数值。
公式题目 14计算:公式解析:从左到右依次计算,负数除以正数为负,负数除以负数为正。
公式题目 15计算:公式解析:从左到右依次计算,先将除法转化为乘法。
公式题目 16计算:公式解析:先将带分数化为假分数,然后从左到右依次计算。
公式题目 17计算:公式解析:先将带分数化为假分数,然后从左到右依次计算。
公式题目 18计算:公式解析:先计算括号内的值,再进行乘除运算。
公式题目 19计算:公式解析:先确定正负号为正,再计算数值。
公式题目 20计算:公式解析:先将乘法运算进行,然后再进行除法运算。
公式。
人教版七年级数学上册第一章1.4有理数的乘除法-中考试题汇编含精讲解析
人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(X•珠海)的倒数是()A.B.C.2 D.﹣23.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣35.(X•自贡)的倒数是()A.﹣2 B.2 C.D.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣29.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.310.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2 11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2 14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣216.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±117.(X•黔东南州)的倒数是()A.B.C.D.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2 20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.222.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.324.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.二.填空题(共1小题)27.(X•湘潭)的倒数是.人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析参考答案与试题解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(X•珠海)的倒数是()A.B.C.2 D.﹣2考点:倒数.分析:根据倒数的定义求解.解答:解:∵×2=1,∴的倒数是2.故选C.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.考点:倒数.分析:乘积是1的两数互为倒数,所以﹣5的倒数是﹣.解答:解:﹣5与﹣的乘积是1,所以﹣5的倒数是﹣.故选D.点评:本题主要考查倒数的概念:乘积是1的两数互为倒数.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣3考点:倒数.专题:存在型.分析:根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.5.(X•自贡)的倒数是()A.﹣2 B.2 C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣2考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.3考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.10.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣考点:倒数.分析:根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.解答:解:的倒数是5.故选A.点评:此题主要考查倒数的意义,关键是求一个数的倒数的方法.12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是﹣.故选:A.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2考点:倒数;相反数.分析:根据倒数和相反数的定义分别解答即可.解答:解:﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选;D.点评:此题主要考查了倒数和相反数的定义,要求熟练掌握.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣2考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣2的倒数是,故选C.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±1考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:﹣1的倒数是﹣1,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.17.(X•黔东南州)的倒数是()A.B.C.D.考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1即可解答.解答:解:根据倒数的定义得:﹣×(﹣)=1,因此倒数是﹣.故选D.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:X的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣X×(﹣)=1,∴﹣X的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.22.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.24.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.考点:有理数的乘法;有理数大小比较;有理数的减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.考点:有理数的乘法.分析:根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.解答:解:原式=××=,故选:D.点评:本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.考点:有理数的除法.分析:根据有理数的除法,即可解答.解答:解:(﹣18)÷6=﹣3.故选:A.点评:本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.二.填空题(共1小题)27.(X•湘潭)的倒数是 2 .考点:倒数.分析:根据倒数的定义,的倒数是2.解答:解:的倒数是2,故答案为:2.点评:此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.。
人教版七年级数学上1.4有理数的乘除法测试题含答案及解析
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
七年级数学有理数的乘除法练习题(二)(含答案)
七年级上学期数学《有理数的乘除法》练习题一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( )A.13÷(-3)=3×(-3) B.1(5)5(2)2⎛⎫-÷-=-⨯-⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7)10.下列运算正确的是( )A.113422⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-=⎪⎝⎭; D.(-2)÷(-4)=2二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b>>,那么ab_____0.6.如果5a>0,0.3b<0,0.7c<0,那么bac____0.7.-0.125的相反数的倒数是________.8.若a>0,则aa=_____;若a<0,则aa=____.三、解答1.计算:(1)384⎛⎫-⨯⎪⎝⎭; (2)12(6)3⎛⎫-⨯-⎪⎝⎭; (3)(-7.6)×0.5; (4)113223⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.2.计算.(1)38(4)24⎛⎫⨯-⨯--⎪⎝⎭; (2)38(4)(2)4-⨯-⨯-; (3)38(4)(2)4⎛⎫⨯-⨯-⨯-⎪⎝⎭.3.计算(1)111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2)111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.4.计算(1)(+48)÷(+6); (2)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭;(3)4÷(-2); (4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭;(3)1213(5)6(5) 33⎛⎫⎛⎫-÷-+-÷-⎪ ⎪⎝⎭⎝⎭.6.计算(1)111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭; (2)11181339⎛⎫-÷-÷- ⎪⎝⎭.七年级上学期数学《有理数的乘除法》练习题参考答案一、ACBBA,DCCAB二、1.相同; 2互异; 3负; 4正的; 5.>; 6.>; 7.8; 8.1,-1三、1.(1)-6;(2)14;(3)-3.8;(4)1 8 62.(1)22;(2)2;(3)-48;3.(1)213;(2)584.(1)8;(2)23;(3)-2;(4)05.(1)-7;(2)375;(3)4 6.(1)14;(2)-240。
2019—2020年人教版七年级数学第一学期《有理数的乘除法》同步测试题及答案.docx
1.4有理数的乘除法同步测试题一、选择题1.下列说法正确的是( )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02.两个有理数的商是负数,则这两个数一定是( )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( )A .1B .-1C .0D .25.计算1357×316,最简便的方法是( ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166.下列说法正确的是( )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有( )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab____0;若a >0,b <0,则ab____0;若a <0,b >0,则ab____0;若a <0,b<0,则ab____0.15.若a >0,则|a|a =____,若a <0,则|a|a=______. 16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc________0,abcd________0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是_______ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(____________)=[4×(8×125)-5]×25(____________)=4 000×25-5×25.(____________)19.在如图所示的运算流程中,若输入的数为3,则输出的数为________.20.计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=________.三、解答题(1)14×(-16)×(-45)×(-114);(2)(-81)÷214×49÷(-16);(3)(-12)×(-23)×(-3);(4)317×(317÷713)×722÷1121.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.23.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少?参考答案一、选择题1.下列说法正确的是( C )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02. 两个有理数的商是负数,则这两个数一定是( C )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( C )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( B )A .1B .-1C .0D .25. 计算1357×316,最简便的方法是( C ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166. 下列说法正确的是( C )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( C )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( B )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( B ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有(B )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( B )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( B ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( C )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab__>__0;若a >0,b <0,则ab__<__0;若a <0,b >0,则ab__<__0;若a <0,b <0,则ab__>__0.15.若a >0,则|a|a =__1__,若a <0,则|a|a=__-1____.16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc___>_____0,abcd____>____0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是____+___ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(__乘法交换律__________)=[4×(8×125)-5]×25(____乘法结合律________)=4 000×25-5×25.(_______乘法分配律_____)19.在如图所示的运算流程中,若输入的数为3,则输出的数为___-2_____.20. 计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=____1____.[三、解答题(1)14×(-16)×(-45)×(-114); 解:原式=-(14×16×45×54)=-4.(2)(-81)÷214×49÷(-16);解:原式=81×49×49×116=1.(3)(-12)×(-23)×(-3); 解:原式=-(12×23×3)=-1.(4)317×(317÷713)×722÷1121. 解:原式=227×37×722×2122=922.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.解:∵|a|=4,|b|=5,∴a =±4,b =±5,∵ab <0,∴a =4,b =-5或a =-4,b =5,∴a +b =4+(-5)=-1或a +b =(-4)+5=1,即a +b 的值为-1或123.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少? 当a>0,b<0时,原式=a a +b b +ab ab=1+1+1=3; 当a>0,b>0时,原式=a a +b -b +ab -ab=1+(-1)+(-1)=-1; 当a<0,b>0时,原式=a -a +b b +ab -ab=-1+1+(-1)=-1; 当a<0,b<0时,原式=a -a +b -b +ab ab=-1+(-1)+1=-1. 即a |a|+b |b|+ab |ab|的值为3或-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘除法测试时间:60分钟 总分: 100一、选择题(本大题共10小题,共30.0分)1. 若a <c <0<b ,则下列各式正确的是( )A. abc <0B. abc =0C. abc >0D. 无法确定2. 正整数x 、y 满足(2x −5)(2y −5)=25,则x +y 等于( )A. 18或10B. 18C. 10D. 263. 若|x|=2,y 2=9,且xy <0,则x −y 等于( )A. 1或−1B. 5或−5C. 1或5D. −1或−54. 算式(−112)×(−314)×23之值为何?( ) A. 14 B. 1112 C. 114 D. 1345. 计算(−3)×9的值是( )A. 6B. 27C. −12D. −276. 若a 2=4,b 2=9,且ab >0,则a −b 的值为( )A. ±5B. ±1C. 5D. −17. 两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是( )A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8. −114的倒数与4的相反数的商是( ) A. −5B. 5C. 15D. −15 9. 计算1a ×(−a)÷(−1a )×a 等于( )A. 1B. a 2C. −aD. 1a 2 10. 计算:1÷(−5)×(−15)的结果是( )A. 1B. −1C. 125D. −125 二、填空题(本大题共10小题,共30.0分)11. 若a >0,b >0,则ab ______ 0;若a >0,b <0,则ab ______ 0.12. 已知|x|=3,|y|=5,且xy <0,则x −y 的值等于______ .13. ①比−9大−3的数是______ ;②5比−16小______ ;③数______ 与−213的积为14.14. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…则100!98!÷99的值为______ .15. 计算−163÷43×(−34)的结果是______ . 16. 四个互不相等的整数a 、b 、c 、d ,使(a −3)(b −3)(c −3)(d −3)=25,则a +b +c +d = ______ .17. (−78)÷(−34)= ______ .18. 计算:−9÷32×23=______.19. 化简:−21−7= ______ .20. 已知|a|=3,|b|=4,且a <b ,则a−b a+b 的值为______ .三、计算题(本大题共4小题,共24.0分)21. (−56)÷(−3)×(−145)×(−2)22. 运算:24÷(12−13+14−16)23. (12−16+13)×(−24).24. (−16+34−112)×(−48).四、解答题(本大题共2小题,共16.0分)25. 数学老师布置了一道思考题“计算:(−112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(−12)=−4+10=6, 所以(−112)÷(13−56)=16.(1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(−124)÷(13−16+38).26. 利用适当的方法计算:713×(−9)+713×(−18)+713.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C 9. B 10. C11. >;<12. 8或−813. −12;−21;−614. 10015. 316. 12 17. 7618. −419. 320. −7或−1721. 解:原式=(−56)×(−13)×(−95)×(−2),=1. 22. 解:原式=24÷12−8+6−424=24÷14=24×4=96. 23. 解:原式=−12+4−8=−16.24. 解:原式=−16×(−48)+34×(−48)−112×(−48),=8−36+4=−24.25. 解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(−124)=(13−16+38)×(−24)=−8+4−9=−13, 则(−124)÷(13−16+38)=−113. 26. 解:原式=713×(−9−18+1)=713×(−26)=−14.【解析】1. 解:∵a <c <0<b ,∴ac >0(同号两数相乘得正),∴abc >0(不等式两边乘以同一个正数,不等号的方向不变).故选C .根据有理数乘法法则:两数相乘,同号得正可得ac >0.再根据不等式是性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2. 解:∵x,y是正整数,∴(2x−5)、(2y−5)均为整数,∵25=1×25,或25=5×5,∴存在两种情况:①2x−5=1,2y−5=25,解得:x=3,y=15,;②2x−5=2y−5=5,解得:x=y=5;∴x+y=18或10,故选A.易得(2x−5)、(2y−5)均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.3. 解:因为|x|=2,y2=9,所以x=±2,y=±3,因为xy<0,所以x=2,y=−3,所以x−y=2+3=5;所以x=−2,y=3,所以x−y=−2−3=−5;故选B先由绝对值和平方根的定义求得x、y的值,然后根据xy<0分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当x=2时,y=−3,当x=−2时,y=3是解题的关键.4. 解:原式=32×134×23=134.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式=(−3)×9=−27,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab>0,∴①当a>0,b>0,即当a=2,b=3,a−b=−1;②当a<0,b<0,即a=−2,b=−3,a−b=1.故选B.首先用直接开平方法分别求出a、b的值,再由ab>0可确定a、b同号,然后即可确定a、b的值,然后就可以求出a−b的值.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得ab =ba,由比例的性质得:a2=b2.∴a2−b2=0.∴(a+b)(a−b)=0.∴a=b或a=−b.故选:D.设这两个数分别为a 、b ,根据题意得到a b =b a ,从而可得到a 2=b 2,从而可判断出a 、b 之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到(a +b)(a −b)=0是解题的关键. 8. 解:∵−114的倒数是−45,4的相反数是−4,∴−45÷(−4)=15.故选C .依据相反数、倒数的概念先求得−114的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则. 9. 解:1a ×(−a)÷(−1a )×a=1a ⋅(−a)⋅(−a)⋅a =a 2,故选:B .根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法. 10. 解:1÷(−5)×(−15)=1×(−15)×(−15)=125,故选:C .根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若a >0,b >0,则ab >0;若a >0,b <0,则ab <0.故答案为:>;<.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:∵|x|=3,|y|=5,且xy <0,∴x =3,y =−5或x =−3,y =5,则x −y =8或−8.故答案为:8或−8根据题意利用有理数的乘法法则判断x 与y 异号,再利用绝对值的代数意义求出x 与y 的值,即可求出x −y 的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键. 13. 解:①比−9大−3的数是:−9+(−3)=−12;②5比−16小−21;③14÷(−213)=−6;故答案为:−12,−21,−6.①比−9大−3的数是−9+(−3),根据有理数的加法法则即可求解;②根据题意列式,列出算式,再进行计算即可;③根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:100!98!÷99=100×99×98×97×…×2×198×97×…×2×1×199=100.故答案为:100.根据“!”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式=163×34×34=3,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:∵四个互不相等的整数(a−3),(b−3),(c−3),(d−3)的积为25,∴这四个数只能是1,−1,5,−5,∴a−3=1,(b−3)=−1,(c−3)=5,(d−3)=−5,则a+b+c+d=12.故答案为:12.找出25的四个互不相等的因数,即1,−1,5,−5.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,−1,5,−5.17. 解:原式=78×43=76,故答案为:76原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式=−9×23×23=−4,故答案为:−4.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:−21−7=3,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:∵|a|=3,|b|=4,∴a=±3,b=±4,∵a<b,∴当a=3时,b=4,∴a−ba+b =−17,当a=−3时,b=4,∴a−ba+b=−7,故答案为:−7或−1.7根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与−48相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. (1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将7提到括号外,然后先计算括号内的部分,最后再算乘法13即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。