数字图像处理第3章_图像直方图
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 图像灰度直方图
彩色图像的分波段直方图
v i
计算(1) [纵轴:相对数量] 该图像像元总数为8*8=64, i=[0,7]
v0=5/64
vi
01321321
v1=12/64
05762567
v2=18/64
16063512 26753650 32272416
v3=8/64 v4=1/64
22562760
则该幅图像的平均信息量(熵)为:
L1
H Pi log2 Pi i0
熵反映了图像信息丰富的程度,在图像编码处理中具有重要意义。
1. 有一胶片图象,在背景明亮的天空衬托 下,有一亮色屋顶的深色谷仓.
在下述各种情况下,试指出直 方图看起来将是什么样子:如果该图象被(a) 正确数字化;(b)数字化时增益调整过低; (c)数字化时增益调整过高;(d)数字化 时偏置过大;(e)数字化时偏置过小;(f) 数字化时增益和偏置均过大。假设0为暗, 255为亮。
Anvi iT
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 计算图像信息量H (熵)
假设一幅数字图像的灰度范围为[0, L-1],各灰度级像素出现的 概率为P0,P1,P2,…,PL-1,根据信息论可知,各灰度级像素具有 的信息量分别为:-log2P0,-log2P1,-log2P2,…,-log2PL-1。
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
灰度直方图的定义:
反映一幅图像中各灰度级与各灰度级像素出 现 的频率之间的关系。
灰度直方图的绘制: 以灰vi度 级为横坐标,纵坐标为灰度级的频率,绘 制频率同灰度级频率的关系图。
频率的计算:
vi
ni n
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
N5=5
百度文库
i
12321212
N6=8
31231221
N7=5
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
✓ 只能反映图像的灰度分布情况,而不能反映图像像素 的位置
✓ 一幅图像对应惟一的灰度直方图,反之不成立 ✓ 一幅图像分成多个区域,多个区域的直方图之和即为
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当 ✓ 用于确定图像二值化的阈值 ✓ 当物体部分的灰度值比其他部分灰度值大时,可利用 直方图统计图像中物体的面积 ✓ 计算图像信息量H(熵)
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
v i
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
v i
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
原图像的直方图
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
v5=5/64
i
12321212
v6=8/64
31231221
v7=5/64
计算(2) [纵轴:绝对数量] 该图像像元总数为8*8=64, i=[0,7]
N0=5
Ni
01321321
N1=12
05762567
N2=18
16063512 26753650 32272416
N3=8 N4=1
22562760
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当
数字化获取的图像应该利用全部可能的灰度级
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g(x,y)10
f(x,y)T f(x,y)T
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
第3章 图像灰度直方图
内容: ✓ 灰度直方图的基本概念 ✓ 灰度直方图的性质 ✓ 灰度直方图的应用
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 统计图像中物体的面积
当物体部分的灰度值比其他部分灰度值大时,可利用 直方图统计图像中物体的面积
彩色图像的分波段直方图
v i
计算(1) [纵轴:相对数量] 该图像像元总数为8*8=64, i=[0,7]
v0=5/64
vi
01321321
v1=12/64
05762567
v2=18/64
16063512 26753650 32272416
v3=8/64 v4=1/64
22562760
则该幅图像的平均信息量(熵)为:
L1
H Pi log2 Pi i0
熵反映了图像信息丰富的程度,在图像编码处理中具有重要意义。
1. 有一胶片图象,在背景明亮的天空衬托 下,有一亮色屋顶的深色谷仓.
在下述各种情况下,试指出直 方图看起来将是什么样子:如果该图象被(a) 正确数字化;(b)数字化时增益调整过低; (c)数字化时增益调整过高;(d)数字化 时偏置过大;(e)数字化时偏置过小;(f) 数字化时增益和偏置均过大。假设0为暗, 255为亮。
Anvi iT
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 计算图像信息量H (熵)
假设一幅数字图像的灰度范围为[0, L-1],各灰度级像素出现的 概率为P0,P1,P2,…,PL-1,根据信息论可知,各灰度级像素具有 的信息量分别为:-log2P0,-log2P1,-log2P2,…,-log2PL-1。
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
灰度直方图的定义:
反映一幅图像中各灰度级与各灰度级像素出 现 的频率之间的关系。
灰度直方图的绘制: 以灰vi度 级为横坐标,纵坐标为灰度级的频率,绘 制频率同灰度级频率的关系图。
频率的计算:
vi
ni n
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
N5=5
百度文库
i
12321212
N6=8
31231221
N7=5
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
✓ 只能反映图像的灰度分布情况,而不能反映图像像素 的位置
✓ 一幅图像对应惟一的灰度直方图,反之不成立 ✓ 一幅图像分成多个区域,多个区域的直方图之和即为
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当 ✓ 用于确定图像二值化的阈值 ✓ 当物体部分的灰度值比其他部分灰度值大时,可利用 直方图统计图像中物体的面积 ✓ 计算图像信息量H(熵)
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
v i
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.1 图像灰度直方图的基本概念
v i
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
原图像的直方图
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.2 灰度直方图的性质
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
v5=5/64
i
12321212
v6=8/64
31231221
v7=5/64
计算(2) [纵轴:绝对数量] 该图像像元总数为8*8=64, i=[0,7]
N0=5
Ni
01321321
N1=12
05762567
N2=18
16063512 26753650 32272416
N3=8 N4=1
22562760
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当
数字化获取的图像应该利用全部可能的灰度级
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于判断图像量化是否恰当
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g(x,y)10
f(x,y)T f(x,y)T
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
第3章 图像灰度直方图
内容: ✓ 灰度直方图的基本概念 ✓ 灰度直方图的性质 ✓ 灰度直方图的应用
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 用于确定图像二值化的阈值
g f r ( x , y , t ) f g ( , x , y , t ) f b ( x , , y , t )
3 图像灰度直方图
3.3 灰度直方图的应用
✓ 统计图像中物体的面积
当物体部分的灰度值比其他部分灰度值大时,可利用 直方图统计图像中物体的面积