探索多边形的内角和公式

合集下载

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

2023年探索多边形的内角和与外角和教案

2023年探索多边形的内角和与外角和教案

2023年探索多边形的内角和与外角和教案2023年探索多边形的内角和与外角和教案1一、教学目标:1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。

2、能灵活的运用多边形内角和与外角和公式解决有关问题。

二、教材分析本节的主要内容是多边形的.外角定义和公式。

多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题。

为提供三角形的外角提供了一种方法。

三、教学重点、难点1、多边形的外角和公式及公式的探索过程。

2、能灵活运用多边形的内角和与外角和公式解决有关问题。

四、教学建议关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°。

五、教具、学具准备投影仪、题板、画图工具六、教学过程1、复习提问:(1)多边形的内角和是多少?(2)正八边形的每一个内角为度?2、创设问题情景,引入新课:教师投放课本51页图9—35时,并出示以下问题:小明沿一个五边形广场周围的小路,按顺时针方向跑步(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。

(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?点拨:请填写下题:如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=,∠β=,∠γ=,∠δ=∠θ=。

因为∠α+∠β+∠γ+∠δ+∠θ=。

所以∠1+∠2+∠3+∠4+∠5=。

由此可得:五边形的外角和是360°(4)你能借助内角和来推导五边形的外角和吗?点拨:因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°—(5—2)×180°=360°(5)你用第二种方法推导下列多边形的外角和三角形的外角和四边形的外角和五边形的外角和n边形的外角和是。

多边内角和公式

多边内角和公式

多边内角和公式多边形内角和公式是我们在数学学习中一个非常重要的知识点。

咱们先来说说什么是多边形。

简单来讲,多边形就是由多条线段首尾顺次连接所围成的封闭图形。

那多边形的内角和公式又是啥呢?这公式就是:(n - 2)×180°,其中 n 表示多边形的边数。

我记得有一次给学生们讲这个知识点的时候,发生了一件特别有意思的事儿。

那是一个阳光明媚的上午,我像往常一样走进教室。

当我在黑板上写下多边形内角和公式的时候,下面的同学们一脸迷茫。

于是我决定用一个实际的例子来帮助他们理解。

我拿出了一个六边形的纸模型,问同学们:“大家猜猜这个六边形的内角和是多少度?”同学们开始七嘴八舌地讨论起来,有的说500 度,有的说 800 度。

我笑着摇摇头,然后把六边形沿着对角线剪成了四个三角形。

我指着这四个三角形问:“一个三角形的内角和是 180 度,那四个三角形的内角和是多少度呢?”同学们恍然大悟,纷纷算出是 720 度。

接着我又说:“那咱们再看看这个公式,六边形的边数 n 是 6,代入公式 (6 - 2)×180 = 720 度,是不是和咱们刚才算的一样呀?”同学们这下子眼睛都亮了,纷纷点头。

其实啊,多边形内角和公式不仅仅是一个数学公式,它在我们的生活中也有很多的应用呢。

比如说,建筑师在设计房屋的时候,需要考虑到房间的角度和形状,这时候多边形内角和公式就能派上用场。

再比如,我们在制作拼图或者镶嵌图案的时候,也需要用到这个公式来保证图案的完美拼接。

咱们再回过头来仔细想想这个公式。

为什么是 (n - 2)×180°呢?这是因为从一个 n 边形的一个顶点出发,可以引出 (n - 3) 条对角线,把 n边形分成 (n - 2) 个三角形。

而每个三角形的内角和是 180 度,所以 n边形的内角和就是 (n - 2)×180 度。

对于这个公式,同学们在刚开始学习的时候可能会觉得有点难理解。

6.4.2多边形的内角和与外角和(2)

6.4.2多边形的内角和与外角和(2)

练一练
练习:如果一个多边形的每一个外角等 12 。 于30°,则这个多边形的边数是_____
n边形外角和=360 ° n×30°=360° n=12
练一练
72° 练习2:正五边形的每一个外角等于____ , 144° 每一个内角等于_____ 。
解:设正五边形的每一个外角度数为x,由
多边形的外角和等于360度可得:
注意
一般地,在多边形的任 一顶点处按顺(逆)时针方向 可作外角,n边形有n个外角.
1 B 2 5 E
C 3 D 4
(2)他每跑完一圈,跑步方向改变的角一共有几 个?它们的和是多少?
动动脑
探索多边形的外角和是多少?说说你的方法.
1 1 3 2 2 1 4 3 3 2 5 4
问题解决
∠1﹢∠2﹢∠3=180°
A
C
1 2
B
课时小结
1.多边形的外角及外角和的定义;
2.多边形的外角和等于360°; 3、利用多边形的内角和与外角和公式能解决以下 问题: (1)已知边数求内角和与内角度数; (2)已知内角和求边数; (3)已知各相等内角与外角度数求多边形边数。 4.在探求过程中我们使用了观察、归纳的数学方 法,并且运用了类比、转化等数学思想。
练习:
1.已知一个多边形的每个外角都等于45°,
那么这个多边形的边数是?
2.已知十边形的各个内角都相等,求每个内角、
外角的度数。
3.如果一个多边形的内角和是它的外角和的 5倍,那么这个多边形的边数是多少?
3.一个多边形切(剪)去一个角后,形成另一 个多边形的内角和为2520度,则原多边形 的边数为 15或16或17
问题解决
∠1﹢∠2﹢∠3﹢∠4 ﹢∠5 =540°

11.3.2多边形的内角和(教案)

11.3.2多边形的内角和(教案)
课本习题11.3第5、6题。
板书设计
11.3.2多边形的内角和
一、多边形的内角和例1例2
二、多边形的外角和
八年级数学教学设计
课题
11.3.2多边形的内角和
课型
新授
三维
目标
知识
目标
掌握多边形的内角和与外角和公式及推导过程,并能熟练运用公式解决问题。
能力
目标
1、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。
2、通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
=(∠BAC+∠B+∠ACB)+(∠CAD+∠D+∠ACD)=180°+180°=360°
若分成2个三角形,则四边形的内角和为:180°×2=360°
活动3
问题1:你知道五边形的内角和是多少度吗?
A E
B
D
C
若分成3个三角形,则四边形的内角和为:180°×3=540°
问题2:你知道n边形的内角和吗?
E4D
5
F3C
6
2
A1B
板书详细解答过程
问题:n边形外角和等于多少度?
n边形外角和等于360°
三、练习巩固,体验收获
活动5
问题:你能运用多边形内角和与外角和公式解决问题吗?
课本P24练习第1、2、3题。
活动6课堂小结:
1、本节中你学习了哪些内容?
2、你有哪些收获和体会?师生共同交流、总结。
四、作业设置:
二、活动探究,探索新知
活动2、
回忆:长方形和正方形的内角和等于多少度?
问题:你知道任意一个四边形的内角和是多少吗?

多边形的内角和

多边形的内角和

多边形的内角和多边形是指由若干条边和相应连接边的顶点组成的图形,它是几何学中一个重要的概念。

在数学中,我们经常研究多边形的性质和特征,其中一个关键的概念就是多边形的内角和。

一、多边形的定义和性质多边形是由若干条边和对应连接边的顶点所围成的封闭图形。

它的性质如下:1. 多边形的边是线段,且相邻两边之间不相交。

2. 多边形的顶点是两条边的交点。

3. 多边形的边数等于顶点数,也等于内角数。

4. 多边形的内角数等于外角数,它们的和为360度。

二、多边形的内角和公式对于任意n边形(n≥3),它的内角和S可以通过以下公式计算:S = (n - 2) × 180度该公式的推导可以通过以下步骤实现:1. 将多边形分成n个三角形,每个三角形的一个顶点为多边形的一个顶点,另外两个顶点分别为相邻的两条边的交点。

2. 由于三角形的内角和为180度,所以n个三角形的内角和为n ×180度。

3. 由于多边形的内角数等于外角数,而多边形的外角和为360度,所以n个三角形的外角和为n × 360度。

4. 由于多边形的内角和和外角和之和等于180°,所以n个三角形的内角和和外角和之和为n × 360° + n × 180°。

5. 由于多边形是由n个三角形组成的,所以n个三角形的内角和和外角和之和也等于多边形的内角和和外角和之和,即n × 180° + n × 360°= S + 360°。

6. 将该等式化简可得 S = (n - 2) × 180°。

三、实例分析我们以正五边形为例,来计算其内角和。

正五边形的定义是指五边形的五个内角相等且五条边相等。

根据内角和公式,我们可以得出正五边形的内角和如下:S = (5 - 2) × 180度 = 3 × 180度 = 540度由此可见,正五边形的内角和为540度。

计算正多边形的内角和和外角之和

计算正多边形的内角和和外角之和

计算正多边形的内角和和外角之和正多边形是指所有边相等、所有角相等的多边形。

在这篇文章中,我们将探讨如何计算正多边形的内角和和外角之和。

一、正多边形的内角和为了计算正多边形的内角和,我们首先需要了解一个公式:正多边形的内角和公式,也被称为欧拉公式。

根据欧拉公式,正多边形的内角和等于(边数-2)×180度。

例如,一个正三角形的内角和为(3-2)×180度=180度;一个正四边形的内角和为(4-2)×180度=360度;一个正五边形的内角和为(5-2)×180度=540度,以此类推。

二、正多边形的外角和正多边形的外角是指每个角与其相邻的内角的补角。

一般情况下,我们求解外角和时候会用到以下公式:正多边形的外角和等于360度。

根据这个公式,不论正多边形的边数是多少,其外角和都等于360度。

三、计算示例让我们通过一些示例来计算正多边形的内角和和外角和。

1. 计算一个正七边形的内角和:根据欧拉公式,正七边形的内角和为(7-2)×180度=900度。

2. 计算一个正六边形的内角和:根据欧拉公式,正六边形的内角和为(6-2)×180度=720度。

3. 计算一个正五边形的内角和和外角和:根据欧拉公式,正五边形的内角和为(5-2)×180度=540度。

根据正多边形的外角和公式,正五边形的外角和为360度。

四、总结在本文中,我们探讨了如何计算正多边形的内角和和外角和。

根据欧拉公式,我们可以通过正多边形的边数来计算其内角和。

而根据外角和公式,不论正多边形的边数是多少,其外角和都等于360度。

这个知识点在几何学中具有重要的意义,可用于解决各种涉及正多边形的问题。

理解正多边形的内角和和外角和的计算方法,将为我们在学术和实际应用中提供帮助。

多边形的内角和教学设计

多边形的内角和教学设计

11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。

(2)能对多边形的内角和公式进行应用,解决实际问题。

(3)掌握多边形的外角和定理,并能运用。

2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。

3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。

(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。

二、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。

难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。

三、教法:启发式、探索式四、学法:自主探索、合作交流五、前置作业:1、做一个不规则四边形学具;2、用尽可能多的方法探究多边形的内角和。

(目的:一是让学生结合自己已有的生活经验,尝试应用更多的方法来探究多边形的内角和。

二是制作一个学具,通过操作学具来触发学生的思考,为重难点的突破打好基础。

)六、教学过程:(一)创设问题情境,导入新课课件出示一组生活中的图片问题1:看完这组图片,你能抽象出哪些几何图形问题2:生活中有如此多几何图形,你对它们有多少了解?设置意图:学生能说出发现了三角形、四边形、五边形、六边形、八边形…进而指出什么是多边形。

老师指出三角形是最简单的多边形,三角形的内角和是180度,那多边形的内角和是多少呢?从而顺利引入新课。

过渡语:我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么四边形、五边形、六边形呢?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

”(板书课题)二、合作交流、探究新知活动一:探究“任意四边形的内角和”问题1:任意四边形的内角和是多少度?你是怎样得到的?你能找到几种方法?活动任务:用用尽可能多的方法探索四边形的内角和活动要求:1.先自己想,再小组交流。

多边形内角和公式的推导及应用

多边形内角和公式的推导及应用

多边形内角和公式的推导及应用n边形的内角和公式:n边形的内角和=n-2×180°一、其推导方法如下:方法1:从一个顶点出发可以引出n-3条对角线,这样把多边形分割成了n-2个三角形如图1,由图可知这n-2个三角形的内角的总和恰好是n边形的内角和,故而可得n边形的内角和为n-2×180°方法2:在多边形的内部任取一点G,和各个顶点连接,这样把多边形分割成了n个三角形如图2,由图可知这n个三角形的内角的总和恰好比n边形的内角和多一个周角,故而可得n边形的内角和为n×180°-360°=n-2×180°方法3:在多边形的边上任取一点G,和各个顶点连接,这样把多边形分割成了n-1个三角形如图3,由图可知这n-1个三角形的内角的总和恰好比n 边形的内角和多一个平角,故而可得n边形的内角和为n-1×180°-180°=n-2×180°方法4:在多边形的外部任取一点G,和各个顶点连接,这样把多边形分割成了n个三角形如图4,由图可知这n个三角形的内角的总和比n边形的内角和多以下几局部:①三角形AFG的内角和180°;②各个三角形的一个角组成的和∠AGF;③∠GAF和∠AFG,而且∠AGF+∠GAF+∠AFG=180°,故而可得n边形的内角和为n×180°-180°-180°=n-2×180°二、n边形的内角和公式的应用:1、求n边形的边数:例1、假设n边形的内角和是它外角和的2倍,那么n等于解:有题意可知,n-2×180°=2×360°,解得n=62、求角度数:例2、如图求角∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数?分析:所求的八个角的度数可以通过作辅助线如右图,很容易的转化成了求六边形的内角和的度数了所以∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H =6-2×180°=72021复杂的图形内角和可以通过巧妙地转化构成了我们熟悉的根本图形的内角和了例3、用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAC = 度分析:有题意知:ABCDE 为正五边形,所以其内角和为 5-2×180°=540°且五个角相等于540°5=108°,故∠BAC =108°思考题:请同学们思考下面的一个问题,看谁说得又对又好:把一个多边形截去一个角后,形成的新多边形的内角和为2880°,请问原来的多边形的边数是几?答案:17、18、19三种可能,你答对了吗?你能想出其中的奥秘吗?如下列图的三种情况:图 2图1。

多边形的内角和

多边形的内角和

多边形的内角和多边形是一个有多条边的几何图形,其中一个重要的特征是它的内角和。

本文将探讨多边形内角和的计算方法及其应用。

通过详细的解析和实例分析,希望能够帮助读者更好地理解多边形的内角和的概念和计算方法。

一、多边形的内角和的定义多边形的内角和是指一个多边形的所有内角之和。

对于任意一个多边形来说,不论边的数量是多少,内角和都有一个恒定的特性。

为了更好地理解内角和的概念,我们来具体分析一下不同多边形的内角和。

二、三角形的内角和三角形是最简单的多边形,由三条边组成。

根据三角形内角和的性质,三角形的内角和始终等于180度。

这是因为三角形的一条边可以看作是一个平行四边形的一条对角线,而平行四边形的内角和是360度,所以三角形的内角和等于180度。

三、四边形的内角和四边形是一种有四条边的多边形,常见的四边形有矩形、正方形、梯形等。

不同类型的四边形有不同的内角和计算方法。

1. 矩形和正方形的内角和矩形和正方形的内角和都等于360度。

这是因为矩形和正方形都满足平行四边形的内角和性质,而平行四边形的内角和是360度。

2. 梯形的内角和梯形是一种两边平行但长度不相等的四边形。

梯形的内角和等于360度。

为了证明这个结论,我们可以将梯形分割成两个三角形和一个矩形,然后分别计算它们的内角和,最后相加得到梯形的内角和。

四、多边形的内角和公式对于任意一个多边形来说,它的内角和可以通过以下公式进行计算:内角和 = (n-2) × 180度其中,n表示多边形的边数。

这个公式适用于所有的多边形,无论边的数量是多少。

五、多边形内角和的应用多边形内角和的计算方法在几何学、物理学等领域具有广泛的应用。

1. 几何学在几何学中,多边形内角和的计算方法可以应用于解决多边形的各种性质和问题。

例如,可以利用内角和的公式来判断一个多边形是否是凸多边形,以及计算凸多边形和非凸多边形的内角和。

2. 物理学在物理学中,多边形内角和的计算方法可以用于描述多边形结构的稳定性。

部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案

部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案

部编版初中数学八年级上册《多边形的内角和》优质课公开课课件、教案11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。

(2)能对多边形的内角和公式进行应用,解决实际问题。

(3)掌握多边形的外角和定理,并能运用。

2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。

3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。

(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。

二、教材分析本节课选自人教版数学七年级册第七章第三节多边形内角和,训练重点是探索多边形内角和公式的得出及利用内角和公式解决一些计算和证明问题。

本节课“多边形的内角和”作为本章的一个重点也是一个难点,是学生在上学期初步认识和感受空间图形之后的延伸,是三角形有关知识的拓展,将会大大提高学生的探究、推理、表达等各方面能力,公式的运用还充分地体现了图形与客观世界的密切联系。

三、学情分析前面,学生已经知道三角形的内角和及外角、正方形的内角和、长方形的内角和,并了解了多边形的有关概念,这些都为学生学习本节知识作了知识准备。

学生已经初步具备小组合作能力、独立学习能力,探究的能力,以及归纳、分析能力,能通过合作、交流来完成学习任务。

四、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。

难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。

五、教法:启发式、探索式六、学法:自主探索、合作交流七、创新点、德育点、空白点创新点:(1)将多边形内角和公式的推导,由学生小组合作或独立思考完成,最后由特殊到一般归纳内角和公式。

多边形的内角和优秀教案

多边形的内角和优秀教案

教 案课题:7.3.2多边形的内角和授课教师 课题 多边形的内角和 课型 新授课新授课 教材七年级(下)七年级(下)教学目标 (一)知识目标(一)知识目标: :通过类比、推理等数学活动,探索多边形的内角和公式。

通过类比、推理等数学活动,探索多边形的内角和公式。

(二)能力目标:(二)能力目标:通过把多边形转化成三角形体会转化思想在几何中的运用通过把多边形转化成三角形体会转化思想在几何中的运用;;通过探索多边形内角和公式索多边形内角和公式,,体会类比归纳的数学方法。

体会类比归纳的数学方法。

(三)情感目标:(三)情感目标:在自主探究,合作交流过程中,让学生感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情和合作意识。

教学重点 难点及突破难点的方法重点:探索多边形内角和公式。

重点:探索多边形内角和公式。

难点:探索多边形内角和时,如何把多边形转化为三角形。

难点:探索多边形内角和时,如何把多边形转化为三角形。

教学关键教学关键::应用转化的数学思想把多边形问题转化为三角形问题来解决.教学方法 启发探究式教学法启发探究式教学法教学用具 多媒体、图纸、多媒体、图纸、准备知识 多边形概念;三角形内角和定理;多边形概念;三角形内角和定理;设计理念:从整个教学过程来看,先从特殊的四边形入手,求其内角和,再分别求五边形、六边形、七边形的内角和,从中寻找求内角和规律。

从研究的形式来看,主要是以问题的提出,由浅入深,由易到难,结合小组讨论合小组讨论,由学生归纳总结,最后得出内角和公式。

教师本着让每个学生都能参与,让每个学生的思维都得到训练,让每个学生的思维都得到训练,让每个学生的能让每个学生的能力都得到培养和提高,这一教学理念来设置每个问题,每个教学环节。

教材和教学内容分析本节课是七年级下册7.3.2多边形的内角和第一课时的内容多边形的内角和第一课时的内容, , 本节内容是在学生已经掌握“三角形的内角和定理”、本节内容是在学生已经掌握“三角形的内角和定理”、“多边形相关“多边形相关概念”基础上进行教学的,在内容上,从三角形的内角和到多边形的内角和。

正多边形的内角与外角的角度计算公式

正多边形的内角与外角的角度计算公式

正多边形的内角与外角的角度计算公式正多边形是指所有边和内角均相等的多边形,其中最常见的正多边形是三角形、四边形、五边形、六边形等。

在正多边形中,内角和外角可以通过一些计算公式来确定。

一、正多边形的内角计算公式对于一个正n边形(n为正整数,n≥3),我们可以通过以下公式来计算每个内角的度数:每个内角度数 = (n - 2) × 180° / n其中,n - 2表示正多边形的顶点数减去2,180°为直角,n为正多边形的边数。

举例来说,对于一个三角形(即正3边形),根据公式可得每个内角的度数为:每个内角度数 = (3 - 2) × 180° / 3 = 60°同理,对于一个正五边形,每个内角的度数为:每个内角度数 = (5 - 2) × 180° / 5 = 108°二、正多边形的外角计算公式正多边形的外角是指从多边形的一个顶点出发,与其相邻的两条边所组成的角。

通常情况下,正多边形的每个外角的度数是一样的。

我们可以通过以下公式计算正多边形的每个外角的度数:每个外角度数 = 360° / n其中,360°为一个圆的角度,n为正多边形的边数。

仍以三角形和五边形为例,根据计算公式,我们可以得到三角形每个外角的度数为:每个外角度数 = 360° / 3 = 120°对于五边形,每个外角的度数为:每个外角度数 = 360° / 5 = 72°通过上述的计算公式,我们可以很方便地计算出正多边形的每个内角和外角的度数。

这些公式不仅方便了我们在理论上的计算,也可以帮助我们更好地理解和描述正多边形的特性。

总结:正多边形的内角和外角计算公式为:每个内角度数 = (n - 2) × 180° / n每个外角度数 = 360° / n其中,n为正多边形的边数。

多边形的内角和 教学设计

多边形的内角和 教学设计

2
问题与情境 问题 2:你知道 n 边形的 内角和吗? 归纳:通过上面的探 究讨论,得到什么结论 呢?
师生行为 学生在独立思考的基础上分组讨论, 归纳总结得到结论: n 边形的内角和等于(n-2)×180º.. 教师和学生共同归纳总结. 在本次活动中,教师应重点关注: ①学生能否借助辅助线把四边形分 割成两个三角形; ②学生能否类比四边形的方式解决 问题,得出正确的结论; ③学生能否利用转化思想把多边形 转化为三角形; ④学生能否推出 n 边形可以转化为 (n-2)个三角形,即 (n-3)+1. 学生独立思考解决问题. 教师总结结论,给出解题过程: ① 解:由多边形内角和公式可得 (8-2)×180º=6×180º=1080º. ② 解:由多边形内角和公式可得 (n-2) ×180º= n×120º n = 6 所以,它是六边形. 在本次活动中,教师应重点关注: ①学生能否运用多边形内角和公式 解决问题; ②学生能否有条理的表达自己的思 考过程; ③学生从中是否感受到了数学结论 的严谨性. 教师组织学生分组讨论,小结本课内 容,巩固本节知识.展示图表(附表如下). 学生发表自己意见,互相提高. 教师给予学生自检掌握情况的空间. 在本次活动中,教师应重点关注: ① 学生能否自己小结本节知识; ② 学生是否愿意表达自己的观点.
四边形是多边形 中的简单图形,从四 边形入手,有利于学 生探索它与三角形的 关系,从而有利于发 现转化的思想 方法 . 并通过增加图形的复 杂性,再次经历转化 的过程,加深对转化 思想方法的理解;同 时,为下面活动归纳 n 边形内角和公式作 好准备. 通过交流,让学 生体验数学活动充满 探索和解决问题的多 样性. 在探索过程中, 发展学生分析问题、 解决问题的能力和推 理能力. 对不同边数的 多边形内角和与边数 的关系进行归纳,概 括任意多边形内角和 与边数关系的表达 式.

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。

2.理解多边形外角和公式。

过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]教学重点:多边形的内角和。

的应用。

教学难点:探索多边形的内角和与外角和公式过程。

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。

n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。

)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。

五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。

多边形的内角和公式是什么

多边形的内角和公式是什么

多边形的内角和公式是什么多边形内角和的计算公式为(N-2)×180,其中N为多边形的边数。

在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。

多边形的内角和公式1、多边形的内角和等于(N-2)x180;注:此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。

2、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。

但是空间多边形不适用。

可逆用:多边形的边=(内角和÷180°)+2;过n边形一个顶点有(N-3)条对角线;n边形共有N×(N-3)÷2=对角线;3、N边形过一个顶点引出所有对角线后,把多边形分成N-2个三角形。

三角形内角和定理标明三角形的内角和等于180°。

三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°。

多边形外角和与多边形的内角相对应的是外角,多边形的外角就是将其中一条边延长并与另一条边相夹的那个角。

任意凸多边形的外角和都为360°。

多边形所有外角的和叫做多边形的外角和。

证明:根据多边形的内角和公式求外角和为360。

n边形内角之和为(n-2)*180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为:180-∠1、180°-∠2、180°-∠3、...、180°-∠n,外角之和为:(180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n)=n*180°-(∠1+∠2+∠3+...+∠n)=n*180°-(n-2)*180°=360°。

多边形及其内角和知识点总结

多边形及其内角和知识点总结

多边形及其内角和知识点总结一、知识点1、多边形的定义:由在同一平面内,不在同一条直线上的若干条线段首尾顺次相接组成的图形叫做多边形。

2、多边形的分类:根据边数的不同,可以将多边形分为三角形、四边形、五边形、六边形等等。

3、多边形的内角:多边形的每个顶点与其相邻的两个顶点相连所形成的角称为该多边形的内角。

4、多边形的内角和公式:n边形的内角和为(n-2)×180°,其中n为多边形的边数。

5、多边形的外角:多边形的每个顶点与其相邻的两个顶点之间的夹角称为该多边形的外角。

6、多边形的外角和公式:多边形的外角和为360°,与多边形的边数无关。

7、勾股定理:在直角三角形中,勾股定理指出两个直角边的平方和等于斜边的平方。

二、重难点精析1、多边形的定义和分类是基础知识,需要理解并掌握不同类型多边形的特点。

2、多边形的内角和公式是重点,需要牢记并能够熟练运用该公式进行计算。

同时,也需要理解该公式的推导过程。

3、多边形的外角和公式是重点,需要理解并掌握该公式的应用。

同时,也需要掌握通过多边形的内角和公式和外角和公式之间的联系,进行计算和推导。

4、勾股定理是重点,需要理解并掌握其应用,特别是在解决与直角三角形相关的问题时。

5、对于一些复杂的多边形问题,需要掌握分解和组合的思想,将复杂的多边形分解为简单的三角形或四边形,从而解决问题。

6、在解决与角度制相关的问题时,需要注意角度制的计算方法和单位转换。

7、在解决与对称性相关的问题时,需要结合多边形的定义和性质进行思考和分析。

总之,对于八年级数学中的多边形及其内角和知识点,学生需要牢固掌握基础知识,理解公式的推导过程,熟练运用公式进行计算和推导,同时还需要灵活运用各种解题技巧和方法,才能够真正掌握该部分知识点的核心内容。

多边形内角和求法

多边形内角和求法

多边形内角和求法多边形内角和是数学中的重要概念,也是几何学中的基础概念之一。

在一个多边形中,任意两个连续的边所组成的角称为内角,而这些内角的和就被称为多边形的内角和。

多边形是由许多边组成的,因此每个多边形都有一个不同的内角和。

在本文中,我们将深入探讨多边形内角和的计算方法以及相关的知识点。

首先,让我们考虑一个简单的三角形。

在三角形中,有三个内角,它们的和一定是180度。

我们可以通过以下公式来计算三角形的内角和:180 = A + B + C,其中A、B、C分别表示三角形的内角。

这个公式也可以通过绘制三角形内部的平行线和外接圆的圆心角来证明。

当我们将三角形转变为四边形时,内角和的计算就变得更加复杂,因为四边形的内角和并不一定是一个固定的值。

四边形可以分为两类:凸四边形和凹四边形。

在凸四边形中,对于任意一个角,其相邻的两个角的和必须小于180度。

而在凹四边形中,至少有一个角的相邻两个角之和是大于180度的。

接下来,我们来探讨计算多边形内角和的公式。

在一个n边形中,由于每个点的角度都是相等的,所以我们可以将多边形分割成n-2个三角形,并计算每个三角形的内角和,然后将它们相加。

通过这种方法,我们可以得出多边形的内角和公式:(n-2) x 180度,其中n表示多边形的边数。

最后,我们要提醒读者注意一个常见误解:内角和的计算不包括多边形的外角。

外角是指多边形中一个内角的补角,它们的和必然等于360度。

因此,在计算多边形内角和时,我们不应将外角的值包括进去。

综上,多边形内角和是数学中一个基础而重要的概念。

当我们掌握了内角和的计算方法后,可以更好地理解和应用几何学中相关的知识,例如多边形的面积和周长等。

在学习过程中,我们还需要注意凹凸四边形的区别,以及不要混淆内角和与外角和。

希望本文能对读者有所启发和帮助。

以多边形内角和公式推导为例

以多边形内角和公式推导为例

尝试、合作、引导、创新------------以多边形内角和公式推导为例徐尚文(一)创设情境,设疑激思师:大家都知道三角形的内角和是180º,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360º。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360º。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180º的和是540º。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。

结果得540º。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。

方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。

师:你真聪明!做到了学以致用。

交流后,运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。

类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。

(二)引申思考,培养创新师:通过前面的讨论,你能知道多边形内角和吗?活动三:探究任意多边形的内角和公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索多边形的内角和公式
发表时间:2011-01-25T16:17:02.157Z 来源:《少年智力开发报》2010年第8期供稿作者:陈瑞红
[导读] 一个正多边形的内角和与它的一个外角的和为1125°,那么这个正多边形的边数为多少?
郑州市第五十四中学陈瑞红
多边形的内角和是初中数学的一个重要内容,在讲解多边形的内角和时,内角和公式的推导过程是十分必要的。

在讲解中,我让学生先独立思考,然后分小组讨论,最后进行总结归纳,让学生在学习过程中培养他们的独立解决问题与合作精神,增加学生学习数学的兴趣。

在学生的自学过程中,他们发现多边形的内角和的推导方法有很多,但都是将多边形问题转化为三角形问题来解决的,即利用多边形对角线或对角线的一部分,可以把多边形分割若干个小三角形,再通过三角形的内角和推导出多边形的内角和。

这是化规思想的体现,也是解决多边形问题的基本思想,在课堂教学中,首先复习三角形的内角和公式及推导过程,然后引导出多边形内角和公式的推导方法: 1、如图1,从点P出发可连(n-3)条线段,把n边形分割成(n-2)个三角形,这样,多边形的内角和恰好等于这(n-2)个三角形的内角和之和,即:(n-2)•180°。

从而把多边形的内角和问题转化为三角形的内角和问题给解决了。

2、如图2, 从点P出发可连(n-2)条线段,把多边形分割成(n-1)个三角形,此时,多边形的内角和不就等于这(n-1)个三角形的内角之和再减去点P处的平角了吗?即:(n-1)•180°-180°=(n-2)•180°。

显然,这个结论与1的结论相同。

3、如图3, 从点P出发可连n条线段,把多边形分割成n个三角形,此时,多边形的内角和就等于这n个三角形的内角之和再减去点P处的周角,即:n• 180°-360°= (n-2)•180°。

4、如图4, 从点P出发可连n条线段,共形成n个三角形,此时,多边形的内角和就等于其中(n-1)个三角形的内角之和再减去外面的一个三角形的内角和,即:(n-1)•180°-180°=(n-2)•180°。

可见,无论点P取在以上四种情况的何处,都能说明多边形的内角和与其边数n的关系是(n-2)•180°。

在公式探索完之后,我们又进行了练习,学生饶有兴趣的进行了解答。

例.一个正多边形的内角和与它的一个外角的和为1125°,那么这个正多边形的边数为多少?
分析:本例是用多边形的内角和进行计算的典型例题,解决本题的关键是找出题中的等量关系,进行解答;这里需要向学生强调多边形的外角在0°到180°之间。

解:设这个正多边形的边数为n,则
1125°-180°﹤(n-2)•180°﹤1125°
解得
5.25﹤n-2﹤
6.25
7.25﹤n﹤8.25
∵ n 取正整数,
∴ n=8
∴这个正多边形是八边形。

通过本节课的学习,更加树立了学生学好数学的信心,通过学生的合作交流,也增强了学生的合作意识。

相关文档
最新文档