分子结构与性质
第六章 分子的结构与性质

有时不写σ1s和σ*1s轨道,而用符号KK表示 例2. N2分子(14个电子)的结构。
1.推测分子的存在和阐明分子的结构 (1)H2+分子离子与Li2分子 H2+分子轨道式:H2+*(σ1s)1]。由于有1个电子进入(σ1s)成键轨 道,体系能量降低了,因此从理论上推测H2+分子离子是可能 存在的。[H· H]+分子离子中的键称单电子σ键。同理: Li2*KK(σ2s)2]。体系能量也降低,推测Li2分子也是可能存在的。 Li:Li分子中的键称单(σ)键。 (2)Be2分子与Ne2分子 Be2分子有8个电子;Ne2分子有20个电子。假如这两种分子 都能存在,则:
• 6.1 键参数 • 凡能表征化学键性质的量都可称为键参数。 在此着重介绍键能、键长和键角。 • 6.1.1键能 • 键能粗略而言是指气体分子每断裂单位物 质的量的某键(6.022×1023个化学键)时的焓 变。 • 键能可作为衡量化学键牢固程度的键参数, 键能越大,键越牢固。 • 对双原子分子来说,键能在数值上就等于 键解离能(D)。例如: •
第六章 分子的结构与性质
• 分子结构,通常包括两个方面: • (1)分子的空间构型 实验证实,分子按照 一定的规律结合成整体,使分子在空间呈现 出一定的几何构型。 • (2)化学键 化学上把分子或晶体内相邻原 子(或离子)间强烈的相互吸引作用称为化学 键。化学键分为离子键、共价键和金属键三 种基本类型。 • 此外,在分子之间还普遍存在着一种较弱 的相互吸引作用,通常称为分子间力或范德 华力。有时分子间或分子内的某些基团之间 还可能形成氢键。
• N原子的价层电子构型为2s22p3,成键时这4 个价电子轨道发生sp3杂化:
• 这种产生不完全等同轨道的杂化称为不等性 杂化。 • H20分子
分子的结构与性质

分子的结构与性质一、分子的结构1.分子的几何构型分子的几何构型是指分子中原子之间的相对位置和空间分布。
分子的几何构型直接影响了分子的性质,如形状、极性等。
常见的分子几何构型有线性、平面三角形、四面体、平面四方形等。
以水分子(H2O)为例,它的分子几何构型是平面三角形。
氧原子呈现出sp3杂化,形成两对孤对电子,与两个氢原子通过共价键结合在一起。
水分子的这种构型使得分子呈现出极性,其中氧原子带负电荷,两个氢原子带正电荷,从而赋予了水分子诸多的性质,如高沸点、强的化学活性等。
2.分子的键的属性分子中的原子之间通过共价键、离子键或金属键等方式结合在一起。
不同类型的键对分子的性质具有不同的影响。
共价键是由两个非金属原子共享一对电子而形成的化学键。
共价键使得分子具有稳定的结构,并且能够保持一定的角度和长度。
共价键的强度与键的键能有关,键能越大,共价键越强,分子越稳定。
举例来说,氧气(O2)分子就是由两个氧原子通过共价键结合而成的,其键能很高,因此氧气分子稳定且不容易被分解。
离子键是由正负电荷之间的静电吸引力形成的。
离子键通常形成在金属和非金属之间。
离子键的强度较大,分子通常具有高熔点和高沸点。
比如氯化钠(NaCl)是由钠离子(Na+)和氯离子(Cl-)通过离子键结合在一起的,因此具有高熔点(801℃)和高溶解度。
金属键是金属原子通过金属键结合在一起形成的。
金属键的特点是金属原子中的电子活动,在整个金属中自由流动,形成电子云。
金属键使得金属具有良好的导电性和导热性,以及高延展性和可塑性。
二、分子的性质分子的性质与其结构密切相关,不同的分子结构决定了不同的性质。
1.物理性质分子的物理性质包括物质的密度、沸点、熔点、溶解度等。
这些性质与分子的结构以及分子之间的相互作用有关。
以碳酸氢钠(NaHCO3)为例,它的分子结构是一个氢氧根离子(HCO3-)与一个钠离子(Na+)通过离子键结合而成的。
由于离子的排列比较紧密,分子间作用力较大,因此碳酸氢钠的熔点(156℃)和沸点(851℃)都比较高。
分子结构和分子性质

分子结构和分子性质分子结构和分子性质是化学中重要的概念。
分子结构指的是分子的元素组成、原子间的连接方式以及化学键的性质;而分子性质则是指分子在化学反应中的表现和发挥的作用。
本文将从分子结构和分子性质两个方面进行探讨。
一、分子结构分子结构是分子的基本特征,决定了分子的物理性质和化学性质。
了解分子结构对于理解物质的性质和反应机理具有重要意义。
分子结构有以下几个方面的描述:1. 分子式:分子式用化学符号表示分子中各元素的种类和数量。
例如H2O表示水分子,表示其中含有2个氢原子和1个氧原子。
2. 分子几何构型:分子几何构型是指分子中原子相对位置的排布方式。
常见的分子几何构型有线性、平面三角形、四面体等。
不同的分子几何构型会影响分子的化学性质和空间取向。
3. 化学键:化学键是原子之间的共享或转移电子而形成的连接。
常见的化学键有共价键、离子键和金属键。
化学键的性质直接关系到分子的稳定性和反应性。
4. 功能团:功能团是分子中具有特定性质和反应活性的原子或原子团。
例如羟基(OH)、羰基(C=O)和氨基(NH2)等。
分子中的功能团对分子性质和化学反应起到重要的影响和作用。
二、分子性质分子性质是指分子在化学反应中的表现和发挥的作用。
分子性质包括以下几个方面:1. 物理性质:物理性质包括分子的大小、形状、极性、熔点、沸点、溶解度等。
这些性质受分子结构和分子间相互作用力的影响。
2. 化学性质:化学性质是指分子参与化学反应时的反应性质和变化。
不同的分子具有不同的化学性质,如酸碱性、氧化还原性、亲电性等。
3. 反应活性:分子的反应活性与其化学键的强度和键能有关。
化学键的强度越强,分子的稳定性越高,反应活性越低。
4. 生物学性质:生物分子具有特定的结构和性质,对生命的存在和活动起着重要的作用。
例如DNA分子的碱基序列决定了遗传信息的传递和表达。
总结分子结构是分子的基本特征,包括分子式、分子几何构型、化学键和功能团等。
分子结构决定了分子的物理性质和化学性质。
化学物质的分子结构与性质关系

化学物质的分子结构与性质关系化学是一门研究物质变化的科学,而物质的性质往往与其分子结构密切相关。
分子结构决定了物质的性质,不同的分子结构会导致不同的化学行为和性质表现。
本文将探讨化学物质的分子结构与性质之间的关系,并通过分子结构与性质的实例来加以说明。
一、分子结构对物质性质的影响分子结构是指化学物质中原子的排列方式和相互之间的连接方式。
在分子结构中,原子之间通过化学键连接在一起。
分子结构决定了物质的物理性质、化学性质以及一些特殊的性质表现。
1.1 物理性质物理性质是指在不改变物质的化学组成的情况下,可以通过外部条件改变的性质。
例如,分子的大小、形状以及分子之间的相互作用力会影响物质的密度、熔点、沸点等物理性质。
以水分子为例,它由一个氧原子和两个氢原子组成。
水分子呈V字型,氧原子与两个氢原子之间通过共价键连接。
这种分子结构使水分子带有极性,使得水分子之间产生氢键作用。
这种氢键作用导致水分子在室温下存在液态状态,同时具有相对较高的沸点和熔点,以及较大的表面张力。
1.2 化学性质化学性质是指物质在化学反应中表现出来的性质,包括与其他物质发生反应的性质。
分子结构直接影响着物质的化学反应途径、速率和产物。
以有机物甲烷为例,甲烷由一个碳原子和四个氢原子组成。
碳原子与四个氢原子之间通过共价键连接,形成平面结构。
这种分子结构使甲烷分子稳定,不容易发生化学反应。
甲烷可以参与氧气的燃烧反应,但是由于分子结构的稳定性,反应速率较慢。
1.3 特殊性质表现分子结构还可以导致一些特殊的性质表现。
例如,某些分子结构的物质具有发光性质、超导性质、磁性等等。
以蓝宝石为例,它是一种含有铝、氧和硅的酸性韧玉。
蓝宝石中的铝原子与氧原子和硅原子通过共价键连接在一起,形成了特殊的晶格结构。
这种晶格结构使得蓝宝石具有特殊的光学性质,可以发出蓝色的光。
这种发光性质使得蓝宝石在珠宝行业中有着重要的地位。
二、实例说明为了更好地理解分子结构与性质之间的关系,下面分别以水分子和乙醇分子为例加以说明。
分子结构与性质

分子结构与性质
分子结构与性质是物理化学中一个重要的概念,也是其他学科的基础。
它涉及到分子的形状、大小、电荷分布等,这些都会影响分子的性质。
因此,研究分子结构与性质的相互关系是理解物质本质的重要步骤。
我们知道,分子是构成物质的基本单元,分子内部有复杂的结构,如原子的连接、电子的分布等。
这些结构的不同会使分子具有不同的性质。
例如,由氯原子和氢原子组成的氯氢分子,它的分子式为HCl,在标准状态下,氯原子和氢原子之间的距离是0.127nm,它们之间存在一个氢键,它具有高度的化学稳定性,无法容易改变,所以它可以作为一种酸性物质。
分子的性质受到分子结构的多种因素的影响,其中最重要的有分子形状、大小和电荷分布。
分子形状是指分子内原子排列的状态,它会影响分子的能量状态和反应性,从而影响分子的性质。
分子的大小是指由原子构成的分子的体积,它也会影响分子的性质。
电荷分布是指分子内原子的电荷情况,它会影响分子的极性,从而影响分子的相互作用力。
此外,还有一些其他的因素也会影响分子的性质,如键能、局部电位、电子密度等。
键能是指原子之间的能
量,它会影响分子的稳定性、熔点、沸点以及分子的反应活性。
局部电位是指分子内不同原子的电位差,它会影响分子的极性,从而影响分子的相互作用力。
电子密度是指分子内电子的分布情况,它会影响分子的化学反应性。
从上面可以看出,分子结构与性质是相互关联的,分子结构的不同会影响分子性质的表现,这也是物质本质的基础。
因此,研究分子结构与性质的相互关系对于理解物质本质是非常重要的。
化学分子结构与物质性质的关系

化学分子结构与物质性质的关系化学是研究物质的组成、性质、结构和变化规律的科学。
在化学中,分子结构与物质性质之间存在着密切的关系。
分子结构决定了物质的性质,而物质的性质又反映了其分子结构的特征。
本文将从分子结构对物质性质的影响、物质性质对分子结构的解释以及分子结构与物质性质的应用等方面进行探讨。
一、分子结构对物质性质的影响分子结构是物质性质的基础,不同的分子结构决定了物质的不同性质。
以下是几个常见的例子:1. 极性分子与非极性分子:分子中的原子通过共价键连接在一起,原子间的电子云分布不均匀会导致分子极性。
极性分子具有正负电荷分布不均匀的特点,如水分子(H2O),而非极性分子则没有明显的正负电荷分布,如甲烷(CH4)。
极性分子具有较强的极性键,能够与其他极性分子或离子发生氢键或离子键作用,而非极性分子则主要通过范德华力相互作用。
2. 分子大小与沸点:分子的大小与分子间的相互作用力有关,分子越大,分子间的相互作用力越强,沸点也越高。
例如,乙醇(C2H5OH)和甲烷(CH4)的分子量相近,但乙醇的沸点要高于甲烷,这是因为乙醇分子中含有氧原子,使得分子间的氢键作用增强。
3. 分子结构与溶解性:溶解性是物质在溶剂中溶解的能力。
分子结构的不同会影响物质的溶解性。
极性分子在极性溶剂中溶解度较高,而非极性分子在非极性溶剂中溶解度较高。
例如,氯仿(CHCl3)是一个极性分子,它在水中的溶解度较高;而正己烷(C6H14)是一个非极性分子,在水中的溶解度较低。
二、物质性质对分子结构的解释物质的性质可以通过分子结构来解释。
以下是几个例子:1. 酸碱性:酸和碱是化学反应中常见的概念。
酸的特点是能够释放出H+离子,而碱的特点是能够释放出OH-离子。
这种酸碱性质可以通过分子结构来解释。
酸分子通常含有可以释放H+离子的氢原子,如盐酸(HCl);碱分子通常含有可以释放OH-离子的氧原子,如氢氧化钠(NaOH)。
2. 氧化还原性:氧化还原反应是化学反应中重要的一类反应。
分子的结构与性质

分子的结构与性质分子是由原子通过化学键连接而成的,是化学物质的最小单位。
分子的结构决定着其性质,包括物理性质如熔点、沸点、密度等,以及化学性质如反应性、稳定性等。
首先,原子的种类对分子的特性有很大影响。
不同的原子有不同的电子层结构和化学性质,这会直接影响到分子的化学反应和性质。
例如,氧原子具有较强的电负性,能够与其他原子共享电子形成氧化键,使得含氧原子的分子具有电负性,容易与其他物质发生反应。
另外,原子的核电荷与电子云之间的相互作用也会影响到分子的结构和性质。
其次,原子之间的键是分子结构的基础。
分子中的原子通过化学键连接在一起,常见的化学键包括共价键、离子键和金属键。
其中,共价键是最常见的一种键,分子中的原子通过共享电子形成共价键。
共价键的强弱直接影响到分子的结构和性质。
共价键强一般会导致分子结构紧密,分子相对稳定,例如一氧化碳(CO)分子中的碳氧非常稳定;相反,共价键弱会导致分子结构松散,分子相对较不稳定,容易发生反应。
此外,分子中原子之间的键的排布也会直接影响到分子的性质。
根据分子的排布形式,分子可以分为线性分子、非线性分子和扭曲分子等不同类型。
线性分子中原子排列成一条直线,如一氧化碳(CO)分子;非线性分子中原子排列呈现非直线形状,如水(H2O)分子;扭曲分子则是由于原子间的键角度不均匀而形成的分子,如甲烷(CH4)分子。
分子的性质主要包括物理性质和化学性质。
物理性质是描述物质在物理条件下的特性,如熔点、沸点、密度等。
分子的物理性质受分子结构的影响。
例如,分子结构复杂、分子间力较强的分子通常具有较高的熔点和沸点,如聚乙烯蜡;而分子结构简单、分子间力较弱的分子则通常具有较低的熔点和沸点,如乙醚。
化学性质是描述物质在化学反应中的特性,如反应性、稳定性等。
分子的化学性质受分子结构和化学键的影响。
例如,含有活泼的化学键或不稳定原子的分子通常会具有较高的反应活性,容易发生化学反应。
另外,分子中的官能团也会影响到其化学性质,不同的官能团会引起不同的化学反应。
分子结构与化学性质的关系

分子结构与化学性质的关系分子结构与化学性质有着密切的关联,分子的结构决定了它的性质。
在本文中,我们将探讨分子结构对化学性质的影响,并通过几个典型的例子来说明这种关系。
一、极性分子与非极性分子的化学性质差异极性分子和非极性分子是两类常见的分子结构,它们由于其亲电子性质的差异而表现出不同的化学性质。
极性分子是由一种或多种原子通过共价键连接在一起,并且原子之间存在电负性差异,导致分子中出现部分正电荷和负电荷的不均匀分布。
这种不均匀的电荷分布使得极性分子在与其他极性或离子性物质作用时,表现出较强的相互作用力,如氢键、离子作用力等。
例如,水分子由一个氧原子和两个氢原子组成,由于氧原子的电负性较高,使得水分子呈现出极性,并且能够与其他极性分子或离子形成氢键或离子作用。
相反,非极性分子在分子内没有电荷不均匀分布的现象,因此其与其他物质之间的相互作用较为弱。
典型的非极性分子包括氧气、甲烷等。
氧气分子由两个氧原子通过双键连接在一起,两个氧原子的电负性相等,因此氧气分子不带电荷,呈现出非极性。
由于其非极性特性,氧气不能与极性分子形成氢键或离子作用,因此其与其他物质的反应性较低。
二、分子结构与酸碱性质的关系分子结构对物质的酸碱性质也有着重要的影响。
酸和碱是化学中常见的两种物质,其酸碱性质与分子内的化学键、原子组成等密切相关。
酸常常是指能够释放出H+离子的物质,而碱则是能够释放出OH-离子的物质。
在分子内,酸分子通常包含可与金属或碱性氧化物反应释放出H+离子的化学键,例如硫酸、盐酸等。
这些酸性分子的酸度取决于结构中H+离子的释放能力。
碱分子则包含能够释放出OH-离子的键,如氢氧化钠、氢氧化钾等。
分子的结构中的碱性氧化物决定了其能够释放出OH-离子的能力。
三、分子结构与物质的反应性分子结构还决定了物质的反应性,即物质与其他物质发生化学反应的能力。
一些特定的分子结构对反应的速率和产物有着显著的影响。
例如,芳香族化合物由苯环等芳香环组成,这些分子结构具有稳定性和共轭电子体系。
分子结构与性质概述

分子结构与性质概述分子结构与性质是化学研究中非常重要的一个领域,它涉及分子的构成、排列、相互作用等方面,对于理解物质的性质和反应机理有着重要的意义。
本文将从分子结构、分子间相互作用和分子性质三个方面概述分子结构与性质。
分子结构是指分子中各原子的相对位置和四周是否存在其他原子或团的信息。
分子结构可以通过实验测定手段(如晶体结构分析、光谱技术等)或理论计算手段(如量子化学计算)获得。
分子结构包括分子的化学组成和几何结构两个方面。
化学组成指的是分子中原子的种类和数量,而几何结构则是指原子之间的距离、键角等信息。
分子结构决定了分子的物理、化学性质以及其与其他分子的相互作用方式。
分子间相互作用是分子结构与分子性质之间的桥梁。
各种分子间相互作用可以分为静电相互作用、共价键和范德华力三类。
静电相互作用是由于分子中荷电粒子(电荷)之间的吸引或排斥而产生的作用力,它通常在分子中存在化学键的情况下起主导作用。
共价键是指两个原子通过共用电子对而形成的键,共价键的强度和性质决定了化学反应的方向和速度。
范德华力是分子间的非共价相互作用力,包括弱偶极-偶极相互作用、极化-极化相互作用和分散力。
分子间相互作用的强度和方式决定了分子的相态和物理化学性质。
分子性质是由分子结构和分子间相互作用决定的,它包括物理性质和化学性质两个方面。
物理性质与分子的结构和分子间相互作用有关,如分子的形状、电荷分布、极性等会影响分子的极化、电荷转移、溶解度、表面张力等性质。
化学性质则与分子的化学反应有关,如分子间键的断裂和形成、原子的转位等,这些反应过程是由于分子的结构和相互作用引起的。
分子的化学性质决定了物质的化学行为和化学变化的发生。
需要特别指出的是,分子结构与性质之间存在着密切的关系,它们相互影响、相互制约。
分子的结构决定了分子的性质,不同的结构会导致不同的性质。
例如,同分子式的化合物,其分子结构的不同会导致其物理、化学性质的差异。
同时,分子的性质也可以反过来影响分子的结构。
分子和晶体的结构及性质

分子和晶体的结构及性质分子和晶体是物质的两种不同形态,它们在结构和性质上存在着显著的差异。
本文将分别讨论分子和晶体的结构以及它们的性质。
一、分子的结构及性质1. 分子的结构分子是由原子按照一定比例和方式组合而成的物质,在空间上呈现出三维的结构。
分子的结构由原子间的化学键连接所决定,可以是共价键、离子键或金属键。
此外,分子还可能存在分子间力,如范德华力和氢键。
2. 分子的性质分子性质主要受到分子内部化学键和分子间力的影响。
不同的分子由于其化学键和分子间力的差异,呈现出不同的性质。
例如,具有共价键的分子通常具有较低的沸点和熔点,而具有离子键的分子则在熔点上具有较高的特征。
二、晶体的结构及性质1. 晶体的结构晶体是由大量离子、原子或分子有规律地堆积而成的固体结构。
晶体的结构可以分为离子晶体、原子晶体和分子晶体三种类型。
离子晶体由正、负离子通过离子键相互结合而成;原子晶体由相同元素的原子通过共价键相互连接而成;分子晶体则是由分子通过范德华力和氢键相互结合而成。
2. 晶体的性质晶体的性质受到晶体结构的影响。
晶体的有序排列使得它们具有明确定义的外部形状和特征;晶体在物理性质上表现出一些特殊的性质,如各向同性、光学性质、电导性、热导性等。
三、分子和晶体的比较1. 结构比较分子的结构是由分子内部化学键构成的,分子间的连接相对较弱;晶体的结构则是由大量的原子或离子堆积形成的,分子间的连接比分子内部的连接更强。
2. 性质比较分子通常在相对较低的温度或压力下就可以发生相变,比如液化、固化等;而晶体具有更高的熔点和熔化热,需要更高的温度才能发生相变。
3. 应用比较分子和晶体根据其不同的结构和性质,具有不同的应用领域。
分子常用于化学反应媒介、溶剂、药物和有机材料等领域;晶体则广泛应用于电子器件、光学器件、半导体材料等领域。
结论分子和晶体是物质的两种不同形态,它们在结构和性质上存在着明显的差异。
分子通过分子内部的化学键相连而成,具有较低的熔点和熔化热;晶体由原子或离子有序堆积而成,具有更高的熔点和熔化热。
物质分子的结构和性质

物质分子的结构和性质物质是组成世界的基本元素,而物质由分子构成。
分子是化学反应的基本单位,也是物质性质的决定因素。
因此,研究物质分子的结构和性质对于深化对物质性质本质的认识具有重要意义。
一、分子结构分子结构是指分子中原子的排列方式、原子间的键合情况以及原子的空间取向。
物质的性质与其分子结构密切相关。
1. 原子排列方式分子中的原子排列方式不同,其性质也随之不同。
如乙醇和甲醇的分子式都是CH3OH,但其分子结构却不相同。
甲醇的分子中氧原子连接碳原子,而乙醇的分子中氧原子连接碳链上的一个碳原子。
这样的区别会引起乙醇与甲醇性质的不同。
如在同样的条件下,乙醇的沸点比甲醇高。
2. 原子间的键合情况原子间的键合强度与化学键类型有关,如离子键、共价键、酸碱键、氢键等。
键合类型不同,其性质也发生变化。
以共价键为例,它的种类有单键、双键、三键,每种化学键的键长、键强度和反应活性也有所不同。
另外,在共价键之间,还会发生极性与非极性的区别,不同的化学键特性对应了不同的物质性质。
3. 原子的空间取向原子的空间取向对于分子的物理性质有着非常重要的影响。
不同的原子空间取向,其分子的形状也不同,如甲烷和乙烷的分子式都是C2H6,但前者是正四面体,而后者是扁平的扇形。
这种区别导致了二者化学性质、物理性质的差异性。
例如,相同温度下,甲烷凝固为固体,而乙烷仍然是液体状态。
二、分子性质分子性质主要有物理性质和化学性质两种。
1. 物理性质物理性质是指与物质的广义状态参数或固有特性有关的性质。
如密度、熔点、沸点、导电性、折射率、溶解度等。
密度是物质 unit 体积的质量,反映了物质分子间的相对位置和排列方式。
分子间的距离越小,密度也就越大。
熔点和沸点是指物质在相应的温度下液体到固体、液体到气体的相变温度。
大多数情况下,熔点和沸点都与物质的分子结构有着密切的关系。
不同的化合物分子结构的相对排列不同,因而会影响它们的沸点和熔点。
2. 化学性质化学性质是指在化学反应中,分子内部以及分子与其他物质之间发生的转化。
第二单元分子结构与性质

(3)写出化合物AC2的电子式________;一种由B、C组成的化合 物与AC2互为等电子体,其化学式为________。 (4)E的核外电子排布式是__________________,ECl3形成的配 合物的化学式为________________。 (5)B的最高价氧化物对应的水化物的稀溶液与D的单质反应时, B被还原到最低价,该反应的化学方程式是_________。 【解析】 根据题干中信息:“B、C的氢化物的沸点比它们同族 相邻周期元素氢化物的沸点高”,可判断B、C分别为N(氮)和 O(氧)。E原子序数为24,为Cr(铬)。由“DC为离子晶体,D的二 价阳离子与C的阴离子具有相同的电子层结构”可以判断D为Mg。 由“AC2为非极性分子”可判断A为C(碳)。 (1)A、B、C的第一电离能由小到大的顺序为C<O<N。
[Cu(H2O)4]SO4·H2O 配酸:H2[PtCl6] 配碱:[Cu(NH3)4](OH)2 配合分子:Ni(CO)4
[Co(NH3)3Cl3] 【注意】 (1)配合物和配离子的区别。 (2)配合物和复盐的区别。
二、分子的性质 1.键的极性和分子的极性 一般说来,同种原子形成的共价键,电子对不偏移,是非极性 键;由不同种原子形成的共价键,电子对发生偏移,是极性键。 分子的极性 (1)概念 极性分子:正电中心和负电中心不重合的分子。例:HCl、H2O、 NH3等。 非极性分子:正电中心和负电中心重合的分子。例:Cl2、CO2、 BF3、CCl4等。
【解析】 (1)据已知确定融雪剂为CaCl2,Ca与H形成的化合
物为CaH2,其电子式类似于CaCl2。
(2)最外层电子数是电子层数2倍的元素有C+6
、S+
16
,因D与Cl相邻,故D为S,则E为C,则C与
分子的结构与性质的关系

分子的结构与性质的关系分子的结构与性质的关系是化学学科的重要研究内容之一。
分子的结构指的是分子中各个原子之间的相互排列方式以及原子与原子之间的化学键的连接方式。
而分子的性质则是指分子在化学反应和物理过程中所表现出来的特性和行为。
分子的结构直接影响着分子的性质。
一方面,分子的结构可以决定分子之间的相互作用力,进而影响物质的物理性质,如沸点、熔点、溶解度等。
另一方面,分子的结构还可以决定分子在化学反应中的反应性质,如反应的速率、选择性等。
首先,分子的结构与物质的物理性质密切相关。
例如,取代基的种类和位置可以影响有机化合物的沸点和溶解度。
在有机化学中,当取代基的体积增大时,分子间的范德华力也会增加,导致沸点升高。
同时,相同的取代基在不同位置的影响也不同,如苯环上的取代基会改变苯环的电子密度分布,进而影响苯环与其他分子间的相互作用。
其次,分子的结构对于化学反应的速率和选择性也有重要影响。
以有机合成为例,分子中官能团的位置和取代基的选择往往能够决定反应路径和产物选择。
例如,当氢原子被氟取代时,反应中可以选择引入氟原子的位置,从而得到不同的产物。
此外,分子的手性结构对于光学异构体的形成和对映选择性反应也具有重要作用。
另外,分子的结构还决定了分子之间的相互作用力。
分子间的相互作用力对于物质的凝聚态性质至关重要。
例如,氢键是分子间最常见的相互作用力之一,在生物分子的结构稳定性和具体功能中起着重要的作用。
此外,分子间力的大小还可以影响到分子的溶解度、热稳定性等性质。
综上所述,分子的结构与分子的性质之间存在着密切的关系。
分子的结构决定了分子的物理性质、化学反应性质以及相互作用力。
在化学研究和应用中,理解和研究分子的结构与性质的关系对于探索新材料、药物研发和化学工艺等领域具有重要的意义。
(以上内容仅供参考,具体内容和篇幅可以根据需要进行调整。
)。
第6章 分子的结构与性质

键长和键角是描述分子几何结构的两个要素。
分子或晶体中相邻原子(或离子)间强烈的相互 吸引作用称为化学键。
共价键—Ch6 离子键—Ch7 金属键—Ch7 配位键—Ch8
6.2 价键理论
6.2.1 共价键
2. 化学键:分子或晶体内部,原子(或离子)之间存 在着较强烈的相互作用力。化学上把分子或晶体中相 邻原子(或离子)间强烈的相互吸引作用称为化学键。
§6.1 化学键参数 §6.2 价键理论 §6.3 分子的几何构型 杂化轨道理论 *价层电子对互斥理论 §6.4 分子轨道理论 §6.5 分子间力和氢键
6.1键参数 凡能表征化学键性质的物理量统称为键参数。
化学键的强度: 键级 (B.O.) 键能 (E)
分子的空间构型: 键长 键角
化学键的极性: 键距 (键的偶极距 u = q l )
6.1.1 键能 E°
在标准条件下将1摩尔的气态AB分子中的化学键断 开,使每个AB分子离解成两个中性气态原子A + B时 所需的能量或者所释放的能量。
当两个自旋方向相反的电子相互靠近时,两个1s原 子轨道发生重叠(波函数相加),核间形成一个电子概 率密度较大的区域, 两个H原于核都被电子概率密 度大的电子云吸引,系统能量降低,当核间距达到 平衡距离R0(74pm)时,系统能量达到最低点----基态。 如果两个H原子核再接近,原子核间斥力增大.使 系统的能量迅速升高,排斥作用又将H原子推回平 衡位置。
ns-np杂化,ns-np-nd杂化,(n-1)d-ns-np杂化 ② 杂化轨道成键能力大于未杂化轨道。
+
+–
分子结构与性质全解

2)把分子中中心原子的价电子层视为一个球面。 因而价电子层中的电子对按能量最低原理排布 在球面,从而决定分子的空间构型。
两种排布方式。
F
F FS
F
F
S F
F
F
a
b
三.杂化轨道理论
1931年鲍林提出杂化轨道理论,满意地解 释了许多多原子分子的空间构型。
杂化轨道理论认为:
①形成分子时,由于原子间的相互作用,使 同一原子中能量相近的不同类型原子轨道, 例如ns轨道与np轨道,发生混合,重新组合 为一组新轨道.称为杂化轨道。如一个2s轨 道与三个2p轨道混合,可组合成四个sp3杂 化轨道;一个2s轨道与二个2p轨道混合,可 得三个sp2杂化轨道;一个2s轨道与一个2p 轨道混合,可得二个sp杂化轨道。
H
H
H
H
成原 够共
稳子 电 定子
通过价 键 的 现 代 物为什
的云 共形 质么
分的 用成 结原
σ键的特征:以形成化学键的两原子 子重 电是 构子
核两的个连线H原做为子轴共旋用转一操对作共,用共的价键电电子 ?叠 子由 理之
对子是云的不图是形只不存变在,称与为两轴核对间称? 。
对于 论间
形成 键 认 为能
成键判断 规律
σ键
π键
沿轴方向“头碰头” 平行或“肩并肩”
轴对称
σ键强度大, 不容易断裂
镜像对称
π键强度较小, 容易断裂
共价单键是σ键,共价双键中一个是σ 键,另一个是π键,共价三键中一个是σ 键,另两个为π键
化学分子结构与性质

化学分子结构与性质化学分子结构与性质是研究化学领域中的重要内容,它们的关系密切影响着物质的性质和反应过程。
本文将从分子的构成和排列方式、分子特性与宏观性质的关系、分子结构对化学反应的影响等方面进行探讨,以帮助读者深入了解化学分子结构与性质的基本原理。
1. 分子的构成和排列方式分子是由原子经过化学键连接而成的,不同原子之间通过共价键、离子键或金属键等方式结合在一起。
在化学分子中,原子之间按照一定的方式排列组成不同的分子结构,从而决定了分子的性质。
不同分子的构成和排列方式有着重要的差异,如线性分子、环状分子、立体分子等。
这些结构的不同直接影响着分子的物理性质和化学性质。
2. 分子特性与宏观性质的关系分子的特性是指分子独特的结构和化学键类型。
不同的分子具有不同的特性,如极性、反应活性、稳定性等。
这些特性决定了分子在物质中的行为,从而影响宏观性质的表现。
以水为例,由于水分子的极性,使得水具有很好的溶解性和表面张力,同时水的氢键作用也决定了水的高沸点和比热容。
因此,分子特性与宏观性质之间存在着紧密的联系。
3. 分子结构对化学反应的影响分子的结构对化学反应的速率和产物有着重要的影响。
分子内部的化学键和官能团的存在,决定了分子的反应活性和特定的反应途径。
例如,含有特定官能团的分子可以发生特定类型的反应,如酯化反应、醇酸反应等。
另外,分子之间的空间排列方式也会影响化学反应的发生。
立体异构体具有不同的结构和空间构型,因此在反应活性和反应途径上也会有所不同。
总结:化学分子结构与性质的关系是化学领域中一个重要的研究课题。
分子的构成和排列方式决定了分子的特性和行为,而分子的特性则直接影响着宏观性质的表现。
此外,分子结构对化学反应的速率和产物也起着重要的影响。
因此,深入理解和研究化学分子结构与性质的关系对于探索物质的性质和化学反应机理具有重要的意义。
化学中的分子结构与性质知识点

化学中的分子结构与性质知识点化学是研究物质构成、性质以及变化规律的科学领域。
而分子结构与性质是化学中重要的概念和知识点。
本文将介绍分子结构的基本概念、分子间相互作用和分子性质的相关知识。
一、分子结构的基本概念1. 原子:分子的基本组成单位,由核心的质子和中性的中子组成,外围环绕着电子。
2. 分子:由两个或更多原子通过化学键连接在一起形成的化合物。
分子可以是由相同元素的原子组成的,也可以是由不同元素的原子组成的。
3. 化学键:原子之间的强有力的相互作用力。
常见的化学键包括离子键、共价键和金属键。
4. 分子式:用来表示分子组成的化学符号。
例如,H₂O表示水分子,CO₂表示二氧化碳分子。
二、分子间相互作用1. 范德华力:分子之间由于极化而产生的瞬时种间相互作用力。
范德华力是所有分子间相互作用中最弱的一种。
2. 电离力:一种分子中带正电荷的离子与另一种分子中带负电荷的离子之间的相互作用力。
3. 氢键:氢原子与高电负性原子(如氧、氮等)之间的强作用力。
氢键是分子间相互作用中比较强的一种。
4. 疏水作用:非极性物质(如油)与水之间的相互作用力。
疏水作用使油与水无法混合。
三、分子性质1. 稳定性:分子结构的稳定性决定了化合物的存在形式和反应性质。
稳定的分子结构能够抵御外界环境的干扰而保持不变。
2. 极性:分子中正负电荷分布不均匀,导致分子具有极性。
极性分子在电场中会受到电场力的作用。
3. 气体、液体和固体状态:分子结构决定了化合物的物态。
气体分子之间的相互作用较弱,液体分子间的相互作用适中,固体分子之间的相互作用最强。
4. 溶解度:分子结构对溶解度有影响。
极性溶剂可以溶解极性分子,而非极性溶剂只能溶解非极性分子。
五、应用领域1. 药物研发:了解分子结构与性质对药物活性和药物代谢的影响,可以设计更有效的药物。
2. 材料科学:通过改变分子结构,可以获得具有特定性能的新型材料,如高效能量材料和高分子材料。
3. 环境保护:研究分子结构与环境中污染物的相互作用,有助于开发环境友好型的处理方法。
化学分子的结构与性质

化学分子的结构与性质化学是研究物质的变化和性质的科学,而分子是构成物质的最基本单位。
化学分子的结构决定了其性质,从而影响着化学反应和物质的用途。
本文将探讨化学分子的结构和性质之间的关系。
一、分子结构的基本组成化学分子由原子通过共价键或离子键连接而成。
原子通过共用电子形成共价键,其形成的分子称为共价分子。
而离子键是由正负电荷相互吸引形成的,其形成的物质称为离子晶体。
在共价分子中,原子按一定比例连接在一起,形成特定的结构。
这些连接关系被称为化学键,包括单键、双键和三键。
化学键的强弱和类型直接影响着分子的性质。
二、分子结构对性质的影响1. 构型和空间结构分子的构型和空间结构对其性质有重要影响。
分子的构型指的是原子在分子中的相对位置,而分子的空间结构则指的是分子的三维形状。
构型和空间结构的变化可能导致分子的立体异构体。
立体异构体具有相同的分子式,但其原子的排列方式不同,从而导致性质的差异。
例如,顺式和反式异构体的熔点和沸点会有明显的差异。
2. 极性和非极性化学键的极性决定了分子的极性。
极性分子由极性键连接,其中电子更偏向于电负性较高的原子。
非极性分子由非极性键连接,其中电子的分布相对均匀。
极性和非极性影响着分子在溶液中的溶解度、极性溶剂中的溶解度以及分子间的相互作用。
极性分子通常具有更高的沸点和熔点,并能够溶解于极性溶剂;而非极性分子通常具有较低的沸点和熔点,并能够溶解于非极性溶剂。
3. 功能团分子中的功能团是影响其化学性质的重要因素。
功能团是由一组原子组成的结构单元,例如羟基、氨基、羰基等。
不同的功能团赋予分子不同的化学反应性质。
例如,羟基使分子具有醇的性质,氨基使分子具有胺的性质,羰基使分子具有酮或醛的性质。
通过改变功能团的类型和数量,可以调控分子的化学反应性质。
4. 分子大小和分子量分子的大小和分子量对其性质有显著影响。
较大的分子通常具有较高的沸点和熔点,并且在固体状态下通常具有较高的硬度。
分子量也是衡量物质的重要指标之一。
物质的分子结构与性质

物质的分子结构与性质
物质的分子结构是指物质中分子之间的相互排列和连接方式。
不同物质的分子结构不同,这种差异直接影响了物质的性质。
分子结构与物质性质的关系
分子结构的不同会导致物质性质的差异。
例如,分子之间的相互作用力的强弱会影响物质的熔点和沸点。
分子结构的松散与紧密程度会影响物质的密度。
分子内的化学键的类型和强度会决定物质的化学性质。
此外,分子结构还会影响物质的光学、电学和磁性等特性。
物质的分子结构的确定
物质的分子结构可以通过多种方法进行确定。
X射线晶体学、核磁共振和质谱等技术被广泛应用于分子结构的解析。
这些技术可以提供分子的三维结构、键的类型和长度等信息,从而帮助我们了解物质的性质和行为。
实际应用
分子结构与物质性质的关系在许多领域有着重要的应用。
例如,在药物设计中,了解分子结构可以帮助科学家设计出更安全、更有
效的药物。
在材料科学中,通过调控分子结构,可以获得具有特定
性能的新材料。
此外,物质的分子结构也与环境和生物体之间的相
互作用密切相关,对环境科学和生物学研究具有重要意义。
总之,物质的分子结构决定了物质的性质。
通过研究分子结构,我们可以更好地理解物质的性质和行为,并在各个领域中应用这些
知识。
分子的结构与性质单元复习

分子的结构与性质单元复习引言:分子是物质的基本单位之一,它由两个或更多原子通过化学键连接而成。
了解分子的结构与性质对于理解物质的特性、反应机制和应用具有重要意义。
本文将从分子的结构与性质单元进行复习,以帮助读者更好地理解这一概念。
一、分子的结构:1.分子的组成部分:-原子:分子由原子通过共价键、离子键或金属键相互连接而成。
不同原子的聚合形成了不同类型的分子。
-化学键:分子中化学键的类型(共价键、离子键、金属键)决定了分子的性质和反应方式。
2.共价键:-共用电子对:共价键的形成是通过原子间共用电子对,使得原子达到稳定的电子构型。
-共价键的特征:强度较大,通常为非极性或极性。
3.离子键:-电子的转移:离子键的形成是通过原子间电子的完全转移。
一个原子失去电子变成正离子,另一个原子获得电子变成负离子。
-离子键的特征:强度大,电荷分布不均匀,具有极性。
4.金属键:-金属的特征:金属由正离子和自由移动的电子云组成,形成金属键。
-金属键的特征:强度大,导电性好,具有金属的特性。
5.分子的几何结构:-分子的立体排列:分子的几何结构是由原子间的空间排列决定。
-分子的最低能量状态:分子的几何结构处于能量最低状态,满足最小电子排斥原理和最大化各个原子间的相互作用力。
二、分子的性质:1.分子的物理性质:-分子间力:分子中的分子间力包括范德华力、氢键、离子间相互作用力等,是决定物质的物理性质(如沸点、熔点、溶解度)的重要因素。
-极性和非极性:分子的极性与非极性是分子间力的重要性质,也是分子及其应用的重要指标。
2.分子的化学性质:-化学键的稳定性:分子中化学键的稳定性决定了分子的抗氧化性、抗酸性、抗碱性等性质。
-反应性:由于分子中的原子之间存在不平衡的电子,分子具有较高的反应活性,容易发生化学反应。
3.分子与生物体系的关系:-生物大分子:在生物体系中,分子扮演着重要的角色,如DNA、RNA、蛋白质等,这些生物大分子对生命的维持和功能发挥至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第38讲分子结构与性质考纲要求 1.了解共价键的形成、极性、类型(σ键和π键),了解配位键的含义。
2.能用键能、键长、键角等说明简单分子的某些性质。
3.了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3)。
4.能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的立体构型。
5.了解范德华力的含义及对物质性质的影响。
6.了解氢键的含义,能列举存在氢键的物质,并能解释氢键对物质性质的影响。
考点一共价键及其参数1.本质在原子之间形成共用电子对(电子云的重叠)。
2.特征具有饱和性和方向性。
3.分类特别提醒(1)只有两原子的电负性相差不大时,才能形成共用电子对,形成共价键,当两原子的电负性相差很大(大于1.7)时,不会形成共用电子对,而形成离子键。
(2)同种元素原子间形成的共价键为非极性键,不同种元素原子间形成的共价键为极性键。
4.键参数(1)概念(2)键参数对分子性质的影响①键能越大,键长越短,分子越稳定。
②5.等电子原理原子总数相同,价电子总数相同的分子具有相似的化学键特征和立体结构,许多性质相似,如N2与CO、O3与SO2、N2O与CO2、CH4与NH+4等。
(1)共价键的成键原子只能是非金属原子(×)(2)在任何情况下,都是σ键比π键强度大(×)(3)在所有分子中都存在化学键(×)(4)分子的稳定性与分子间作用力的大小无关(√)(5)s-s σ键与s-p σ键的电子云形状对称性相同(√)(6)σ键能单独形成,而π键一定不能单独形成(√)(7)σ键可以绕键轴旋转,π键一定不能绕键轴旋转(√)(8)碳碳三键和碳碳双键的键能分别是碳碳单键键能的3倍和2倍(×)(9)键长等于成键两原子的半径之和(×)(10)所有的共价键都有方向性(×)1.有以下物质:①HF,②Cl2,③H2O,④N2,⑤C2H4,⑥C2H6,⑦H2,⑧H2O2,⑨HCN(H—C≡N)。
只有σ键的是________(填序号,下同);既有σ键,又有π键的是________;含有由两个原子的s轨道重叠形成的σ键的是________;含有由一个原子的s轨道与另一个原子的p轨道重叠形成的σ键的是________;含有由一个原子的p轨道与另一个原子的p轨道重叠形成的σ键的是________。
答案①②③⑥⑦⑧④⑤⑨⑦①③⑤⑥⑧⑨②④⑤⑥⑧⑨2.写出与CCl4互为等电子体的分子或离子有____________________等。
答案SiCl4、CBr4、SO2-4、CF4(合理即可)题组一共价键参数的理解与应用1.结合事实判断CO和N2相对活泼的是______________,试用下表中的键能数据解释其相对活泼的原因:______________________________________________________________________________________________________________________________________。
答案CO断开CO分子的第一个化学键所需要的能量(273.0 kJ·mol-1)比断开N2分子的第一个化学键所需要的能量(523.3 kJ·mol-1)小解析由断开CO分子的第一个化学键所需要的能量[(1 071.9-798.9) kJ·mol-1=273.0kJ·mol-1]比断开N分子的第一个化学键所需要的能量[(941.7-418.4) kJ·mol-1=523.3 2kJ·mol-1]小,可知CO相对活泼。
2.(2018·河南省开封联考)已知键能、键长部分数据如下表:(1)下列推断正确的是________(填字母,下同)。
A.稳定性:HF>HCl>HBr>HIB.氧化性:I2>Br2>Cl2C.沸点:H2O>NH3D.还原性:HI>HBr>HCl>HF(2)下列有关推断正确的是________。
A.同种元素形成的共价键,稳定性:三键>双键>单键B.同种元素形成双键键能一定小于单键的2倍C.键长越短,键能一定越大D.氢化物的键能越大,其稳定性一定越强(3)在HX分子中,键长最短的是________,最长的是________;O—O键的键长________(填“大于”“小于”或“等于)O==O键的键长。
答案(1)ACD(2)A(3)HF HI大于解析(1)根据表中数据,同主族气态氢化物的键能从上至下逐渐减小,稳定性逐渐减弱,A 项正确;从键能看,氯气、溴单质、碘单质的稳定性逐渐减弱,由原子结构知,氧化性也逐渐减弱,B项错误;还原性与失电子能力有关,还原性:HI>HBr>HCl>HF,D项正确。
(2)由碳碳键的数据知A项正确;由O—O键、O==O键的键能知,B项错误;C—H键的键长大于N—H键的键长,但是N—H键的键能反而较小,C项错误;由C—H、N—H的键能知,CH4的键能较大,而稳定性较弱,D项错误。
题组二等电子原理的理解与应用3.(2017·瓦房店市期末)根据等电子原理判断,下列说法中错误的是()A.B3N3H6分子中所有原子均在同一平面上B.B3N3H6分子中存在双键,可发生加成反应C.H3O+和NH3是等电子体,均为三角锥形D.CH4和NH+4是等电子体,均为正四面体形答案 B解析B3N3H6和苯是等电子体,其结构相似;C项,H3O+和NH3是等电子体,根据氨气分子的立体构型判断水合氢离子的立体构型;D项,CH4和NH+4是等电子体,根据甲烷的立体构型判断铵根离子的立体构型。
4.回答下列问题。
(1)根据等电子原理,仅由第二周期元素形成的共价分子中,互为等电子体的是________和________;________和________。
(2)在短周期元素组成的物质中,与NO-2互为等电子体的分子有________、________。
(3)与H2O互为等电子体的一种阳离子为________(填化学式),阴离子为________。
(4)与N2互为等电子体的阴离子是________,阳离子是________。
答案(1)N2CO N2O CO2(2)SO2O3(3)H2F+NH-2(4)CN-(或C2-2)NO+考点二分子的立体构型1.价层电子对互斥理论(1)理论要点①价层电子对在空间上彼此相距最远时,排斥力最小,体系的能量最低。
②孤电子对的排斥力较大,孤电子对越多,排斥力越强,键角越小。
(2)用价层电子对互斥理论推测分子的立体构型的关键是判断分子中的中心原子上的价层电子对数。
其中:a是中心原子的价电子数(阳离子要减去电荷数、阴离子要加上电荷数),b是与中心原子结合的原子最多能接受的电子数,x是与中心原子结合的原子数。
(3)示例分析2.杂化轨道理论(1)理论要点当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。
杂化轨道数不同,轨道间的夹角不同,形成分子的空间结构不同。
(2)杂化轨道与分子立体构型的关系3.配位键(1)孤电子对分子或离子中没有跟其他原子共用的电子对称孤电子对。
(2)配位键①配位键的形成:成键原子一方提供孤电子对,另一方提供空轨道形成共价键。
②配位键的表示:常用“―→”来表示配位键,箭头指向接受孤电子对的原子,如NH+4可表示为,在NH+4中,虽然有一个N—H键形成过程与其他3个N—H键形成过程不同,但是一旦形成之后,4个共价键就完全相同。
(3)配合物如[Cu(NH3)4]SO4配体有孤电子对,如H2O、NH3、CO、F-、Cl-、CN-等。
中心原子有空轨道,如Fe3+、Cu2+、Zn2+、Ag+等。
(1)杂化轨道只用于形成σ键或用于容纳未参与成键的孤电子对(√)(2)分子中中心原子若通过sp3杂化轨道成键,则该分子一定为正四面体结构(×)(3)NH3分子为三角锥形,N原子发生sp2杂化(×)(4)只要分子构型为平面三角形,中心原子均为sp2杂化(√)(5)中心原子是sp杂化的,其分子构型不一定为直线形(×)(6)价层电子对互斥理论中,π键电子对数不计入中心原子的价层电子对数(√)1.填表答案 ①0 2 直线形 直线形 sp ②0 3 平面三角形 平面三角形 sp 2 ③1 4 四面体形 三角锥形 sp 3 ④0 4 正四面体形 正四面体形 sp 3 ⑤1 4 四面体形 三角锥形 sp 3 2.比较下列分子或离子中键角大小。
(1)H 2O________H 3O +,NH 3________NH +4。
(2)SO 3________CCl 4,CS 2________SO 2。
答案 (1)< < (2)> >解析 (1)H 2O 与H 3O +,NH 3与NH +4的中心原子均采用sp 3杂化,孤电子对数越多,斥力越大,键角越小。
(2)杂化不同,键角不同。
题组一 分子的立体构型及中心原子杂化类型的判断 1.(2017·东河区校级期末)下列说法中正确的是( )A .PCl 3分子是三角锥形,这是因为P 原子是以sp 2杂化的结果B .sp 3杂化轨道是由任意的1个s 轨道和3个p 轨道混合形成的四个sp 3杂化轨道C .凡中心原子采取sp 3杂化的分子,其VSEPR 模型都是四面体D .AB 3型的分子立体构型必为平面三角形 答案 C解析A项,PCl3分子的中心原子P含有3个成键电子对和1个孤电子对,为sp3杂化,立体构型为三角锥形,错误;B项,能量相近的s轨道和p轨道形成杂化轨道,错误;C项,凡中心原子采取sp3杂化的分子,其VSEPR模型都是四面体,而分子的立体构型还与含有的孤电子对数有关,正确;D项,AB3型的分子立体构型与中心原子的孤电子对数也有关,如BF3中B原子没有孤电子对,为平面三角形,NH3中N原子有1个孤电子对,为三角锥形,错误。
2.原子形成化合物时,电子云间的相互作用对物质的结构和性质会产生影响。
请回答下列问题:(1)BF3分子的立体构型为______________,NF3分子的立体构型为____________。
(2)已知H2O、NH3、CH4三种分子中,键角由大到小的顺序是CH4>NH3>H2O,请分析可能的原因是________________________________________________________________________ ________________________________________________________________________。
答案(1)平面三角形三角锥形(2)CH4分子中的C原子没有孤电子对,NH3分子中N原子上有1对孤电子对,H2O分子中O 原子上有2对孤电子对,对成键电子对的排斥作用增大,故键角减小解析(1)BF3分子中的B原子采取sp2杂化,所以其分子的立体构型为平面三角形;NF3分子中的N原子采取sp3杂化,其中一个杂化轨道中存在一对孤电子对,所以其分子的立体构型为三角锥形。