人教版高中数学必修1反证法教案

合集下载

反证法教案高中数学

反证法教案高中数学

反证法教案高中数学
一、教学内容:反证法
二、教学目标:
1. 了解反证法的基本概念和应用;
2. 能够灵活运用反证法解决问题。

三、教学重点和难点:
1. 反证法的基本原理和思想;
2. 如何正确运用反证法进行证明。

四、教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔、教学PPT等。

五、教学步骤:
1. 引入:通过一个生活中的例子引发学生对反证法的兴趣,引出反证法的概念。

2. 讲解:讲解反证法的基本原理和思想,以及在数学证明中的应用方法。

3. 练习:设计一些简单的例题,让学生通过反证法进行证明。

4. 拓展:提供一些更具挑战性的问题,引导学生灵活运用反证法解决问题。

5. 总结:对本节课内容进行总结,并强调反证法在解决问题中的重要性。

六、课后作业:
1. 完成课堂练习题,并写出解题思路;
2. 查找一些实际问题,尝试用反证法进行证明。

七、教学反思:
在教学中要注重引导学生思考和灵活运用反证法,培养其逻辑思维和解决问题的能力,同时要注重培养学生的合作意识和自主学习能力。

人教课标版高中数学选修1-2:《反证法》教案-新版

人教课标版高中数学选修1-2:《反证法》教案-新版

2.2.2 反证法一、教学目标1.核心素养培养学生用反证法证明简单问题的推理技能,进一步培养分析能力、逻辑思维能力及解决问题的能力2.学习目标(1)理解反证法的概念(2)体会反证法证明命题的思路方法及反证法证题的步骤(3)会用反证法证明简单的命题3.学习重点对反证法的概念和三个步骤的理解与掌握.4.学习难点理解“反证法”证明得出“矛盾的所在”即矛盾依据.二、教学设计(一)课前设计【学习过程】1.预习任务任务1预习教材P42—P43,思考:什么是反证法?你以前学过反证法吗?任务2反证法证明问题的步骤是什么?值得注意的问题哪些?2.预习自测1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()①结论相反的判断,即假设②原命题的条件③公理、定理、定义等④原结论A.①②B.①②④C.①②③D.②③答案:C【知识点:三角形内角和的性质,命题的否定,反证法】由反证法的定义可知应选C.2.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.两个都是非负数D.至少有一个是正数答案:D3.已知a+b+c>0,ab+bc+ca>0,abc>0,用反证法求证a>0,b>0,c>0时的假设为()A.a<0,b<0,c>0B.a≤0,b>0,c>0C.a,b,c不全是正数D.abc<0答案:C4.否定“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有两个解D.至少有三个解答案:D(二)课堂设计1.知识回顾著名的“道旁苦李”的故事:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?王戎的推理方法是:假设李子不苦,则因树在“道”边,李子早就被别人采摘而没有了,这与“多李”产生矛盾.所以假设不成立,李为苦李.2.问题探究问题探究一反证法的概念●活动一1.什么是反证法?引例:证明:在一个三角形中至少有一个角不小于60°.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个不小于60°.∆的三个内角∠A,∠B,∠C都小于60°,证明:假设ABC则有∠A <60°,∠B < 60°,∠C <60°,∠A+∠B+∠C<180°这与三角形内角和等于180°相矛盾.所以假设不成立,所求证的结论成立.先假设结论的反面是正确的,然后通过逻辑推理,推出与公理、已证的定理、定义或已知条件相矛盾,说明假设不成立,从而得到原结论正确.这种证明方法就是——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.反证法也称归谬法●活动二1.常用词语的反义词从上面的引例可以看出:用反证法证明问题时,都是得到一系列矛盾结果,会出现一些反义词,因此,同学们要注意常见词语的反义词,你知道哪些反义词呢?下面是一些常见反义词:问题探究二反证法的证题的基本步骤●活动一反证法的证明过程从前面的引例中你可以总结出反证法证明问题有哪些步骤?反证法的证明过程:否定结论——推出矛盾——肯定结论,即分三个步骤:反设—归谬—存真反设——假设命题的结论不成立;归谬——从假设出发,经过一系列正确的推理,得出矛盾;存真——由矛盾结果,断定反设不成立,从而肯定原结论成立.●活动二归谬矛盾的方法思考一下,归谬矛盾的方法有哪些?归谬矛盾主要有以下方法:(1)与已知条件矛盾.(2)与假设矛盾或自相矛盾.(3)与已有公理、定理、定义、事实矛盾.●活动三反证法证明问题的适用范围同学们知道用反证法证明问题的范围有哪些吗?是不是所有的问题反证法都适用?反证法证明问题的适用范围(1)否定性命题;(2)限定式命题;(3)无穷性命题;(4)逆命题;(5)某些存在性命题;(6)全称肯定性命题;(7)一些不等量命题的证明;(8)基本命题;(9)结论以“至多……”“至或少……”的形式出现的命题等.问题探究三反证法可以解决哪些问题?●活动一用反证法证明否(肯)定式命题例1 设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的零点,命题的否定,反证法;数学思想:函数与方程】详解:假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z).而f(0),f(1)均为奇数,即c 为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数.又a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数矛盾.∴f(x)=0无整数根.点拔:(1)此题为否定形式的命题,直接证明很困难,可选用反证法.证题的关键是根据f(0),f(1)均为奇数,分析出a,b,c的奇偶情况,并应用.(2)对某些结论为肯定形式或者否定形式的命题的证明,从正面突破较困难时,可用反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.●活动二用反证法证明“唯一性”命题例2 若函数f(x)在区间[a,b]上的图象连续不断开,f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【知识点:函数的零点,函数的单调性,命题的否定,反证法】详解:由于f(x)在[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,则f (m )=0,假设f (x )在(a ,b )内还存在另一个零点n ,且n ≠m .,使f (n )=0,若n >m ,则f (n )>f (m ),即0>0,矛盾;若n <m ,则f (n )<f (m ),即0<0,矛盾.因此假设不正确,即f (x )在(a ,b )内有且只有一个零点.点拔:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.●活动三 用反证法证明“至多、至少”问题例3 已知x ,y >0,且x +y >2.求证:1+x y ,1+y x 中至少有一个小于2.【知识点:不等式的性质,不等式的证明,命题的否定,反证法】详解: 假设1+x y ,1+y x 都不小于2,即1+x y ≥2,1+y x ≥2.∵x >0,y >0,∴1+x ≥2y,1+y ≥2x .∴2+x +y ≥2(x +y ).即x +y ≤2,这与已知x +y >2矛盾.∴1+x y ,1+y x 中至少有一个小于2.点拔:反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个等.例4 设二次函数2()f x x px q =++,求证:(1),(2),(3)f f f 中至少有一个不小于12. 【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】 详解:假设(1),(2),(3)f f f 都小于12,则 .2)3()2(2)1(<++f f f (1)另一方面,由绝对值不等式的性质,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.点拔:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行.议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?●活动四利用反证法证题时,假设错误而致误例5 已知a,b,c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a =0,cx2+2ax+b=0至少有一个方程有两个相异实根.【错解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac<0,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0,相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2<0,即(a-b)2+(b-c)2+(c-a)2<0,此不等式不能成立,所以假设不成立,即三个方程中至少有一个方程有两个相异实根.【知识点:方程的根,反证法】【错因分析】上面解法的错误在于认为“方程没有两个相异实根就有Δ<0”,事实上,方程没有两个相异实根时Δ≤0.【正解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,即(a-b)2+(b-c)2+(c-a)2≤0,(*)由题意a,b,c互不相等,所以(*)式不能成立.所以假设不成立,即三个方程中至少有一个方程有两个相异实根.点拔:用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.3.课堂总结【知识梳理】(1)反证法:假设原命题的反面正确,根据已知条件及公理、定理、定义,按照严格的逻辑推理导出矛盾.从而说明假设不正确,得出原命题正确.(2)反证法是间接证明的一种方法,在证明否定性命题、唯一性命题和存在性命题时运用反证法比较简便.(3)反证法的基本步骤是:①反设——假设命题的结论不成立,即假设原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果;③存真——由矛盾结果,断定反设不真,从而肯定结论成立.【难点突破】用反证法证题时,应注意的事项:(1)周密考察原命题结论的否定事项,防止否定不当或有所遗漏.(2)推理过程必须完整,否则不能说明命题的真伪性.(3)在推理过程中,要充分使用已知条件,否则推不出矛盾,或者不能断定推出的结果是错误的.(4)反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.(5)归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.4.随堂检测1.用反证法证明“如果a>b,那么3a>3b”的假设内容应是()A.3a=3bB.3a<3bC.3a≤3bD.3a≥3b答案:C【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】“大于”的对立面为“小于等于”,故应假设“3a ≤3b ”.2.否定“任何一个三角形的外角都至少有两个钝角”时正确的说法为( )A .存在一个三角形,其外角最多有一个钝角B .任何一个三角形的外角都没有两个钝角C .没有一个三角形的外角有两个钝角D .存在一个三角形,其外角有两个钝角答案:A【知识点:三角形的性质,命题的否定,反证法】原命题的否定为:存在一个三角形,其外角最多有一个钝角.3.用反证法证明命题:若a 、b 是实数,且|a -1|+|b -1|=0,则a =b =1时,应作的假设是________.答案:a ≠1或b ≠1.【知识点:命题的否定,反证法】∵“a =b =1”的否定为“a ≠1或b ≠1”,故应填a ≠1或b ≠1.4.证明方程2x =3有且仅有一个实根.【知识点:命题的否定,反证法】证明:∵2x =3,∴x =32,∴方程2x =3至少有一个实根.设x 1,x 2是方程2x =3的两个不同实根,则⎩⎨⎧2x 1=3, ①2x 2=3, ② 由①-②得2(x 1-x 2)=0,∴x 1=x 2,这与x 1≠x 2矛盾.故假设不正确,从而方程2x =3有且仅有一个实根.三、智能提升★基础型 自主突破1.(2013·海口高二检测)用反证法证明命题:三角形三个内角至少有一个不大于60°时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°答案:B三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°,故B正确.2.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0答案:D【知识点:命题的否定,反证法】实数a,b,c不全为0,即a,b,c至少有一个不为0,故应选D.3.(1)已知p3+q3=2,求证p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确答案:D【知识点:命题的否定,反证法】(1)的假设应为p+q>2;(2)的假设正确.答案是D4.下列命题不适合用反证法证明的是()A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1答案:C【知识点:命题的否定,反证法】A中命题条件较少,不易正面证明;B中命题是否定性命题,其反设是显而易见的定理;D 中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明.5.命题“三角形中最多只有一个内角是直角”的否定是_____________.答案:三角形中最少有两个内角是直角【知识点:三角形的性质,命题的否定,反证法】“最多”的反面是“最少”,故本题的否定是:三角形中最少有两个内角是直角.能力型 师生共研1.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案:C【知识点:基本不等式,命题的否定,反证法】假设都大于-2,则1116a b c b c a+++++>-,又()112a a a a ⎡⎤+=--+≤-=-⎢⎥-⎣⎦,同理12b b +≤-,12c c +≤-, 故1116a b c b c a+++++≤-,矛盾.即a +1b ,c +1a ,b +1c 中至少有一个不大于-2,所以答案C . 2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 答案:a 、b 不全为0【知识点:命题的否定,反证法】“a 、b 全为0”即“a =0且b =0”,因此它的反设为“a ≠0或b ≠0,3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.答案:③①②【知识点:三角形的性质,命题的否定,反证法】4.甲乙丙三位同学中,有一位同学做了一件好事,这时候老师问他们三人,是谁做的?甲说:"丙做的.”丙说:“不是我做的.”乙也说:“不是我做的.”如果知道他们三个人中,有两人说了假话,有一人说真话,你能判断出是谁做的吗?【知识点:推理与证明,命题的否定,反证法】解:每人讲的话中都有一句真话,一句假话.乙说:“我没有做这件事,丙也没有做这件事.”说明乙丙两人中有一人做了这件事,甲一定没做而甲说:“我没有做这件事,乙也没有做这件事.”前一句是真的,后一句一定是假的.所以,是乙做的这件好事!5.用反证法证明:无论m 取何值,关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0至少有一个有实数根.【知识点:推理与证明,命题的否定,反证法】解:假设存在实数m ,使得这两个方程都没有实数根,则⎩⎨⎧ Δ1=25-4m <0,Δ2=1-8(6-m )<0,解得⎩⎪⎨⎪⎧ m >254,m <478,无解.与假设存在实数m 矛盾.故无论m 取何值,两个方程中至少有一个方程有实数根.6.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.【知识点:不等式的证明,命题的否定,反证法】证明: 假设a <0,由abc >0得bc <0,由a +b +c >0,得b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这与已知矛盾.又若a =0,则abc =0,与abc >0矛盾,故a >0,同理可证b >0,c >0.探究型 多维突破1.若x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,则a ,b ,c 中是否至少有一个大于0?请说明理由.【知识点:推理与证明,实数非负性,命题的否定,反证法】解:假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+π-3,因为π-3>0,且无论x ,y ,z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,所以a +b +c >0.这与假设a +b +c ≤0矛盾.因此,a,b,c中至少有一个大于0.2.如下图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.【知识点:线面垂直,面面垂直,异面直线,命题的否定,反证法】解:(1)如图,取CD的中点G,连接MG,NG,∵ABCD,DCEF为正方形,且边长为2,∴MG⊥CD,MG=2,NG=2.∵平面ABCD⊥平面DCEF,∴MG⊥平面DCEF.∴MG⊥GN.∴MN=MG2+GN2=6.(2)证明假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN∩平面DCEF=EN.由已知,两正方形ABCD和DCEF不共面,故AB⊄平面DCEF.又AB∥CD,∴AB∥平面DCEF,∴EN∥AB,又AB∥CD∥EF.∴EF∥NE,这与EF∩EN=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.(四)自助餐1.用反证法证明命题“若a,b∈N,ab可以被7整除,则a,b中至少有一个能被7整除”,其假设正确的是()A.a,b都能被7整除B.a,b都不能被7整除C.a不能被7整除D.a,b中有一个不能被7整除答案:B【知识点:推理与证明,命题的否定,反证法】“至少有一个”的否定是“一个也没有”.所以选B.2.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多有一个钝角”的反面是“三角形的内角中没有钝角”,其中正确的叙述有()A.0个B.1个C.2个D.3个答案:B【知识点:推理与证明,命题的否定,反证法】①错,应为a≤b.②对.③错,应为三角形的外心在三角形内或三角形的边上.④错,应为三角形的内角中有2个或3个钝角.即选B.3.设正实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.1 3B.1 2C.3 4D.2 5答案:A【知识点:推理与证明,命题的否定,反证法】假设a,b,c中至少有一个数不小于x的反命题成立,即假设a,b,c都小于x,即a<x,b<x,c<x,∴a+b+c<3x.∵a+b+c=1,∴3x>1.∴x>13,若取x=13就会产生矛盾.故选A.4.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数答案:D【知识点:推理与证明,命题的否定,反证法】a+b为奇数⇔a、b中有一个为奇数,另一个为偶数,故D错误.因此选D.5.已知α∩β=l,a⊂α,b⊂β,若a,b为异面直线,则()A.a,b都与l相交B.a,b中至少有一条与l相交C.a,b中至多有一条与l相交D.a,b都不与l相交答案:B【知识点:推理与证明,命题的否定,反证法】逐一从假设选项成立入手分析,易得B是正确选项,故选B.6.以下各数不能构成等差数列的是()A.3,4,5B.2,3, 5C.3,6,9D.2,2, 2答案:B【知识点:推理与证明,命题的否定,反证法】假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列.7.“任何三角形的外角都至少有两个钝角”的否定应是________.答案:存在一个三角形,其外角最多有一个钝角【知识点:命题的否定,反证法】“存在一个三角形,其外角最多有一个钝角”.“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.8.设二次函数f(x)=ax2+bx+c(a≠0)中,a、b、c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的奇偶性,推理与证明,命题的否定,反证法】证明设f(x)=0有一个整数根k,则ak2+bk=-c.①又∵f(0)=c,f(1)=a+b+c均为奇数,∴a+b为偶数,当k为偶数时,显然与①式矛盾;当k为奇数时,设k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为偶数,也与①式矛盾,故假设不成立,所以方程f(x)=0无整数根.9.如图,已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a.求证:b与c是异面直线.【知识点:线面平行,线线平行,推理与证明,命题的否定,反证法】证明:证明:假设b,c不是异面直线,则①b∥c;②b∩c=B.①若b∥c,∵a∥c,∴a∥b,与a∩b=A矛盾,∴b∥c不成立.②若b∩c=B,∵c⊂β,∴B∈β.又A∈β,A∈b,∴b⊂β.又b⊂α,∴α∩β=b.又α∩β=a,∴a与b重合.这与a∩b=A矛盾.∴b∩c=B不成立.∴b与c是异面直线.10.若下列方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.【知识点:判别式,不等式组的解法,命题的否定,反证法】解:设三个方程均无实根,则有⎩⎨⎧ Δ1=16a 2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=4a 2-4(-2a )<0,解得⎩⎪⎨⎪⎧ -32<a <12,a <-1,或a >13,-2<a <0,所以-32<a <-1. 所以当a ≥-1,或a ≤-32时,三个方程至少有一个方程有实根.11.已知函数f (x )=x 22x -2,如果数列{a n }满足a 1=4,a n +1=f (a n ),求证:当n ≥2时,恒有a n <3成立.【知识点:推理与证明,命题的否定,反证法】证明:法一(直接证法) 由a n +1=f (a n )得a n +1=a 2n 2a n -2, ∴1a n +1=-2a 2n +2a n =-2⎝ ⎛⎭⎪⎫1a n -122+12≤12, ∴a n +1<0或a n +1≥2;(1)若a n +1<0,则a n +1<0<3,∴结论“当n ≥2时,恒有a n <3”成立;(2)若a n +1≥2,则当n ≥2时,有a n +1-a n =a 2n 2a n -2-a n =-a 2n +2a n 2(a n -1)=-a n (a n -2)2(a n -1)≤0, ∴a n +1≤a n ,即数列{a n }在n ≥2时单调递减;由a 2=a 212a 1-2=168-2=83<3, 可知a n ≤a 2<3,在n ≥2时成立.综上,由(1)、(2)知:当n ≥2时,恒有a n <3成立.法二:(用反证法) 假设a n ≥3(n ≥2),则由已知得a n +1=f (a n )=a 2n 2a n -2, ∴当n ≥2时,a n +1a n=a n 2a n -2=12·⎝ ⎛⎭⎪⎫1+1a n -1≤12⎝ ⎛⎭⎪⎫1+12=34<1,(∵a n -1≥3-1), 又易证a n >0,∴当n ≥2时,a n +1<a n ,∴当n >2时,a n <a n -1<…<a 2;而当n =2时,a 2=a 212a 1-2=168-2=83<3,∴当n ≥2时,a n <3;这与假设矛盾,故假设不成立,∴当n≥2时,恒有a n<3成立.三、数学视野边际分析法是这一时期产生的一种经济分析方法,同时形成了经济学的边际效用学派,代表人物有瓦尔拉(L.Walras)、杰文斯(W.S.Jevons)、戈森(H.H.Gossen)、门格尔(C.Menger)、埃奇沃思(F.Y.Edgeworth)、马歇尔(A.Marshall)、费希尔(I.Fisher)、克拉克(J.B.Clark)以及庞巴维克(E.von Bohm-Bawerk)等人.边际效用学派对边际概念作出了解释和定义,当时瓦尔拉斯把边际效用叫做稀缺性,杰文斯把它叫做最后效用,但不管叫法如何,说的都是微积分中的“导数”和“偏导数”.西方经济学中,边际分析方法是最基本的分析方法之一,是一个比较科学的分析方法.西方边际分析方法的起源可追溯到马尔萨斯.他在1814年曾指出微分法对经济分析所可能具有的用途.1824年,汤普逊(W.Thompson)首次将微分法运用于经济分析,研究政府的商品和劳务采购获得最大利益的条件.功利主义创始人边沁(J.Bentham)在其最大快乐和最小痛苦为人生追求目标的信条中,首次采用最大和最小术语,并且提出了边际效应递减的原理.边际分析法是把追加的支出和追加的收入相比较,二者相等时为临界点,也就是投入的资金所得到的利益与输出损失相等时的点.如果组织的目标是取得最大利润,那么当追加的收入和追加的支出相等时,这一目标就能达到.边际分析法的数学原理很简单.对于离散discrete情形,边际值marginal value为因变量变化量与自变量变化量的比值;对于连续continuous情形,边际值marginal value为因变量关于某自变量的导数值.所以边际的含义本身就是因变量关于自变量的变化率,或者说是自变量变化一个单位时因变量的改变量.在经济管理研究中,经常考虑的边际量有边际收入MR、边际成本MC、边际产量MP、边际利润MB等.。

人教版高中数学反证法教案

人教版高中数学反证法教案

人教版高中数学反证法教案
教学内容:反证法
教学目标:
1. 了解反证法的基本概念和原理;
2. 能够熟练运用反证法证明数学命题;
3. 培养学生的逻辑思维能力和数学推理能力。

教学重点:反证法的基本原理和运用。

教学难点:运用反证法证明数学命题。

教学准备:教案、黑板、粉笔、教学课件等。

教学过程:
Step 1:导入新知识(5分钟)
教师简单介绍反证法的基本概念和原理,引起学生对反证法的兴趣。

Step 2:学习反证法(15分钟)
教师通过具体案例,详细讲解反证法的基本原理和运用方法,引导学生理解反证法的逻辑推理过程。

Step 3:练习应用(20分钟)
教师设计一些练习题,要求学生用反证法证明数学命题,让学生在实践中掌握反证法的运用技巧。

Step 4:总结回顾(5分钟)
教师对本节课的内容进行总结回顾,并再次强调反证法的重要性和实际应用价值。

Step 5:作业布置(5分钟)
布置相关作业,加深学生对反证法的理解和掌握程度。

教学反思:
本节课通过简单易懂的方式,引导学生了解反证法的基本原理和运用方法,培养了学生的逻辑思维能力和数学推理能力。

在后续的教学中,应多加练习,提高学生对反证法的应用能力。

反证法教案

反证法教案

1 / 8§29.2反证法教学目标:1、知识与能力:(1)、通过实例,体会反证法的含义(2)、培养学生用反证法简单推理的技能,从而发展学生的思维能力. 2、过程与方法:(1)、了解反证法的基本步骤,会用反证法证明简单的命题. (2)、使学生初步掌握反证法的概念及反证法证题的基本方法. 3、情感、态度、价值观:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性. 教学重点:体会反证法证明命题的思路方法,掌握反证法证题的步骤。

教学难点:理解反证法的推理依据及方法,用反证法证明简单的命题是教学难点.教学方法:讲练结合教学. 教学过程:提问:师:通过预习我们知道反证法,什么叫做反证法?2 / 8生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法.师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么?生:共分三步:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确. 师:反证法是一种间接证明命题的基本方法。

在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。

例如:在△ABC中,AB=c,BC=a,AC=b,如果∠C=90°,a、b、c三边有何关系?为什么?解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2 +b2=c2 二、探究问题:若将上面的条件改为“在△ABC中,AB=c,BC=a,AC=b,∠C≠90°”,请问结论a2+b2≠c2成立吗?请说明理由。

探究:3 / 8假设a2 +b2=c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾。

假设不成立,从而说明原结论a2 +b2≠c2成立。

这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。

人教版高中数学教案-反证法

人教版高中数学教案-反证法

2. 2.2反證法課前預習學案一、預習目標:使學生瞭解反證法的基本原理;掌握運用反證法的一般步驟;學會用反證法證明一些典型問題.二、預習內容:提出問題:問題1:桌面上有3枚正面朝上的硬幣,每次用雙手同時翻轉2枚硬幣,那麼無論怎麼翻轉,都不能使硬幣全部反面朝上。

你能解釋這種現象嗎?學生嘗試用直接證明的方法解釋。

採用反證法證明:假設經過若干次翻轉可以使硬幣全部反面向上,由於每枚硬幣從正面朝上變為反面朝上都需要翻轉奇數次,所以 3 枚硬幣全部反面朝上時,需要翻轉 3 個奇數之和次,即要翻轉奇數次.但由於每次用雙手同時翻轉 2 枚硬幣, 3 枚硬幣被翻轉的次數只能是2 的倍數,即偶數次.這個矛盾說明假設錯誤,原結論正確,即無論怎樣翻轉都不能使3 枚硬幣全部反面朝上.問題2:A、B、C三個人,A說B撒謊,B說C撒謊,C說A、B都撒謊。

則C必定是在撒謊,為什麼?分析:假設C沒有撒謊, 則C真.那麼A假且B假;由A假, 知B真. 這與B假矛盾.那麼假設C沒有撒謊不成立;則C必定是在撒謊.推進新課在解決某些數學問題時,我們會不自覺地使用反證法反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。

三、提出疑惑疑惑點疑惑內容課內探究學案一、 學習目標(1)使學生瞭解反證法的基本原理; (2)掌握運用反證法的一般步驟; (3)學會用反證法證明一些典型問題.二、學習過程:例1、已知直線,a b 和平面α,如果,a b αα⊄⊂,且||a b ,求證||a α。

解析:讓學生理解反證法的嚴密性和合理性; 證明:因為||a b ,所以經過直線a , b 確定一個平面β。

因為a α⊄,而a β⊂, 所以 α與β是兩個不同的平面. 因為b α⊂,且b β⊂, 所以b αβ=.下麵用反證法證明直線a 與平面α沒有公共點.假設直線a 與平面α有公共點P ,則P b αβ∈=,即點P 是直線 a 與b 的公共點,這與||a b 矛盾.所以 ||a α.點評:用反證法的基本步驟:第一步 分清欲證不等式所涉及到的條件和結論; 第二步 作出與所證不等式相反的假定;第三步 從條件和假定出發,應用證確的推理方法,推出矛盾結果;第四步 斷定產生矛盾結果的原因,在於開始所作的假定不正確,於是原證不等利 變式訓練1.求證:圓的兩條不全是直徑的相交弦不能互相平分.例2、求證:2不是有理數例3、設二次函數q px x x f ++=2)(, 求證:)3(,)2(,)1(f f f 中至少有一個不小於21. 解析:直接證明)3(,)2(,)1(f f f 中至少有一個不小於21.比較困難,我們應採用反證法證明:假設)3(,)2(,)1(f f f 都小於21,則 .2)3()2(2)1(<++f f f (1) 另一方面,由絕對值不等式的性質,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)兩式的結果矛盾,所以假設不成立,原來的結論正確。

反证法高中数学教案

反证法高中数学教案

反证法高中数学教案
主题:反证法
教学目标:
1. 理解反证法的基本原理和应用方法;
2. 掌握运用反证法证明数学定理的能力;
3. 提高逻辑推理能力,培养思维严谨的数学思维。

教学内容:
1. 反证法的基本原理;
2. 反证法在证明数学定理中的应用;
3. 经典反证法例题分析。

教学步骤:
1. 引入反证法的概念,解释其基本原理;
2. 通过一个简单的例子,让学生体会反证法的思维过程;
3. 结合具体数学定理,教授学生如何运用反证法进行证明;
4. 给学生分发若干反证法相关的练习题,让他们在课堂上进行实践训练;
5. 教师梳理反证法的应用技巧和注意事项,强化学生的学习效果;
6. 结束课堂,布置反证法相关的家庭作业。

教学评估:
1. 基于课堂练习题,检查学生对反证法的理解和掌握情况;
2. 评判学生在应用反证法进行证明时的逻辑推理是否严谨;
3. 针对学生的反证法运用能力进行评估,给予相应的指导和补充。

教学延伸:
1. 拓展反证法在其他领域的应用,如物理学、哲学等;
2. 鼓励学生自主尝试应用反证法解决数学难题;
3. 组织讨论会,分享学生在反证法中的心得体会。

以上是一份反证法高中数学教案范本,希望能够帮助教师更好地设计和开展相关教学工作。

祝教学顺利!。

《反证法》公开课教学设计【高中数学】

《反证法》公开课教学设计【高中数学】

《反证法》教学设计◆教材分析本节课是反证法部分.证明一般包括直接证明与间接证明.“直接证明”的两种基本方法是综合法和分析法,它们是解决数学问题常用的思维方式;“间接证明”的一种基本方法是反证法,但是反证法的应用需要逆向思维,这是学生学习的一个难点.所以,本节课的关键是让学生在动脑思考、动手证明的过程中体会反证法的思维过程,建立应用反证法的过程.◆教学目标1.培养学生应用反证法证明简单问题的推理技能,能进一步培养观察能力、分析能力、逻辑思考能力及解决问题的能力.2.了解反证法证题的基本步骤,会用反证法证明简单的命题.3.培养学生观察、探究、发现的能力和空间想象能力、逻辑思考能力.让学生在观察、探究、发现中学习,增强自信心,树立积极的学习态度,提高学习的自我效能感.◆教学重难点◆【教学重点】1.理解反证法的概念;2.体会反证法证明命题的思路方法及反证法证题的步骤;3.用反证法证明简单的命题.【教学难点】理解“反证法”证明得出“矛盾的所在”即矛盾依据.◆课前准备多媒体课件、黑板.◆教学过程复习导入上节课我们学习了用______,______直接证明问题的方法.但是有的问题是显然成立的或要分为多种情况进行讨论.我们再用直接方法就显得比较困难或麻烦,那么证明一个问题的成立是不是还有其他的方法呢?这节课我们就来学习或用间接的方法证明一个问题是成立的---反证法.新课导入看故事并回答:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴纷纷去摘取果子,只有王戎站在原地不动,有人问王戎为什么?王戎回答说:“树在道边而多李子,此必苦李.”小伙伴摘取一个尝了一口果然是苦李.王戎是怎么知道李子是苦的吗?答:_____________.他运用了怎样的推理方法?答:_______.新课讲解1.反证法(1)定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法.(2)理解反证法不是直接去证明结论,而是先否定结论,在否定结论的基础上,运用演绎推理,导出矛盾,从而肯定结论的真实性.反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.2.反证法常见矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件、假设、定义、定理、公理、事实矛盾等.3.反证法可以适用的两种情形(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰.(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.4.反证法常用的“结论词”和“反设词”5. “反证法”与“证逆否命题”的区别与联系(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.这里所说的矛盾不是一味追求与原命题题设矛盾,还可以是与已知公理、定义、定理及明显的事实矛盾或自相矛盾等.(3)由反证法的定义可知反证法的一般步骤是:①反设:否定结论,即假设命题结论不成立,即假设结论的反面成立;②归谬:从假设出发,经过推理论证,得出矛盾的结果;③由矛盾判断出假设不正确,从而肯定原命题的结论正确.教学例题1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用( )①结论的否定;②已知条件;③公理、定理、定义等;④原结论A.①②B.②③C.①②③ D.①②④答案:C【解析】根据反证法的定义,推导过程中,不能把原结论作为条件使用,其他都可以.2.“实数a,b,c不全大于0”等价于( )A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0答案:D【解析】“不全大于零”即“至少有一个不大于0”,它包括“全不大于0”.3.用反证法证明命题“三角形的内角中至少有一个角不大于60°”时,反设正确的是( )A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至少有两个大于60°答案:B【解析】“至少有一个”的反面是“一个也没有”,即一个也没有不大于60°,也即都大于60°.4.用反证法证明:已知a,b均为有理数,且√a和√b都是无理数,求证:√a+√b是无理数.证明:证法一:假设√a+√b为有理数,令√a+√b=t,则√a=t-√a,两边平方,得b=t2-2t √a+a,∴√a=t 2+a−b2t.∵a,b,t均为有理数,∴也是有理数.即√a为有理数,这与已知√a为无理数矛盾,故假设不成立.∴√a+√b一定是无理数.证法二:假设√a+ √b为有理数,则(√a+ √b)(√a- √b)=a-b.由于a>0,b>0,得√a+ √b>0.∴√a- √b=√a+√b.∵a,b为有理数,且√a+√b为有理数,为有理数,及√a- √b为有理数.∴a−b√a+√b∴√a+√b+(√a- √b)为有理数,即2√a为有理数.从而√a也应为为有理数,这与已知√a为有理数矛盾,∴√a+√b一定为无理数.教学总结1.几何问题中适用反证法的类型①一些基本命题的和基本定理②唯一性命题③存在性命题2.反证法要处理好一个关键问题用反证法题时,一定要处理好推出矛盾这一步骤,因为反证法的核心就是从求证的结论反面出发,导出矛盾的结果,因此如何导出矛盾,就成为了关键所在,对于证题步骤,绝不可死记,要具有全面扎实的基础知识,并能灵活运用.◆教学反思略.。

2.2.2 反证法教案(1)2020-2021学年高二数学人教A版选修1-2

2.2.2 反证法教案(1)2020-2021学年高二数学人教A版选修1-2

[教学设计•高中数学]《反证法》教学设计《反证法》教学设计第一部分:教学内容解析本节课是《普通高中课程标准实验教科书选修2-2》(人教A版)第一章《推理与证明》的第3节《反证法》.“逻辑推理能力”是高中数学核心素养中非常重要的一个环节,也是人们学习和生活中,经常使用的思维方式。

推理与证明贯穿于高中数学的整个体系,也是学数学、做数学的基本功。

这一部分的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用第二部分:学生学情诊断学生在初中已经接触过反证法,但是不够系统和详细。

也已经在选修2-1《逻辑与推理》环节接触过命题的真假、逆否命题。

但用反证法证明数学问题却是学生学习的一个难点。

究其原因,主要是反证法的应用需要逆向思维,但在中小学阶段,逆向思维的训练和发展都是不充分的,所以本节课要引导学生联系已学过的教学实例学习新内容进行教学。

由于所教学生基础较好,但是数学思维相对欠缺,对于反证法证明简单命题问题不大,但由于对数论基础知识不是特别专长、对生活中的逻辑学生对数的了解不多,研究不够,所以例1能顺利解决,但是例2例3,解决起来还是会出现一定困难。

第三部分:教学目标设置(1)知识与能力:了解反证法证题的基本步骤,会用反证法证明简单的命题。

通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。

(2)过程与方法:通过直观感知—观察—操作确认的认识方法培养学生观察、探究、发现的能力和逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

(3)情感、态度、价值观:通过体验数学活动,渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。

在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机。

核心素养:逻辑推理能力第四部分:重点难点分析重点:1、理解反证法的概念。

人教版高中数学选修1-1第一章1.1反证法教案2

人教版高中数学选修1-1第一章1.1反证法教案2

反证法[教学目的]使学生了解反证法的基本原理;掌握运用反证法的一般步骤;学会用反证法证明一些典型问题.[教学过程]一、引入古希腊哲学家是怎样觉察到自己的脸给涂黑了的?答:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了.那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到奇怪.因为在这种情况下(甲、乙的脸都是干净的),丙是没有可笑的理由了.然而现在的事实是乙对丙的发笑并不感到奇怪,可见乙是在认为丙在笑我.由此可知,我的脸也给涂黑了.这里应着重指出的是,甲并没有直接看到自己的脸是否给涂黑了,他是根据乙、丙两人的表情进行分析、思考,而说明了自己的脸给涂黑了.简单地说,甲是通过说明脸被涂黑了的反面—没被涂黑是错误的,从而觉察了自己的脸被涂黑了.因此这是一种间接的证明方法.显然这种证明方法也是不可缺少的.像这样,为了说明某一个结论是正确的,但不从正面直接说明,而是通过说明它的反面是错误的,从而断定它本身是正确的方法,就叫做“反证法“.我们证明数学命题,一般多用直接证法[就是直接从命题的题设(已知部分)出发,经过推理,推出命题的结论(求证部分)正确] .但有时用直接证法不易实现,则可采用间接证法,如反证法就是其中的一种,下面我们把上述问题变成数学上的叙述.二、学习、讲解新课⒈什么是反证法?要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的. 即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.例如,在上述例子中,要证明的结论是“甲的脸也给涂黑了”.在证明这个结论时,是先提出与结论相反的假设:“甲的脸没被涂黑”,然后根据乙对丙的笑不感到奇怪这个事实(本来由“甲的脸没被涂黑”应推出“乙对丙的笑应感到奇怪”),推导出这个与结论相反的假设不能成立,从而肯定了原来的结论成立.关于反证法,实际上我们在初中学习平行线时,就早已遇到过了.我们知道,在同一个平面内,两条直线的位置关系只有相交、平行两种.我们学过了平行公理:“经过直线外一点,有且只有一条直线与这条直线平行”.下面我们用反证法来证明它的一个推论:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.已知:如图,AB∥EF,CD∥EF,求证:AB∥CD.证明:假设AB不平行于CD,则AB与CD就要交于一点,设交点为P.∵AB∥EF,CD∥EF,于是经过点P就将有两条直线AB和CD都与EF平行,根据平行公理,这是不可能的.∴AB与CD 不能相交,只能平行.以上例子说明,无论是在日常生活中还是在数学中,都经常应用反证法.而且在某些情形下它还是一种比较简捷的证明方法.⒉反证法的主要步骤仔细分析上述问题不难看出,运用反证法时,其主要步骤可以概括为:否定—推理—否定—肯定,四个步骤,即⑴否定结论—假设命题的结论不对,即肯定结论的反面成立;⑵推出矛盾—由结论的反面(称为“暂时假设”)出发,通过一系列正确的逻辑推理,得出矛盾;⑶否定假设—由正确推理导出了矛盾,说明“暂时假设”不对;为什么根据这个矛盾就可以断定原来的假设错了呢?因为在人们的思维中,有这样一个规律:在同一时间内,对于同一个对象的两个相互矛盾的思想,不可能都是对的,无论如何至少有一种是错误的.如一个说今天是星期一,另一个说今天是星期二,显然这两个说法不可能都对,至少有一个说法是错误的,因为对同一天来说不可能又是星期一,又是星期二.这个规律在逻辑学中叫做矛盾律.⑷肯定结论—由于否定结论是不对的,于是肯定结论成立.为什么由否定结论是不对的,便可肯定结论成立呢?这是因为在人们的思维过程中,还要遵守这样一个规律:如果一种思想肯定某种东西,而另一种思想却断然否定这同一种东西,那么在这两种思想中必然有一种是正确的,而另一种是错误的,即若肯定是对的,那么否定就是错误的;若否定是正确的,那么肯定就是错误的.在这肯定与否定之间不会再有第三种解决的办法.如关于同一个时间,一个说现在是12点正,另一个说不,不是12点正,那么或者第一种说法是对的,或者第二种说法是对的;又如,这张纸是白的,不,这张纸不是白的,那么或者纸是白的对,或者纸不是白的对,不可能有第三种解答.这个规律在逻辑学中叫做排中律.在上述四步中,关键是第二步,即“由‘暂时假设’推出矛盾”,怎样导出矛盾?通常有以下几种情况:①推出与定义、公理、定理相矛盾的结论;②推出与已知条件相矛盾的结论;③推出与“暂时假设”相矛盾的结论;④在证明过程中,推出自相矛盾的结论.⒊例题巩固,反馈矫正例1(P 32例3)用反证法证明:如果a>b>0,那么b a >. 证明:假设a 不大于b ,则或者a <b ,或者a =b .∵a>0,b>0,∴a <b ⇒a a <b a 与a b <b b ⇒ab a <与b ab <⇒a<b ;a =b ⇒a=b.这些都同已知条件a>b>0矛盾,∴b a >.例2(P 32例4)用反证法证明:圆的两条不是直径的相交弦不能互相平分.已知:如图,在⊙O 中,弦AB 、CD 交于P ,且AB 、CD 不是直径.求证:弦AB 、CD 不被P 平分.分析:假设弦AB、CD被P平分,连结OP后,可推出AB、CD都与OP垂直,则出现矛盾.证明:假设弦AB、CD被P平分,由于P点一定不是圆心O,连结OP,根据垂径定理的推论,有OP⊥AB,OP⊥CD,即过点P有两条直线与OP都垂直,这与垂线性质矛盾. ∴弦AB、CD不被P平分.练习:1,2.练习:课本P33提示:1.设b2-4ac≤0,则方程没有实数根,或方程有两个相等的实数根,得出矛盾.2.设∠B≥900,则∠C+∠B≥1800,得出矛盾.三、小结本节主要学习了反证法的基本原理及其四个步骤.它的四个步骤实则是两大阶段,前三步是第一阶段,它是以矛盾律为依据,采用了一种特殊方法—先假设论题A的反面为真,然后进行推理,推出一个与已知的事实相矛盾的结果,从而说明A的反面是谬误的;于是进入第二阶段,它是根据排中律说明,既然A的反面是谬误的,那么论题A就一定是正确的,至此,论题得证.四、布置作业(一)复习:课本内容,熟悉巩固反证法的原理和步骤.(二)书面:课本P习题1.7:5.33-34补充题:⒈若a2能被2整除,a是整数,求证:a也能被2整除.⒉试证:一个命题与它的逆否命题是等价的.提示:5.已知∆ABC中,AB≠AC,设∠B=∠C,则AB=AC,得出矛盾.补充题:⒈假设a不能被2整除,则a必为奇数,故可令a=2m+1(m为整数),由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1,此结果表明a2是奇数,这与题中的已知条件(a2能被2整除)相矛盾,∴a能被2整除.⒉分析:所谓一个命题与它的逆否命题是等价的,是说这两个命题同真、同假.即有一个为真,二者都真;有一个为假,二者都假.因此,这个题要分以下四种情况来证明.①已知:命题“若有A,则有B”为真.求证:它的逆否命题“若无B,则无A”也真.证明:假设“若无B,则无A”是假的,那么,‘若无B,则有A’就是真的,又已知‘若有A,则有B’,∴得‘若无B,则有A,若有A,则又有B’,即若无B,则又有B.这是一个同时无B又有B的自相矛盾的结果,∴命题“若无B,则无A”也真的.②同理可证:如果“若无B,则无A”为真,那么“若有A,则有B”也真.(请自己完成)③已知:命题“若有A,则有B”为假.求证:它的逆否命题“若无B,则无A”也假.证明:假设“若无B,则无A”是真的,那么,由②知‘若有A,则有B’也是真的,这个结果与已知条件“若有A,则有B”为假相矛盾,∴命题“若无B,则无A”是假的.④同理可证:如果“若无B,则无A”为假,那么“若有A,则有B”也假.综上所述,此题证毕.(三)思考题:求证:世界上至少有两个人的头发根数相等.答:这一命题若用直接证法,就应该把全世界许多人的头发数一数,然后进行比较,当然这是很难做到的.于是我们考虑用反证法.假设世界上任何两个人的头发根数都不相等,那么我们可以按照头发根数将人编号:秃顶的编为0号,一根头发的编为1号,两根头发的编为2号,“三毛”编为3号……由于全世界的人口已超过50亿,所以一定有人的编号大于50亿,假定中国的李四就是其中的一个人.但根据常识,人的头皮(能长头发的部位)的面积小于103cm2,并且每平方厘米的头发根数都小于103 103=106,即任何人的编号都应小于106,而106这个数远远小于50亿,这就与李四的编号大于50亿矛盾,所以“世界上至少有两个人的头发根数相等”成立.(四)预习:课本1.8.日常生活中使用反证法的例子:甲说:“刚才没有下大雨.”乙说:“何以见得?”甲说:“如果下过大雨,地上就要很湿,现在你看地上并不湿,可见刚才没有下过大雨.”这个例子中,要证明的结论是“刚才没有下过大雨”.在证明这个结论时,是先提出与结论相反的假设:“如果刚才下过大雨”,然后根据地上不湿的实际情况,推导出这个与结论相反的假设不能成立,从而肯定了原来的结论成立.。

最新人教版高中数学教案-课题:反证法-公开课教案

最新人教版高中数学教案-课题:反证法-公开课教案
重点:会用反证法证明问题,了解反证法的思考过程。
难点:反证过程中的反设,以及如何推出矛盾。
教具:多媒体辅助教学
教学过程
设计意图
一、创设情境,引入新课
小故事:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子。小伙伴们纷纷去摘果子,只有王戎站在原地不动。有人问王戎为什么?
最新人教版高中数学教案-课题:反证法
授课教师:时间:班级:高二(4)班
教学目标:
1.知识与技能:理解反证法的概念,掌握反证法的证明步骤.
2.过程与方法:通过反证法的学习,体会直接证明与间接证明之间的辩证关系.
3.情感、态度与价值观:培养学生独立思考、积极探索的学习态度,认识数学的科学价值,提高数学的学习兴趣.
证明步骤:
1反设:假设命题的结论不成立,即假设结论的反面成立。
2归谬:从假设出发,经过正确的推理证明,得出矛盾。
3结论:由矛盾判定假设不正确,从而肯定命题的结论正确。
问3:反证法的思维方法及关键步骤是什么?
思维方法:正难则反
关键在与:从假设出发,在正确的推理下得出矛盾(与已知矛盾,与假设矛盾,与定义、定理、公理矛盾,与事实矛盾等)。
3、学习了哪些数学思想方法?从知源自角度、思维方法角度归纳总结这节课的收获
五、作业:
P91 A 1、4
六、板书:(略)
王戎回答说:“树在道边而多子,此必苦李。”小伙伴摘取一个尝了一下,果然是苦李。
问1:王戎是怎样知道李子是苦的?他运用了怎样的思考问题的方法?
从小故事入手,不仅能激发学生的兴趣,也能更好的说明反证法的推理思想
二、探索新知,得出概念
问2:你能概括出反证法的定义及步骤吗?

24.2.1反证法(教案)

24.2.1反证法(教案)
然而,我也发现了一些需要改进的地方。在重点难点解析部分,尽管我已经尽量用简单的语言和丰富的例子进行讲解,但仍有部分学生对逆向思维的运用和矛盾结论的识别感到困惑。在今后的教学中,我需要针对这些难点进行更多的练习和讲解,以提高学生的掌握程度。
此外,在学生小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者对反证法的理解还不够深入。针对这一问题,我计划在接下来的教学中,尝试引入更多有趣的讨论主题,激发学生的兴趣,并关注每一个学生的参与情况,鼓励他们积极发言。
五、教学反思
在今天的教学过程中,我尝试了多种方法来帮助学生理解和掌握反证法这一概念。首先,通过日常生活中的例子导入新课,我发现学生们对于这种与生活紧密相关的引入方式很感兴趣,这也为后续的教学奠定了良好的基础。
在理论介绍环节,我注意到有些学生在理解反证法的定义和步骤时显得有些吃力。于是,我及时调整了教学方法,通过举例和图示来帮助他们更好地理解。同时,在讲解过程中,我尽量使用简洁明了的语言,避免过多的专业术语,使学生们更容易消化吸收。
举例:对于一些直接证明较困难的问题,可以引导学生尝试使用反证法,而对于一些简单问题,则可以直接证明。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反证法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要证明某个事实或观点,但却难以直接证明的情况?”(如:证明“世界上没有绝对的圆”)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反证法的奥秘。
举例:假设一个数既不是偶数也不是奇数,推导出与已知条件矛盾,从而得出所有数都是偶数或奇数的结论。
(3)反证法的应用:学会在实际问题中运用反证法,解决数学问题。

高中数学优质教案 反证法

高中数学优质教案 反证法

2.2.2 反证法一、教学目标1、知识目标:通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力.2、能力目标:了解反证法证题的基本步骤,会用反证法证明简单的命题.3、情感、态度与价值观目标:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性;渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想.在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机.二、教学重点.难点重点:1、理解反证法的概念,2、体会反证法证明命题的思路方法及反证法证题的步骤,3、用反证法证明简单的命题.难点:理解“反证法”证明得出“矛盾的所在”即矛盾依据.三、学情分析反证过程中的批判思想更有助于学生正确的认识客观世界.在教学过程中,我们要重视培养学生利用反证法对客观世界的认识提出自己的问题,这正是反证法教学所要教给学生的,应该具有的数学能力,也是培养学生数学素质与数学素养的很好教学机会.四、教学方法探析归纳,讲练结合五、教学过程教学过程:复习:综合法与分析法综合法与分析法各有其特点.从需求解题思路来看,分析法执果索因,常常根底渐近,有希望成功;综合法由因导果,往往枝节横生,不容易奏效.就表达过程而论,分析法叙述烦琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表述.因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.分析归纳,抽象概括通过对这两个个问题的解答,有学生自主探究反证法的概念及反证法证明的步骤.(1)定义:反证法:一般地,假设原命题不成立,(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.(2)步骤反证法证题的基本步骤:1.假设原命题的结论不成立;(假设)2.从这个假设出发,经过正确的推理,推出矛盾;(归缪)3.因此说明假设错误,从而证明了原命题成立.(结论)反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.知识应用,深化理解例1、写出用“反证法”证明下列命题的第一步“假设”.【设计意图】:能否正确地写出假设,是解决问题的基础和保障(1)互补的两个角不能都大于90°.(2)△ABC中,最多有一个钝角(3)c b a ,,中至少有一个是正数例2:已知三个正数a ,b , c 成等比数列,但不成等差数列, 求证:c b a ,,不成等差数列.【设计意图】:本例是否定性命题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法证明本例例3:用反证法证明关于x 的方程0)1(,0344222=+-+=+-+a x a x a ax x ,0222=-+a ax x ,当23-≤a 或1-≥a 时,至少有一个方程有实数根. 【设计意图】:本例是“至少”“至多”等存在性问题.从正面证明,需要分成多种情形讨论,而从反面证明,只要研究一种或少数几种情形.故考虑采用反证法.例4、求证:方程32=x中有且只有一个根.【设计意图】:本题是证明唯一性问题.需要证明两个方面,一是存在性;二是唯一性.当证明的结论中含“有且只有”“只有一个”“唯一存在”等形式时,由于假设结论易导出矛盾,故采用反证法证明其唯一性往往比较简单.六、当堂检测1.否定下列命题的结论:(1) 在⊿ABC 中如果AB=AC ,那么∠B=∠C. .(2) 如果点P 在⊙O 外,则d>r (d 为P 到O 的距离,r 为半径)(3) 在⊿ABC 中,至少有两个角是锐角.(4) 在⊿ABC 中,至多有只有一个直角.2.选择题:证明“在⊿ABC中至多有一个直角或钝角”,第一步应假设:()A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角3.用反证法证明“三角形中至少有一个内角不小于60°”•应先假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°设计意图:目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律.七、课堂小结1.知识建构2.能力提高3.课堂体验八、课时练与测九、教学反思。

反证法 教案

反证法 教案

反证法教案教案标题:反证法教案目标年级:高中学科:数学教学目标:1. 了解反证法的基本概念和原理。

2. 理解如何使用反证法证明一个数学命题。

3. 学会在解答问题时灵活运用反证法。

教学准备:1. PowerPoint演示文稿2. 黑板、白板或投影仪3. 教材和教具教学过程:引入:1. 通过展示一道数学题目,如证明根号2是无理数,引发学生兴趣和思考。

2. 介绍数学证明的方法,包括直接证明、归纳法和反证法,并重点强调反证法。

主体:1. 详细解释反证法的概念和原理,即通过否定要证明的结论的途径来得出矛盾的结论。

2. 提供一些简单的例子,让学生在小组或个人活动中运用反证法来证明一些简单的数学命题,如证明一个整数平方的结尾不能为2、证明无理数加有理数仍然是无理数等。

3. 展示一些经典的数学问题,如欧几里得证明无理数的存在、费马大定理的证明过程等,让学生了解反证法在数学领域的广泛应用。

4. 分组讨论和总结,让学生思考反证法的优点和适用范围,以及何时使用反证法进行数学证明效果更好。

拓展:1. 鼓励学生寻找其他数学问题,并使用反证法进行证明。

2. 分析一些常见错误和误区,帮助学生更好地理解和运用反证法。

3. 给予学生自主思考和学习的机会,以便扩展他们的数学思维和解题能力。

结语:1. 总结本节课所学内容,强调反证法在数学证明中的重要性。

2. 鼓励学生在日常学习中多运用反证法,提高他们的问题解决能力。

3. 鼓励学生勇于挑战更复杂的数学问题,并帮助他们在发现矛盾和解决问题中成长。

教学反思:1. 教师要适时调整教学方法和节奏,确保学生能够跟上教学进度。

2. 配备足够的教材和教具,以便学生更加直观地理解反证法的原理和应用。

3. 鼓励学生积极参与课堂讨论和活动,提高他们的主动学习能力。

注:教学内容可根据实际情况和学生水平进行调整。

《反证法》 教学设计

《反证法》 教学设计

《反证法》教学设计一、教学目标1、知识与技能目标学生能够理解反证法的概念,掌握反证法的证明步骤,能运用反证法证明一些简单的命题。

2、过程与方法目标通过对反证法的学习,培养学生的逻辑思维能力和推理能力,提高学生分析问题和解决问题的能力。

3、情感态度与价值观目标让学生感受数学的严谨性和逻辑性,激发学生对数学的兴趣和探索精神,培养学生的创新意识和批判性思维。

二、教学重难点1、教学重点理解反证法的概念,掌握反证法的证明步骤,能运用反证法证明简单命题。

2、教学难点如何正确地提出反设,以及如何通过推理得出矛盾。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过一个有趣的故事引入反证法。

故事:有一个人被指控偷了邻居的钱,他宣称自己没有偷。

法官问他:“如果不是你偷的,那钱怎么会在你的口袋里?”这个人无法回答。

提问学生:法官的这种推理方法有什么特点?2、讲解概念(1)给出反证法的定义:先假设命题的结论不成立,然后通过推理得出矛盾,从而证明原命题成立的方法叫做反证法。

(2)强调反证法的关键在于“反设”和“归谬”。

3、示例讲解(1)例 1:证明“在一个三角形中,至少有一个内角小于或等于60°”。

分析:假设三角形的三个内角都大于 60°,然后推出矛盾。

证明过程:假设三角形的三个内角都大于 60°,则三角形的内角和大于 180°,这与三角形内角和定理矛盾。

所以,原命题成立。

(2)例 2:证明“根号 2 是无理数”。

分析:假设根号 2 是有理数,设根号 2 = m / n(m、n 为互质的正整数),然后推出矛盾。

证明过程:假设根号 2 是有理数,设根号 2 = m / n(m、n 为互质的正整数),则 2 = m²/ n²,即 m²= 2n²。

因为 2n²是偶数,所以m²是偶数,从而 m 是偶数。

设 m = 2k(k 为正整数),则 4k²= 2n²,即 2k²= n²,所以 n 也是偶数,这与 m、n 互质矛盾。

《反证法》教案范文

《反证法》教案范文

《反证法》教案范文教案:《反证法》一、教学目标1.了解反证法的基本概念和基本思想。

2.掌握运用反证法解决问题的方法和步骤。

3.提高学生的逻辑思维和证明能力。

二、教学重点1.反证法的基本思想和基本概念。

2.运用反证法解决问题的方法和步骤。

三、教学难点1.运用反证法解决较为复杂的问题。

2.培养学生的证明能力和逻辑思维。

四、教学准备1.教材:《数学》(普通高中课程标准实验教科书)。

2.学具:黑板、彩色粉笔、投影仪。

五、教学过程1.导入(8分钟)教师可以通过提问,引导学生对“反证法”进行初步了解。

如:“如果一道数学题要求你用证明的方法解决,你会怎么做呢?”“你曾经解决过反证法的问题吗?你是怎么做的呢?”等。

2.正文(60分钟)(1)引入新知识通过教师的介绍,使学生了解“反证法”的基本概念和基本思想。

教师可以通过举例,让学生理解“反证法”的基本思路和过程。

(2)例题讲解教师选择一些例题进行讲解,指导学生掌握运用反证法解决问题的方法和步骤。

例如:已知a、b是有理数,且a/b是无理数,证明a和b不可能是有理数;已知方程x^2=2有理数解,证明与此相矛盾。

(3)学生练习教师布置一些练习题,要求学生运用反证法解决问题。

学生进行自主练习,教师巡回指导,及时解答学生疑问。

例如:1.证明:如果正整数n^2是偶数,则n是偶数。

2.已知n是一个整数,证明15n-7不是一个完全平方数。

(4)示范演练教师选取一些典型的复杂题目,进行示范演练。

可以通过投影仪将题目在黑板上呈现给学生,步骤和思路画在黑板上,让学生参考。

同时要鼓励学生在解题时思考多个角度和方法。

(5)讲解反证法的应用领域教师通过讲解反证法在数学、哲学、物理等领域的应用,培养学生将抽象的概念运用到实际问题中的能力。

3.拓展与巩固(15分钟)教师布置一些拓展题和巩固题,让学生进行练习巩固已学知识。

同时,可以鼓励学生通过查阅相关资料,了解一些反证法的著名定理和问题。

4.总结与归纳(7分钟)教师与学生一起总结本节课的学习内容,回答学生提出的问题。

人教版高中数学必修1反证法教案

人教版高中数学必修1反证法教案

人教版高中数学必修1反证法教案二简易逻辑(§1.7.3 四种命题)教学时间:第三课时课题: §1.7.3 反证法教学目标:1.使学生初步掌握反证法的概念及反证法证题的基本方法.2.培养学生用反证法简单推理的技能,从而发展学生的思维能力. 教学重点:反证法证题的步骤.教学难点:理解反证法的推理依据及方法.教学方法:讲练结合教学.教具准备:投影片共3张教学过程:(I)复习回顾师:初中已学过反证法,什么叫做反证法?生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法.师:本节将进一步研究反证法证题的方法.(II)讲授新课§1.7.3 反证法证题的步骤是什么?生:(注:学生回答时,教师投影出:反证法证明命题的一般步骤.)师:反证法是一种间接证明命题的基本方法。

在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。

例如:“在ΔABC中,若∠C是直角,那么∠B一定是锐角。

”显然命题的结论是正确的,但直接证明是较困难的,而用反证法就容易证明之。

请一同学证明。

生:假设∠B是直角,因∠C是直角,所以∠C+∠B=1800,此时∠A=00,这与ABC 为三角形相矛盾。

所以∠B为锐角。

师:请讨论上述证明推理是否正确?为什么?生:上述证明推理不完整。

因∠B 不是锐角有两种情况,即∠B 为直角或钝角,必须对两种可能均加以否定,才能证明∠B 一定是锐角。

师:分析正确。

由此在运用反证法证明命题中如果命题结论的反面不止一个时,必须将结论所有反面的情况逐一驳证,才能肯定原命题的结论正确.下面看例题:(投影片2)(由学生回答,教师书写)证明:假设不大于,即或。

∵ a>0,b>0∴ (由学生回答上述步骤转化的目的是什么?)(推理利用了不等式的传递性)又由但这些都与已知条件a>b>0矛盾.∴ 成立。

(投影片3)师分析:假设弦AB 、CD 被P 平分,连结OP ,由平面几何知识可推出:生:OP ⊥AB 且OP ⊥CD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二简易逻辑(§1.7.3 四种命题)
教学时间:第三课时
课题: §1.7.3 反证法
教学目标:
1.使学生初步掌握反证法的概念及反证法证题的基本方法.
2.培养学生用反证法简单推理的技能,从而发展学生的思维能力. 教学重点:反证法证题的步骤.
教学难点:理解反证法的推理依据及方法.
教学方法:讲练结合教学.
教具准备:投影片共3张
教学过程:
(I)复习回顾
师:初中已学过反证法,什么叫做反证法?
生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法.
师:本节将进一步研究反证法证题的方法.
(II)讲授新课
§1.7.3 反证法证题的步骤是什么?
生:
(注:学生回答时,教师投影出:反证法证明命题的一般步骤.)
师:反证法是一种间接证明命题的基本方法。

在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。

例如:“在ΔABC中,若∠C是直角,那么∠B一定是锐角。

”显然命题的结论是正确的,但直接证明是较困难的,而用反证法就容易证明之。

请一同学证明。

生:假设∠B是直角,因∠C是直角,所以∠C+∠B=1800,此时∠A=00,这与ABC 为三角形相矛盾。

所以∠B为锐角。

师:请讨论上述证明推理是否正确?为什么?
生:上述证明推理不完整。

因∠B 不是锐角有两种情况,即∠B 为直角或钝角,
必须对两种可能均加以否定,才能证明∠B 一定是锐角。

师:分析正确。

由此在运用反证法证明命题中如果命题结论的反面不止一个时,
必须将结论所有反面的情况逐一驳证,才能肯定原命题的结论正确. 下面看例题:(投影片2) 例3:用反证法证明: 如果a>b>0,那么 。

(由学生回答,教师书写)
证明:假设 不大于 ,即 或 。

∵ a>0,b>0
∴ (由学生回答上述步骤转化的目的是什么?)
(推理利用了不等式的传递性)
又由
但这些都与已知条件a>b>0矛盾.
∴ 成立。

(投影片3)
例4:用反证法证明:圆的两条不是直径的相交弦不能互相平分。

已知:如图:在⊙0中,弦AB 、CD 交于点P ,且AB 、CD 不是直径。

求证:弦AB 、CD 不被P 平分。

师分析:假设弦AB 、CD 被P 平分,连结OP ,由平面几何知识可推出: 生:OP ⊥AB 且OP ⊥CD 。

又推出:在平面内过一点P 有两条
直线AB 和CD 同时与OP 垂直,这与垂线性质矛盾,则
原命题成立。

证明:(略)(可由投影片给出证明)
师:由上述两例题可看:利用反证法证明时,关键是从假
设结论的反面出发,经过推理论证,得出可能与命题
的条,或者与已学过的定义、公理、定理等相矛盾的结论,这是由假设所引起的,因此这个假设是不正确的,从而肯定了命题结论的正确性。

例5:若p>0,q>0,p 3+p 3=2.试用反证法证明:p+q ≤2.
b
a >a
b b a <b a =.b b b a a b b a b a •<••<•⇒与<
b a b ab ab a <⇒<<⇒,b a b a =⇒=b a <
师:此题直接由条件推证p+q≤2是较难的,由此用反证法证之。

(师生共同分析:)
证明:假设p+q>2,∵p>0,q>0.则:(p+q)3=p3+3p2q+3pq2+q3>8.
又∵p3+q3=2。

∴代入上式得:3pq(p+q)>6,即:(pq(p+q)>2.(1)
又由p3+q3=2,即(p+q)(p2-pq+q2)=2代入(1)得:
pq(p+q)>(p+q)(P2-pq+q2).
但这与(p-q)2≥0矛盾,∴假设p+q>2不成立。

故p+q≤2.
师:对反证法的掌握,还有待于随着学习的深入,逐步提高。

1、2)
(III)课堂练习:(略)(课本P
33
(IV)课时小结
本节重点研究了反证法证题的一般步骤及反证法证明命题的应用。

对于反证法的熟练掌握还需在今后随着学习的深入,逐步加强和提高。

(V)课后作业
,习题1.7:5题。

一、书面作业:课本P
34
二、预习:下节内容,预习提纲:
1.充分条件与必要条件的意义是什么?
2.命题“若p则q”的真假与p是q的充分条件,q是p的必要条
件的关系是什么?
教学后记:。

相关文档
最新文档