概率论与数理统计(第三版)第四章课后答案
概率论与数理统计(经管类)第四章课后习题答案word档
习题4.11.设随机变量X 的概率密度为(1) (2)f(x)={2x, 0≤x ≤1,0, 其他; f(x)=12e -|x |, -∞<x <+∞求E(X)解: (1)E (X )=∫+∞-∞xf (x )dx = ∫10x ∙2xdx =2∙x 32|10=23(2)E (X )=∫+∞-∞xf (x )dx =∫+∞-∞x ∙12e -|x |=02.设连续型随机变量X 的分布函数为F (x )={0, x <-1,a +b ∙arcsinx, -1≤x <1,1, x ≥1.试确定常数a,b,并求E(X).解:(1)f (x )=F '(x )={b 1-x 2, -1≤x <10, 其他∫+∞-∞f (x )dx =∫1-1b 1-x 2dx =b ∙arcsinx|1-1=bπ=1, 即b =1π又因当时-1≤x <1F (X )=∫X-1f (x )dx =∫x-11π∙11-x 2dx =1π∙arcsinx|x-1=1π∙arcsinx +12, 即a =12(2)E (X )=∫+∞-∞xf (x )dx =∫1-1xπ∙11-x 2=03.设轮船横向摇摆的随机振幅X 的概率密度为f(x)={1σ2e-x 22σ2, x >0,0, x ≤0.求E(X).解:E (X )=∫+∞-∞xf (x )dx =1σ2∫+∞0x ∙e -x 22σ2dx =14.设X 1, X 2,….. X n 独立同分布,均值为,且设,求E(Y).μY =1n ∑n i =1X i 解:E (Y )=E (1n ∑ni =1X i )=1n E (∑ni =1X i )=1n ∙n μ=μ5.设(X,Y)的概率密度为f(x,y)={e -y, 0≤x ≤1,y >0,0, 其他.求E(X+Y).解:E (X +Y )=∫+∞-∞∫+∞-∞(x +y )f (x,y )dxdy =∫+∞0∫10(x +y )e -ydxdy =∫+∞012∙e ‒y +y ∙e ‒y dy =326.设随机变量X 1, X 2相互独立,且X 1, X 2的概率密度分别为f 1(x )={2e -2x, x >0,0, x ≤0,求:f 2(x )={3e -3x, x >0,0, x ≤0,(1)E (2X 1+3X 2); (2)E (2X 1-3X 22); (3)E (X 1X 2解:(1)E (2X 1+3X 2)=2E (X 1)+3E (X 2)=2*12+3*13=2(2)E (2X 1-3X 22)==2E (X 1)-3E (X 22)=1-3*∫+∞x 23e -3xdx =1-3*[-∫+∞x 2d(e -3x)]=1-3*[-x 2∙e -3x|+∞0+∫+∞e -3xdx 2]=1-3*[0+∫+∞e -3x∙2xdx]=1-3*[23∫+∞e -3x∙3xdx ]=1-3*23*13=13(3)E (X 1X 2)=E (X 1)E (X 2)=12*13=167.求E(X).解:E (X )=∑i ∑j x i p ij =0*0.1+0*0.3+1*0.2+1*0.1+2*0.1+2*0.2=0.98.设随机变量X 的概率密度为且E(X)=0.75,求常数c 和.f(x)={cx α, 0≤x ≤1,0, 其他.α解:E (X )=∫+∞-∞xf (x )dx =∫10x ∙cx αdx =0.75习题4.21.设离散型随机变量X 的分布律为X -100.512P0.10.50.10.10.2求E (X ),E (X 2),D (X ).解: E (X )=(-1)*0.1+0*0.5+0.5*0.1+1*0.1+2*0.2=0.45E (X 2)=(-1)2*0.1+0*0.5+(0.5)2*0.1+12*0.1+22*0.2=1.025D (X )=(-1-0.45)2*0.1+(0-0.45)2*0.5+(0.5-0.45)2*0.1+(1-0.45)22.盒中有5个球,其中有3个白球,2个黑球,从中任取两个球,求白球数X 的期望和方差.解: X 的可能取值为0,1,2P {X =0}=C 22C 25=0.1P {X =1}=C 13∙C 12C 25=0.6P {X =2}=C 23C 25=0.3E (X )=0∗0.1+1∗0.6+2∗0.3=1.2D (X )=(0‒1.2)2∗0.1+(1‒1.2)2∗0.6+(2‒1.2)2∗0.3=0.144+0.024+0.192=0.363.设随机变量X,Y 相互独立,他们的概率密度分别为f X (x )={2e ‒2x, x >0,0, x ≤0,f Y(y )={4, 0<y ≤14,0, 其他,求D(X+Y).解:D (X +Y )=D (X )+D (Y )=122+(14‒0)212=491924.设随机变量X 的概率密度为f X (x )=12e ‒|x |, ‒∞<x <+∞,求D(X)解:E (X )=∫+∞‒∞x2e ‒|x |dx =0E(X2)=∫+∞‒∞x 22e‒|x|dx=2∫+∞‒∞x22e‒x=∫+∞‒∞x2e‒x=2=D(X) E(X2)‒[E(X)]2=25.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).解: D(X‒Y)=D(X)+D(Y)=1+2=36.若连续型随机变量X的概率密度为f(x)={ax2+bx+c, 0<x<1,0, 其他,且E(X)=0.5,D(X)=0.15.求常数a,b,c.解:E(X)=∫10x(ax2+bx+c)dx=a4+b3+c2=0.5E(X2)=∫10x2(ax2+bx+c)dx=a5+b4+c3=0.15+(0.5)2=0.4∫+∞‒∞f(x)dx=∫10(ax2+bx+c)dx=a3+b2+c=1解得a=12,b=-12,c=3.习题4.31.设两个随机变量X,Y相互独立,方差分别为4和2,则随机变量3X-2Y的方差是 D .A. 8B. 16C. 28D. 442.设二维随机变量(X,Y)的概率密度为f(x,y)={18(x+y), 0≤x≤2,0≤y≤2,0, 其他求Cov(X,Y).解:E(X)=∫20[∫20x8(x+y)dy]dx=∫20(x28∙y+x8∙y22)|20d x=76E(Y)=∫20[∫20y8(x+y)dx]dy=76E(XY)=∫20[∫20xy8(x+y)dy]dx=43Cov(X,Y)=E(XY)‒E(X)E(Y)=43‒76∗76=‒1363.设二维随机变量(X,Y)的概率密度为f(x,y)={ye‒(x+y), x>0,y>0,0, 其他求X与Y的相关系数ρxy.解:E(X)=∫+∞0(∫+∞0xye‒(x+y)dy)dx=1E(Y)=∫+∞0(∫+∞0y2e‒(x+y)dx)dy=∫+∞0(∫+∞0y2e‒x e‒y dx)dy=∫+∞0y2e‒y dy=‒∫+∞0y2d(e‒y)=‒y2e‒y|+∞0+∫+∞0e‒y d(y2)=0+∫+∞0e‒y∙2ydy=2∫+∞0e‒y∙ydy=2E(XY)=∫+∞0(∫+∞0xy2e‒(x+y)dy)dx=2Cov(X,Y)=E(XY)‒E(X)E(Y)=2‒2∗1=0所以ρxy=Cov(X,Y)D(X)D(Y)=04.设二维随机变量(X,Y)服从二维正态分布,且E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概率密度函数f(x,y).布解:f (x,y )=12πσ1σ21‒ρ2e‒12(1‒ρ2){(x ‒μ1)2σ12‒2ρ(x ‒μ1)(y ‒μ2)σ1σ2+(y ‒μ2)2σ22}∵E (X )=0,E (Y )=0∴μ1=0, μ2=0,∵D(X)=16, D(Y)=25∴σ1=4,σ2=5∵Cov(X,Y)=12∴ρ=Cov (X,Y )D(X)D(Y)=124∗5=35∴f (x,y )=132πe‒2532(x 216‒3xy 50+y 225)5. 证明D(X-Y)=D(X)+D(Y)-2Cov(X,Y).证:D (X ‒Y )=E [X ‒Y ‒E (X ‒Y )]2=E [(X ‒E (X ))‒(Y ‒E (Y ))]2=E [(X ‒E (X ))2]‒2E [X ‒E (X )]∙E [Y ‒E (Y )]+E [(Y ‒E (Y ))2]=D (X )+D (Y )‒2Cov(X,Y)6. 设(X,Y)的协方差矩阵为,求X 与Y 的相关系数ρxy.C =(4‒3‒39)解:∵C =(4‒3‒39)∴Cov (X,Y )=‒3, D (X )=4,D (Y )=9∴ρxy =Cov (X,Y )D(X)D(Y)=‒32∗3=‒12自测题4一、 选择题1.设随机变量X 服从参数为0.5的指数分布,则下列各项中正确的是 B .A. E(X)=0.5, D(X)=0.25 B. E(X)=2, D(X)=4C. E(X)=0.5, D(X)=4 D. E(X)=2, D(X)=0.25解: 指数分布的E (X )=1λ, D (X )=1λ22. 设随机变量X,Y 相互独立,且X~B(16,0.5),Y 服从参数为9的泊松分布,则D(X-2Y+1)= C.A.-14B. 13C. 40D. 41解: D (X )=npq =16∗0.5∗0.5=4, D (Y )=λ=9D (X ‒2Y +1)=D (X )+4D (Y )+D (1)=4+4∗9+0=403. 已知D(X)=25,D(Y)=1, ρxy=0.4, 则D(X-Y)= B .A.6B. 22C. 30D. 464. 设(X,Y)为二维连续随机变量,则X 与Y 不相关的充分必要条件是 C .A. X 与Y 相互独立B. E(X+Y)=E(X)+E(Y)C. E(XY)= E(X)E(Y)D. (X,Y)~N()μ1,μ2,σ12,σ22,0解: ∵X 与Y 不相关∴ρxy =0, ∴Cov (X,Y )=0∴E(XY)= E(X)E(Y)5.设二维随机变量(X,Y)~N(),则Cov(X,Y)= B .1,1,4,9,12A. B. 3C. 18D. 3612解: ∵ρxy =12=Cov (X,Y )D(X)D(Y)=Cov (X,Y )2*3, ∴Cov (X,Y )=36.已知随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)= A .A. 3B. 6C. 10D. 12解: ∵X~U (‒1,3),Y~U (2,4)∴E (X )=a +b 2=‒1+32=1, E (Y )=2+42=3E (XY )= E (X )E (Y )=1∗3=37.设二维随机变量(X,Y)~N(),Ø(x)为标准正态分布函数,则下列结论中错误的是 C .0,0,1,1,0A. X 与Y 都服从N(0,1)正态分布 B. X 与Y 相互独立C. Cov(X,Y)=1 D. (X,Y)的分布函数是Φ(x)∙Φ(y)二、 填空题1.若二维随机变量(X,Y)~N(),且X 与Y 相互独立,则ρ= 0 .μ1,μ2,σ12,σ22,0解:Cov(X,Y)=0∵2.设随机变量X 的分布律为 3 .X -1012P0.10.20.30.4令Y=2X+1,则E(Y)= 3 .解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=33.已知随机变量X 服从泊松分布,且D(X)=1,则P{X=1}= .e ‒1解: ∵ D (X )=λ=1∴P {X =1}=λ1e ‒λ1!=e ‒14.设随机变量X 与Y 相互独立,且D(X)= D(Y)=1,则D(X-Y) =2 .5.已知随机变量X 服从参数为2的泊松分布,= 6.E (X 2)解: ∵E (X )=λ=2,D (X )=λ=2,∴ E (X 2)=E 2(X )+D (X )=4+2=66.设X为随机变量,且E(X)=2, D(X)=4,则= 8 .E(X2)7.已知随机变量X的分布函数为F(x)={0, x<0x4, 0≤x<41, x≥4则E(X) = 2 .解: f(x)=F'''"(x)={14, 0≤x<40, 其他E(X)=∫40x4dx=08.设随机变量X与Y相互独立,且D(X)=2, D(Y)=1,则D(X-2Y+3)= 6 .三、设随机变量X的概率密度函数为f(x)={32x2, ‒1≤x≤1,0, 其他试求: (1)E(X), D(X); (2).P{|X‒E(X)|<2D(X)}解:(1) E(X)=∫1‒132x3dx=0D(X)=E(X2)‒E2(X)=∫1‒132x4=32∙x55|1‒1=35(2)P{|X‒E(X)|<2D(X)}=P{|X|<65}=∫65‒65f(x)dx=∫1‒132x2dx=1四、设随机变量X的概率密度为f(x)={x 0≤x≤12‒x, 1≤x<20, 其他试求: (1)E(X), D(X); (2),其中n为正整数.E(X n)解:(1)E(X)=∫1x2dx+∫21x(2‒x)dx=13+13=1D(X)=E(X2)‒E2(X)=∫10x3dx+∫21x2(2‒x)‒1=14+(143‒154)‒1=16(2)E(X n)=∫1x n+1dx+∫21x n(2‒x)=2(2n+1‒1)(n+1)(n+2)五、 设随机变量X 1与X 2相互独立,且X 1~N(), X 2~N().令X= X 1+X 2, Y= X 1-X 2.μ,σ2μ,σ2求: (1)D(X), D(Y); (2)X 与Y 的相关系数ρxy.解:(1)D (X )=D (X 1+X 2)=D (X 1)+D (X 2)=σ2+σ2=2σ2D (Y )=D (X 1‒X 2)=D (X 1)+D (X 2)=2σ2(2) Cov (X,Y )=E (XY )‒E (X )E (Y )=0ρxy =Cov (X,Y )D(X)D(Y)=0六、 设随机变量X 的概率密度为f (x )={2e ‒2x, x >0, 0, x ≤0.(1)求E(X),D(X);(2)令,求Y 的概率密度f Y (y).Y =X ‒E(X)D(X)解:(1)E (X )=∫+∞2xe ‒2x dx =12D (X )=E (X 2)‒E 2(X )=∫+∞02x 2e ‒2x dx ‒14=12‒14=14(2)Y =X ‒E(X)D(X)=X ‒1212=2X ‒1由Y=2X-1得, X’=X =Y +1212=∴f Y (y )={2e‒2(Y +12)∙12,Y +12>00, Y +12≤0{e ‒(y +1), y >‒10, y ≤‒1七、 设二维随机变量(X,Y)的概率密度为f (x,y )={2, 0≤x≤1,0≤y ≤x,0, 其他求: (1)E(X+Y); (2)E(XY); (3). P{X +Y ≤1}解:(1)E (X +Y )=∫10dx ∫x 02(x +y )dy =∫102x 2+x 2dx =1(2)E(XY)=∫1dx∫x2xy dy=∫1x3dx=14(3) P{X+Y≤1}=∬x+y≤1f(x,y)dxdy=∫12(∫1‒yy2dx)dy=∫122‒4ydy=12八、设随机变量X的分布律为X-101P 131313记Y=X2,求: (1)D(X), D(Y); (2) ρxy.解:(1)E(X)=(‒1)∗13+0∗13+1∗13=0D(X)=(‒1‒0)2∗13+(0‒0)2∗13+(1‒0)2∗13=23 E(Y)=(‒1)2∗13+0∗13+12∗13=23D(Y)=(1‒23)2∗13+(0‒23)2∗13+(1‒23)2∗13=29E(XY)=(0∙‒1)∙9+(1∙‒1)∙29+(0∙0)∙19+(0∙1)∙29+(1∙0)∙19+(1∙1)∙29=0Cov(X,Y)=E(XY)‒E(X)E(Y)=0‒0∗23=0ρxy=Cov(X,Y)D(X)D(Y)=0。
概率论与数理统计》课后习题答案第四章
习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。
解 由题意~(5,0.1)X B ,则X 的数学期望为 ()50.10.E X =⨯= 4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。
解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ== 所以地每年因交通事故死亡的平均人数为4人。
5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752ab a b ⎧=⎪⎪+⎨⎪=⎪+⎩可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解1201331221()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求 (1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。
《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节
.............第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=.12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=- (2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-.2.8解:设应配备m 名设备维修人员。
概率论与数理统计第三、四章答案(DOC)
第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1)100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯=(2)由数学期望的性质有(2)223.2E R ER πππ==(3)因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯=或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得 2,3a k == 5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。
概率论与数理统计 第三版课后答案
∴
4 6 12 3
15.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一只,作不放回 抽样。求下列事件的概率。
(1)两只都是正品;(2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。 解 设以 Ai(i=1,2)表示事件“第 i 次取出的是正品“,因为不放回抽样,故
(2) 不成立,因为 AB A B AB 。
(3) 成立, B A, B AB,又AB B, B AB 。
(4) 成立。 (5) 不成立,因左边包含事件 C,右边不包含事件 C,所以不成立。 (6) 成立。因若 BC≠φ,则因 CA,必有 BCAB,所以 AB≠φ与已知矛盾,
C51C82 C52 C140
13 0.619 21
11.将 3 鸡蛋随机地打入 5 个杯子中去,求杯子中鸡蛋的最大个数分别为 1,2,3 的概 率。
解 依题意知样本点总数为 53 个。
以 Ai(i=1, 2, 3)表示事件“杯子中鸡蛋的最大个数为 i”,则 A1 表示每杯最多放一只鸡
蛋,共有 A53 种放法,故
(2) ( A B)(A B ) A AB BA BB , 因为 AB BA A A ,
BB 且 C C ,所以 (A B)(A B ) A 。
(3)( A B)(A B )(A B) A( A B) AB AB 。 5.设 A,B,C 是三
1 P( AB) P(BC) 0, P( AC) 1 ,
事件,且 P(A)=P(B)= P(C)= 4 ,
8 求 A,
B,C 至少有一个发生的概率。 解 ∵ABCAB ∴0∠P(ABC)∠P(AB)=0,故 P(ABC)=0 ∴所求概率为
《概率论与数理统计》第三版-课后习题答案.-
习题一:1.1 写出以下随机试验的样本空间:(1) 某篮球运发动投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,那么()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计(第三版)课后答案习题4
--WORD 格式--可编辑--专业资料-------学习资料分享----lea di ng ca dr es ' aw ar en e s s o f ri g h t i n pl a c e , st u d y t h e p a rt y C o n s ti t ut io n a n d p ar ty r u l e s , s e ri e s o f s p e e c h e s c a n m a k e pr op er eff ect . Pa rty ca dr e s t o "t w o " le a d b y e x a m p l e , t o le ad by ex a m pl e w e mu st cha nge our min d, rec ogn i zing that "tw o" is imp orta nt. Firs t, l e a r n t h e C o m m u n i st P a rt y C o n st i t u t i o n P ar ty ru le s, le ar ni n g le ar ni n g se ri es im po rta nt sp e ec h by Ge n er al S e cr et ar y c a n e n h a n c e t h e o r y . W it h t h e "t h i r d re v ol ut io n " t h e ri s e o f r a pi d c h a n g e s i n o ur lif e ar e fe eli ng , th e C o m m un ist s s h o u l d ad he re to th e th eo ry of c o nf id e n c e w i l l c o n t i n u e t o le ar n fr o m t he voi ce s of the tim es, t h e ti m e s, in t u r n , w i l l h a v e n e w r e q u i r e m e n t s f o r l e a di n g p a rt y c a d r e s. "T w o " is t h e m o s t ba sic m ea ni ng of m e m be r s al l m a s t e ri n g t h e c o r e t h e o r y a n d t h e m o st a d v a n c e d w e a p o n s t h e o r y , c o m pl e m en t th e sp irit of ca l ciu m. S ec on dly , t he Co m mu ni s t P a rt y C o n s ti t u ti o n P a rt y r u l es , le ar ni n g l ea rn i n g s e r ies im po rta nt sp ee ch by Ge ne ral S ec ret ar y be abl e to fir m ly b ui ld t h e i d e o lm u lt i p l e v a l u e s, th e "t w o " is to he l p cu lti va te i nd e p e n d e n t ju d g m e nt in nu mer ous mis cell ane ous mul tipl e c o n c e p t s , so tha t t he ma jori ty co ns en su s of par ty me mb ers , the im po rta n t m a gi c w e a p o n o f t h e p a rt y w it h t h e r e s o n a n c e f r e q u e n c y . F i n a ll y, th e C o n st it ut i on of the Co m mu nis t Par t y , p a r t y r u l e s , l e a r n i n g l e a r nin g seri es imp ort ant spe e ch ca n sta nd cr ow ds, Ge n e r al S e c r et a r y p o s i t i on. N o w, s o m e gr a s s -r o o t s w o r k i n t h e "t h e o l d w a y d i d n't w or k, h ar d w a y c a n n ot , th e n e w a p p r o a c h w o ul d not" phenom enon, sometim es due to a mass of party member s a nd ca dr es no t un de rst a ndi ng, does not meet. In fact, the mass "convi nci ng " an d "i de nti ty "B e hi n d ar e li k el y to b e p a rt y m e m b e r s a n d l e a d i ng ca dr e s th e m se lv e s ig n or in g be lie fs he l d, r e s ul ti n g in la c k o f p e r s u a s i o n a n d s e n s e o f i d e n t i t y . "T wo " is in fa ct gu ar an te e d p a r t y c a dr es w or k, an im p o r t a n t pre req uisi te for con vin cin g t h e m a s s e s . B ac o n sa id it w ell : "p r a c ti c a l m e n c a n h a ndl e indi vid ual mat ter s, but l ooki ng at the whol e oper ation glob ally,b u t o n ly m a nc a nd o t o k n o w le d g e . "Givi ng up" two "effec tive, must first raise aware n e s s of l e a d i ng c a d r e s of part y me mbe rs, as part y me mbe r s l e a r n r e a l r e spo nsib ility" to kno w "to" mus i c "," g o o d "ch a n g e s, in p ar al le l w it h t h e g r o u n d, d o not for get to als o an sw er the a n t e n n a , d r a w ca tc he s on m et eo ro l o g y , w hi c h s it b e t w e e n h e a v e n a nd Ea rt h wh i ch me l ds tog et he r th e dr ea m s of pr a c t i c i n g C o m m u ni st. M e m b e r s c a d r e s s h o ul d i n "t w o le ar n a d o " in th e b a s e d p o s t d o co ntr ibu tio n i n all me mb ers i n t h e c a rr i e d o u t "l e a r n C o n s t i t u t i o n P a r t y r ul e s, a n d le ar n seri e s spe ech , do qua lifie d me m b er s" le ar ni n g e d u c a ti o n , t h i s i s f o ll o w ing pa rty of ma ss lin e e d u c a ti o n p r a c ti c e a c ti v it i e s an d "t hr ee st ric t t hr e e re al " to pi c e d u c a t i o n z h i h o u , d e e p e n i n g p a rt y e d u c a ti o n o f a n d on ce im po rt an t pr a c ti c e , i s p r o m o t e d "t h r e e s tr i ctt h r e e r e al " t o pi c e d u c a t i on fr o m "k ey mi no rit y" to a ll m e m b e r s e x p a n d , a nd fr o m co nc en tr at ed e du ca tio n to re gu lar e du cat ion ext en ds of im po rta nt ini tia tiv es . Va st n u mb e r s o f pa rty m e m be rs an d ca dr e s in th ec o ur s e o f t w o , s h o u ld be第四章 随机变量的数字特征1. 甲、乙两台自动车床,生产同一种零件,生产1000 件产品所出的次品数分别用,表示,经过一段时间的考察,知, 的分布律如下:0 1 230 1 2 p0.70.10.10.1p0.50.30.2试比较两台车床的优劣。
概率论与数理统计(第三版)第四章课后答案
第四章数字待征4・1 解:£(X) = Vx p ;=iE (门=2>少产09I•.甲机床生产的零件茨品数多于乙机床生产蹒件次融,又•.•两硼床的^的产量相同 ••.乙机床生产的豹的质量较好.4・2解;X 的所有可能取值为:3, 4, 5E(X) = Vxp. =3x0・l + 4x0.3 + 5x0.6 =4.5P{X= 5}=fl0.6尸心3}=P{X = 4} =00$T =0001*OOS-粹(000—畔1-了 +呻i =ooor z OOH护(x)/J =(y)jL l = £Oxt = ^ = CY)y (LO £)&-/!«审伽里必坊叱也範銮黔砲OK申站尋卄d .[(d_DT】= 二Y = — = ^-i)^Z= d^Z = Cr)j……£ = [ = “¥«_【対={—汕4.10裁见课本后面231页参考答秦心腿抿題1泊: 4.11解:设i酒为“,方差为(J:,则X~N( UP(A F>96)=1-P(X<96)= 1-P( )所以酸在60到84的抚率为P(60 S X S 84) = P(竺丄 < 丄上12 a4151)=20(1)-1-2x0.8413 ・1=0.68264.!2E(X 2) = OxO4+l :xO.3 + 22xO2+3:xO 1 = 2£(5X 2 + 4) = 4x0.4+(5xl 2 + 4)x0.3 + (5x22 + 4)x0 2+(5x3:+ 4)x0.1 = 14EQ ・)=£(2X) = F 2xe^dx =£( V) = H V |: + 不呦4.13 H :=2(-厂)|; = 24 15聲看课本后面231页答案E(T) = E(<?4) = {「Q-3x4.14 H: r = —3设球的肓径为x 则:/(x) = ^-a■a<x<b其它4^Xi够胡_子)胡尹兄◎挣牛在 夕卜吕(》如4.16 解:仁(x)=匸/(〔>)4 = f. 12yd> = 4xf (v)=匸fg)e=j l lydx=12y -12y3£W =匸/「(X)•曲叮 4.X逐 WE(T)=匸/ (x) ydy = [ 12y -12y*d> = |E(AT)= [f f(x,y)xydxdy = [f 12xy dxdy = ' 12xtic =0<><xS 03 0 2E(X、心(环讼諒4.&=|£(丫)=匚/())y0 = fl2y°-12ydy =;4"解•.X与Y相互独立,■• •EQT) = E(X)E(D = f 疋还f〉/迪.二(扌斗:)J; "(4)°JO= jx(一“i|;+J;/•⑥)=亍[5 + (r 灯)卩彳x(5+l) = 44.18, 4.19, 4・20势看课本后面231, 232页答秦• 9•4上设X表示10颗骰子皈的点数之和,X (心1丄…10)表示第:颗般子出现的点«,则X^X:,且X\,X“・X*是*1独立同分布的,又E(A;)=1X1+2X1+...+6X1=A1o o 6 610 10 九^£(A^ = £(yXJ = X£W = 1Ox^ = 35MI Z64.22爹看课本后面232页答案4.23 E(X\ = OxO4 + l2xO.3 + 22xO2+35xO 1 = 2D(X)= £(X:)-[£(X)]2 =2-l2=l£(F2)=O X O.3+12X O5+22X O.2+32X O=1.3z)(y)=£(r2)-[£(r)j2=1.3-0.^ =0.49 4.24E(X:)叮斗皿+胆毎存*卜护+护|;十¥ = ¥DW = E(X:) - [E(X)f =y-4 = |Var(X) = E(X:)-[E(X)f =[我[[加r],0 其它-1 < > < 1 其它4.25Zr(x) = {呼—0 其它二扌-1<X<10其它w •计 m 吏支ue >n ¥x =p > “轻H£5>^V 3«20)P A#・0Z —X GUNbl -%十»・x )4+・:+(E 4.+c r )4MKs s(T )Q +(电Q «(W+...+W +WQ »§(小)2•士小 N+示)3 Hf …咅麗&。
概率论与数理统计第四章习题参考答案
=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi
−
⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i
−
nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)
−
nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95
⎭
故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a
≤
x
≤
b
,
⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )
−
n
D(
概率论与数理统计第三、四章答案
概率论与数理统计第三、四章答案第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果112{0}={1}=33pp p p ξξ====,得12201333E ξ=⨯+⨯=一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望ξ96 98 100 102 104p0.090.270.350.230.06960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能22||201()2x x D E x e dx x e dx ξξ+∞+∞---∞===⎰⎰20|22x x x e xe dx +∞-+∞-=-+=⎰6题目略解 (1)15辆车的里程均值为1274(9050150)91.33153++⋅⋅⋅+=≈ (2) 记ξ为从188辆汽车中任取一辆记录的里程数,则ξ的分布表如下表所示(a=188)ξ10 30 50 70 90 110 130 150 170p 5/a11/a 16/a 25/a 34/a 46/a 33/a 16/a 2/a故51124520103017096.1718818818847E ξ=⨯+⨯+⋅⋅⋅+⨯=≈ 7题目略解 记ξ为种子甲的每公顷产量,η为种子乙的每公顷产量,则45000.1248000.3851000.454000.14944E ξ=⨯+⨯+⨯+⨯= 45000.2348000.2451000.354000.234959E η=⨯+⨯+⨯+⨯=8.一个螺丝钉的重量是随机变量,期望值10g,标准差为1g,100个一盒的同型号螺丝钉重量的期望值和标准差个为多少(假设每个螺丝钉的重量都部首其他螺丝钉重量的影响)?解 设i ξ为一盒中第i 个螺丝钉的重量(1,2,,100)i =⋅⋅⋅,则 题设条件为101,i i E g D g ξξ==且12100,,,ξξξ⋅⋅⋅相互独立。
概率论与数理统计答案 第四章习题
(x2
3000x)dx
1 1500 2
x3 3
1500 0
1 1500 2
(
x3 3
1500
x
2
)
3000 1500
500 4(500) (1000) 1500
X -2 0 2
6.设随机变量X的分布律为 pk 0.4 0.3 0.3 求E(X),E(X2),E(3X2+5).
3
解
E( X ) xk pk (2) 0.4 0 0.3 2 0.3 0.2
0),
2t ,
(a 1) a(a),
dx dt
2t
(1)
1,
(1
2)
.
E(X) 02tet
dt
2t
2 0t1 2etdt
2(3 2)
2 1 (1 2)
2
2
E(
X
2
)
0
3
(2t )3
2
2
et
2t
dt
2
2
0
te t
dt
2
2(2)
2
2
20. 设长方形的高(以m计)X~U(0,2),己知长方形的周长(以m计)为 20,求长方形面积A的数学期望和方差.
k 1
3
E( X 2 ) xk2 pk (2)2 0.4 02 0.3 22 0.3 2.8
k 1
3
E(3X2 5) (3xk2 5)pk [3(2)2 5]0.4[302 5]0.3[322 5]0.3 13.4
k1
或 E(3X2+5)= 3E(X2) + 5 = 32.8 + 5 =13.4
概率论与数理统计课后答案第4章
概率论与数理统计课后答案第第4章大数定律与中心极限定理4.1设D(x)为退化分布:讨论下列分布函数列的极限是否仍是分布函数?1 1 卄亠(1){D(x n)}; (2){D(x )};(3){D(x 0},其中n =1,2;n n解:(1) (2)不是;(3)是。
4.2设分布函数F n(x)如下定义:‘0x 兰-nl /、x + nF n (x)=」---- 一n c x 兰n2n1 x > n问F(x) =lim F n(x)是分布函数吗?n_)pC解:不是。
4.3设分布函数列{ F n(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{F n(x)}在(」:,::)上一致收敛于F(x)。
证:对任意的;.0,取M充分大,使有1 —F(x) ::;, —x _ M; F(x) ::;,—x^ -M对上述取定的M,因为F(x)在[-M,M]上一致连续,故可取它的k分点:捲- -M :: X2 :…X k4 ::X k = M ,使有F(X j .J - F(xJ ::;,1 一i ::k ,再令x° - - ::, X k 1 =::,则有F(X i J —FW) :::;,0 G ::k 1(1)这时存在N,使得当n • N时有| F n(X i) —F(X i)|::;,0 叮牛 1(2)成立,对任意的X •(-::,::),必存在某个i(0 _i 一k),使得x・(X i,X i 1),由(2) 知当n •N时有F n (X)— F n (X i i ) ::: F(X j .J ;F n (X)_ F n (X i ) . F(X i )-;(4) 由( 1), (3), (4)可得F n (x) -F(x)::: F(X i 1)-F(x) , F(X i i )-F(X i ); :::2;,F n (x) - F (x) F (X i ) - F (x) - ; _ F (X i ) - F (X i .1)- ; -2 ;,即有F n (x )-F (x ) 名成立,结论得证4.5设随机变量序列「鳥同时依概率收敛于随机变量 •与,证明这时必有P (二)二1。
概率论与数理统计习题解答(第4章)
第4章习题答案三、解答题1. 设随机变量X求)(X E ,)(2X E ,)53(+X E .解:E (X ) =∑∞=1i ixp= ()2-4.0⨯+03.0⨯+23.0⨯= -0.2E (X 2) =∑∞=12i i p x= 44.0⨯+ 03.0⨯+ 43.0⨯= 2.8E (3 X +5) =3 E (X ) +5 =3()2.0-⨯+5 = 4.42. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为6,,2,1,6/1}{ ===i i X P记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=283. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙图书的行为相互独立,读者之间的行为也是相互独立的. (1) 某天恰有n 个读者,求借阅甲种图书的人数的数学期望.(2) 某天恰有n 个读者,求甲乙两种图书至少借阅一种的人数的数学期望. 解:(1) 设借阅甲种图书的人数为X ,则X~B (n , p 1),所以E (X )= n p 1 (2) 设甲乙两种图书至少借阅一种的人数为Y , 则Y ~B (n , p ),记A ={借甲种图书}, B ={借乙种图书},则p ={A ∪ B }= p 1+ p 2 - p 1 p 2 所以E (Y )= n (p 1+ p 2 - p 1 p 2 )4. 将n 个考生的的录取通知书分别装入n 个信封,在每个信封上任意写上一个考生的姓名、地址发出,用X 表示n 个考生中收到自己通知书的人数,求E (X ).解:依题意,X~B (n ,1/n ),所以E (X ) =1.5. 设)(~λP X ,且}6{}5{===X P X P ,求E (X ).解:由题意知X ~P (λ),则X 的分布律P{}k X ==λλ-e k k!,k = 1,2,...又P {}5=X =P {}6=X , 所以λλλλ--=e e!6!565解得 6=λ,所以E (X ) = 6.6. 设随机变量X 的分布律为,,4,3,2,1,6}{22 --===k kk X P π问X 的数学期望是否存在?解:因为级数∑∑∑∞=+∞=+∞=+-=-=⨯-11212112211)1(6)6)1(()6)1((k k k k k k kk k k πππ, 而 ∑∞=11k k 发散,所以X 的数学期望不存在.7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为⎪⎩⎪⎨⎧>=-.0,0,91)(3/其它x xe x f x 求一天的平均耗电量.解:E (X ) =⎰⎰⎰∞-∞-∞∞-==03/203/9191)(dx e x dx xe xdx x f x x x =6.8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为⎪⎩⎪⎨⎧>-=.0,5,251)(2其它x x x F求这种家电的平均寿命E (X ).解:由题意知,随机变量X 的概率密度为)()(x F x f '=当x >5时,=)(x f 3350252xx =⨯--,当x ≤5时,=)(x f 0. E (X ) =10|5050)(5-53=-==∞++∞∞+∞⎰⎰xdx x x dx x xf 所以这种家电的平均寿命E (X )=10年.9. 在制作某种食品时,面粉所占的比例X 的概率密度为⎩⎨⎧<<-=.0,10,)1(42)(5其它x x x x f 求X 的数学期望E (X ).解:E (X ) =dx x x dx x xf ⎰⎰+∞∞-=-152)1(42)(=1/410. 设随机变量X 的概率密度如下,求E (X ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=.010,)1(2301)1(23)(22其它,,,,x x x x x f解:0)1(1023)1(0123)()(22=-++-=+∞∞-=⎰⎰⎰dx x x dx x x dx x xf X E .111. 设),4(~p B X ,求数学期望)2(sinX E π. 解:X 的分布律为k n kk n p p C k X P --==)1(}{, k = 0,1,2,3,4,X 取值为0,1,2,3,4时,2sinX π相应的取值为0,1,0,-1,0,所以)21)(1(4)1(1)1(1)2(sin13343114p p p p p C p p C XE --=-⨯--⨯=π12. 设风速V 在(0,a )上服从均匀分布,飞机机翼受到的正压力W 是V 的函数:2kV W =,(k > 0,常数),求W 的数学期望.解:V 的分布律为⎪⎩⎪⎨⎧<<=其它 ,00 ,1)(a v a v f ,所以 ===+∞∞-=⎰⎰aa v a k dv a kv dx v f kv W E 03022|)31(1)()(231ka13. 设随机变量(X ,求E (X ),E (Y ),E (X – Y ).解:E (X )=0×(3/28+9/28+3/28)+1×(3/14+3/14+0)+ 2×(1/28+0+0)= 7/14=1/2 E (Y )=0×(3/28+3/14+1/28)+1×(9/28+3/14+0)+ 2×(3/28+0+0)=21/28=3/4 E (X -Y ) = E (X )- E (Y )=1/2-3/4= -1/4.14. 设随机变量(X ,Y )具有概率密度⎩⎨⎧≤+≤≤≤≤=其它,01,10,10,24),(y x y x xy y x f ,求E (X ),E (Y ),E (XY )解:E (X )=⎰⎰⎰⎰-=⋅11022424xDydydx x xydxdy x dx x x ⎰-⋅=1022)1(2124dx x x x ⎰+-=10432)2412(52)51264(1543=+-=x x x.152)34524638()1(31242424)(5/22424)(1654311010322210102=-+-=-⋅==⋅===⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰--x x x x dx x x dydx y xxydxdy xy XY E xdxdy y xydxdy y Y E DxDy15.所得利润(以元计)为)12(1000X Y -=,求E (Y ),D (Y ).解: E (Y) = E [1000(12-X )]=1000E [(12-X )]=1000×[(12-10)×0.2+(12-11)]×0.3+(12-12)×0.3+(12-13)×0.1+(12-14)×0.1] = 400E (Y 2) = E [10002(12-X )2]=10002E [(12-X )2]=10002[(12-10)2×0.2+(12-11)2×0.3+(12-12)2×0.3+(12-13)2×0.1 +(12-14)2×0.1]=1.6×106D (Y )=E (Y 2)-[E (Y )]2=1.6×106- 4002=1.44×10616. 设随机变量X 服从几何分布 ,其分布律为,,2,1,)1(}{1 =-==-k p p k X P k 其中0 < p < 1是常数,求E (X ),D (X ).解:令q=1- p ,则∑∑∑∑∞=∞=-∞=-∞==⨯=⨯==⨯=111111)()}{()(k kk k k k k dqdq p qk p p qk k X P k X Ep q dq d p q dq d p k k /1)11(0∑∞==-==∑∑∑∑∞=-∞=-∞=-∞=⨯+⨯-=⨯==⨯=1111112122])1([)()}{()(k k k k k k k q k qk k p p qk k X P k X Ep qk k pq k k /1)1(12+⨯-=∑∞=-p qdq d pq p q dqd pq k k kk /1)(/1012222∑∑∞=∞=+=+=p p q p q pq p q dq d pq /1/2/1)1(2/1)11(2322+=+-=+-= D (X ) = E (X 2)- E (X ) =2q /p 2+1/p -1/p 2 = (1-p )/p 217. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<-=其它,01||,11)(2x x x f π,试求E (X ),D (X ).解:E (X )=011)(112=-=⎰⎰-∞∞-dx xxdx x f x πD (X )=E (X 2)=⎰⎰⎰--∈-∞∞-=-=2/2/2]2/,2/[11222cos sin sin 11)(ππππππdt tt tx dx xxdx x f x t2122cos 122/0=-=⎰ππdt t 18. 设随机变量(X ,Y )具有D (X ) = 9,D (Y ) = 4,6/1-=XY ρ,求)(Y X D +,)43(+-Y X D . 解:因为)()(),(Y D X D Y X Cov XY =ρ,所以)()(),(Y D X D Y X Cov XY ρ==-1/6×3×2=-1,11249),(2)()()(=-+=++=+Y X Cov Y D X D Y X D51)1(6369)3,(2)(9)()43(=--+=-++=+-Y X Cov Y D X D Y X D19. 在题13中求Cov (X ,Y ),ρXY . 解:E (X ) =1/2, E (Y ) =3/4, E (XY )=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14, E (X 2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7, E (Y 2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28, D (X )= E (X 2) -[E (X )]2 = 4/7-(1/2)2= 9/28, D (Y )= E (Y 2)- [E (Y )]2=27/28-(3/4)2= 45/112, Cov (X ,Y )= E (XY )- E (X ) E (Y ) =3/14- (1/2) ×(3/4)= -9/56, ρXY = Cov (X ,Y ) /()(X D )(Y D )=-9/56 ÷ (28/9112/45)= -5/520. 在题14中求Cov (X ,Y ),ρXY ,D (X + Y ).解:52)()(==Y E X E ,,)(152=XY E 752)()()(),(-=-=Y E X E XY E Y X Cov )(5124)(2101032Y E dydx y x X E x ===⎰⎰-[])(25125451)()()(22Y D X E X E X D ==-=-= 752),(2)()()(32)()(),(=++=+-==Y X Cov Y D X D Y X D Y D X D Y X Cov XYρ21. 设二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤+=.0,1,1),(22其它y x y x f π试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:0/12/)(112111122=-==⎰⎰⎰-----dx x x dydx x X E x xππOx2x20/)(111122==⎰⎰----x x dydx y Y E π 0/)(111122==⎰⎰----x x dydx xy XY E π,所以Cov (X ,Y )=0,ρXY =0,即X 和Y 是不相关.⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122x x x dy dy y x f x f x x X ππ ⎪⎩⎪⎨⎧<<--=⎪⎩⎪⎨⎧<<-==⎰⎰---∞+∞-其他,,其他,01112011,/1),()(21122y y y dx dx y x f y f y y Y ππ 当x 2 + y 2≤1时,f ( x,y )≠f X ( x ) f Y (y ),所以X 和Y 不是相互独立的22. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=.010,2||,2/1),(其它x x y y x f 验证X 和Y 是不相关的,但X 和Y 不是相互独立的.解:由于f ( x,y )的非零区域为D : 0 < x < 1, | y |< 2x32221102212====⎰⎰⎰⎰⎰-dx x xdydx dxdy y x xf X E xx D ),()(,0211022⎰⎰⎰⎰-===xx Dydydx dxdy y x yf Y E ),()(,0211022⎰⎰⎰⎰-===xx Dxydydx dxdy y x xyf XY E ),()(,所以Cov (X ,Y )=0,从而0)()(),(==y D x D y x Cov xy ρ,因此X 与Y 不相关 .⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-其他,010,221),()(22Xx x dy dy y x f x x x f⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-=<<-+===⎰⎰⎰-∞+∞-其他,020,421202,42121),()(1212Y y y dx y y dx dx y x f y y y f所以,当0<x <1, -2<y<2时,)()(),(y f x f y x f Y X ≠,所以X 和Y 不是相互独立的 .⎪⎩⎪⎨⎧≤>>=⎩⎨⎧≥<<--==-0,00,0,1)(,0),()(y y e y f Y x Y mx xY Y x n mY Y Q Q y Y θθθ的密度函数为[]()()()取最大值时,当又则令)(n ln 0n m )(d n ln,n 0)(1)()(d )()()()(1.1.)()(.)()( 20000000Q E n m x e dx Q E n m x n m e n e n m n e n m dx Q E nxn m e n m m xenx nxe e n m xe n m m xe nxe dy n m e ye n m m xde de nx yde n m dye m x dy e y x n m y dy Yf Y Q Q E x xxx x x x x y x xyx y x y x y x y x y y x x y x y Y +-=∴<+-=+-=∴+==-+=-⎪⎭⎫ ⎝⎛-+-=-+++-=+-++-+-=-+⎥⎥⎦⎤⎢⎢⎣⎡+-+=-++-=+--==---------∞+----∞+---∞+--∞∞-⎰⎰⎰⎰⎰⎰⎰θθθθθθθθθθθθθθθθθθθθθθθθθθθ四、应用题.1. 某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产品可获利m 元,而积压一件产品导致n 元的损失,再者,他们预测销售量Y (件)服从参数θ的解:设生产x 件产品时,获利Q 为销售量Y 的函数2. 设卖报人每日的潜在卖报数为X 服从参数为λ的泊松分布,如果每日卖出一份报可获报酬m 元,卖不掉而退回则每日赔偿n 元,若每日卖报人买进r 份报,求其期望所得及最佳卖报数。
概率论与数理统计课后习题答案习题第四章
y 2 i4e −4 y dy =
00
3
1 2 E ( X ) = ∫ xi2 xdx = , 0 3
圣才统计学习网
tj
圣才学习网
求 E(XY). 【解】方法一:先求 X 与 Y 的均值
.c
⎧ 2 x, 0 ≤ x ≤ 1, 其他; ⎩0,
5.设随机变量 X 的概率密度为
N
∑ kP{ X = k}
k =0
N
求 E(X) ,D(X). 【解】 E ( X ) =
∫
+∞
−∞
xf ( x)dx = ∫ x 2 dx + ∫ x(2 − x)dx
0 1
1
2
w.
1 2 0 1
3 ⎡1 3 ⎤ ⎡ 2 x ⎤ = ⎢ x ⎥ + ⎢ x − ⎥ = 1. 3 ⎦1 ⎣ 3 ⎦0 ⎣
12.袋中有 12 个零件,其中 9 个合格品,3 个废品.安装机器时,从袋中一个一个地取出(取 出后不放回) ,设在取出合格品之前已取出的废品数为随机变量 X,求 E(X)和 D(X). 【解】设随机变量 X 表示在取得合格品以前已取出的废品数,则 X 的可能取值为 0,1,2, 3.为求其分布律,下面求取这些可能值的概率,易知
2
8.设随机变量(X,Y)的概率密度为
计
【解】 (1) E[U ] = E (2 X + 3Y + 1) = 2 E ( X ) + 3E (Y ) + 1
= 2 × 5 + 3 × 11 + 1 = 44.
因Y , Z 独立E (Y )i E ( Z ) − 4 E ( X )
= 11× 8 − 4 × 5 = 68.
概率论与数理统计(第三版)第四章习题
1 5 1 1 15 E( X ) 2 3 4 9 8 8 8 8 4
5. 设在某一规定的时间间隔里,某电 1 0 x 1500 气设备用于最大负荷的时间X(以分计) 15002 x , 1 f ( x ) 15002 ( x 3000),1500 x 3000 是一个随机变量,其概率密度为 求E(X). 0, 其它 解 E( X ) xf ( x )dx 1500 1 2 x 2dx 3000 1 2 ( x 2 3000 x )dx
2 0 xd (e x )
0
x x 2[ xe 0 0 e dx]
2(e x ) 2 0
E (e
2 X
)
2 x e
f ( x)dx
2 x x e e dx 0
1 3 x 3 x e dx e 0 0 3
xf ( x )dx 0
2 x 2 2 2 x e 0
2
x 2 2 2 xe dx 0
D( X ) E ( X 2 ) [ E ( X )]2
4 2 2
2 x 2 2 2 0 2 e 0
2 2
法二:利用函数的定义及性质
1448 676 964 D( A) E ( A ) [ E ( A)] 21.42( m 2 ) 15 9 45
2 2
法二:利用已知均匀分布的数学期望和方差的结果和性质求解
0 2 ( 2 0) 2 1 E( X ) 1, D( X ) , 2 12 3
2 2
,x0 x0
解 法一:利用
概率论与数理统计课后习题答案 第四章
(2) 令
,求 Y 的概率密度 fY(y).
解:
(1)
(2)
由 Y=2X-1 得
, X’=
=
七、 设二维随机变量(X,Y)的概率密度为
其他
求: (1)E(X+Y); (2)E(XY); (3)
.
解:
(1)
(2)
(3)
八、 设随机变量 X 的分布律为
X
-1
0
1
P
记 Y=X2,求: (1)D(X), D(Y); 解:
ρ
ρ
ρ
ρ
5. 证明 D(X-Y)=D(X)+D(Y)-2Cov(X,Y). 证:
6. 设(X,Y)的协方差矩阵为 解:
,求 X 与 Y 的相关系数 ρxy.
ρ
自测题 4
一、 选择题
1. 设随机变量 X 服从参数为 0.5 的指数分布,则下列各项中正确的是 B .
A. E(X)=0.5, D(X)=0.25
2. 设二维随机变量(X,Y)的概率密度为
求 Cov(X,Y). 解:
其他
3. 设二维随机变量(X,Y)的概率密度为
求 X 与 Y 的相关系数 ρxy. 解:
其他
运用分部积分法. 服从λ =1 的指数分布
所以 ρ
4. 设二维随机变量(X,Y)服从二维正态分布,且 E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概 率密度函数 f(x,y). 解:
解: Cov(X,Y)=0
2. 设随机变量 X 的分布律为 3 .
X
-1
0
1
2
P
0.1 0.2 0.3 0.4
概率论与数理统计第四章课后习题及参考答案
概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。
概率论与数理统计第四章习题及答案
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验 4次,每次随机地取 10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以 X 表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的)解:设表示一次抽检的 10件产品的次品数为1 —=.从而E ( X )=np =4X =的数学期望不存在. 解:3j—)不绝对收敛,由数学期望的定义知, X 的数学期望不存在.J求 E(X), E(X 2), E(3X 25).解 E (X )=(-2) +0 +2习题4-3 设随机变量 X 的分布律为P =P (调整设备)=P ( E >1)=1 — P ( E W 1)= 1 -[P ( E =0)+ P ( E =1)]查二项分布表因此X 表示一天调整设备的次数时4P ( X =1)= XX =, P ( X =2)=1 4P ( X =3)= XX =, P ( X =4)=X 〜巳4,. 4XX =2 4XX =P ( X =0)=XX习题4-2 设随机变量 X 的分布律为P X23j ,1,2,,说明X由于.13j (1)j 勺一P(X j(1)j1-)-,而级数2 j 1 j• 1 3j- 1)j1- P(X ( 1)j由关于随机变量函数的数学期望的定理,知E(X2)=(-2) 2小2 小2+0 +2E(3X2+5)=[32 2 2(-2) +5] +[3 0 +5] +[3 2+5]如利用数学期望的性质, 则有E(3X2+5)=3E(X2)+5=3 +5=E(X)2 E(X ) E(3X22 0.4 020.3 0.30.2,习题求(1)Y22(2) 0.4 225) 3E(X ) 54-4 设随机变量2X; (2)Y e 2X0.3 2.8,13.4X的概率密度为f(X)的数学期望.(I)E( Y) E(2X) 2xf(x)dx2( 0dx2( xe 0 e x dx) 2e(II )E(Y) E(e 2X) 2x x .e e dx3x dx习题4-5 设(X,Y)的概率密度为f(x,y)求 E(X), E(Y), E(XY), E(X2 Y2).解各数学期望均可按照E[g(X, Y)]在有限区域G:{(x,y)|0E(X)E(Y) 0,xe3xx 0,x 0dx)12y2, 0,y x 1, 其它g(x, y) f (x, y)dxdy 计算。