概率论

合集下载

概率论知识点

概率论知识点

第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间:概率论术语。

我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。

样本空间的元素,即E的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。

互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。

互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。

§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。

概率论基础知识

概率论基础知识
几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。

概率论公式总结

概率论公式总结
f (x) 具有如下性质:
1° f (x) 的图形是关于 x 对称的; 2° 当 x 时, f () 1 为最大值;
2 若 X ~ N (, 2 ) ,则 X 的分布函数为
F(x) 1
(t )2
x
e
2 2
dt
2
(x) 是不可求积函数,其函数值,已编制成表可供查用。
X
~ N (0,1)
充要条件:X 和 Y 不相关。
(1) D(C)=0;E(C)=C
(2) D(aX)=a2D(X); E(aX)=aE(X)
(3) 方差 的性 质
(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b (4) D(X)=E(X2)-E2(X) (5) D(X±Y)=D(X)+D(Y),充分条件:X 和 Y 独立;
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
独立性
①两个事件的独立性
设事件 A 、 B 满足 P( AB) P( A)P(B) ,则称事件 A 、 B 是相互独立的。
第三章 二维随机变量及其分布
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边
分别平行于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
连续型
P{(X ,Y ) D} f (x, y)dxdy, 则称 为连续型随机向量;

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是一门研究随机现象的数学分支,它使用概率来描述和解释随机事件发生的规律性。

在实际应用中,我们常常需要使用一些基本概率公式来计算和分析各种随机现象。

以下是一些常见的概率论公式:1.概率的定义公式:P(A)=N(A)/N(S)其中P(A)表示事件A的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中发生的总次数。

2.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中P(A∪B)表示事件A和事件B至少发生一个的概率,P(A∩B)表示事件A和事件B同时发生的概率。

3.乘法公式:P(A∩B)=P(A)某P(B,A)其中P(A∩B)表示事件A和事件B同时发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

4.条件概率公式:P(A,B)=P(A∩B)/P(B)其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的概率。

5.全概率公式:P(A)=ΣP(A,Bi)某P(Bi)其中P(A)表示事件A的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有可能的事件Bi求和。

6.贝叶斯公式:P(Bi,A)=P(A,Bi)某P(Bi)/ΣP(A,Bj)某P(Bj)其中P(Bi,A)表示在事件A发生的条件下事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,P(A,Bj)表示在事件Bj发生的条件下事件A发生的概率,Σ表示对所有可能的事件Bj求和。

7.期望值的公式:E(X)=ΣXi某P(Xi)其中E(X)表示随机变量X的期望值,Xi表示随机变量X的可能取值,P(Xi)表示随机变量X取值为Xi的概率,Σ表示对所有可能的取值Xi求和。

8.方差的公式:Var(X) = E(X^2) - [E(X)]^2其中Var(X)表示随机变量X的方差,E(X^2)表示随机变量X的二阶矩,[E(X)]^2表示随机变量X的期望值的平方。

概率论的基本概念总结

概率论的基本概念总结

概率论的基本概念总结概率论是一门研究随机现象和随机事件发生概率的学科。

以下是概率论的一些基本概念和原理的总结:1. 随机试验:指具有随机性质的实验,可以重复进行,并且每次实验的结果不确定。

2. 样本空间:随机试验所有可能结果构成的集合,记作Ω。

3. 事件:样本空间Ω 中的子集称为事件。

通常用大写字母A、B、C 等表示事件。

4. 事件的概率:事件A 发生的可能性大小可以用概率来描述,记作 P(A)。

概率是一个介于 0 和 1 之间的实数。

5. 等可能概型:当一个随机试验的样本空间中的每个结果发生的可能性相等时,称为等可能概型。

6. 频率:进行多次独立重复的随机试验,事件 A 发生的频率近似等于其概率。

7. 概率的性质:概率具有以下性质:- 非负性:对于任何事件 A,有P(A) ≥ 0。

- 规范性:对于样本空间Ω,有P(Ω) = 1。

- 加法性:对于任何两个互斥事件 A 和 B,有 P(A ∪ B) =P(A) + P(B)。

- 完备性:对于任何事件 A,有 P(A) + P(A的补) = 1。

8. 条件概率:当已知随机试验的某些信息时,我们可以计算某一事件发生的概率,这就是条件概率。

条件概率使用 P(B|A) 表示,读作“在事件 A 发生的条件下,事件 B 发生的概率”。

9. 乘法规则:当两个事件 A 和 B 依赖于彼此时,事件 A 和 B 同时发生的概率可以通过条件概率相乘得到,即P(A ∩ B) = P(A) * P(B|A)。

10. 独立事件:事件 A 和 B 是独立事件,如果 A 的发生与 B 的发生无关,即P(A ∩ B) = P(A) * P(B)。

11. 事件的互斥和独立:事件 A 和 B 互斥,如果它们不能同时发生,即P(A ∩ B) = 0。

事件 A 和 B 独立,如果它们的发生与否相互独立,即P(A ∩ B) = P(A) * P(B)。

12. 全概率公式:在条件概率已知的情况下,可以利用全概率公式求解事件的概率,即P(B) = Σ P(Ai) * P(B|Ai),其中 Ai 是样本空间Ω 的一个划分。

概率论公式

概率论公式


n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)

0, 1,
x x

c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)


2
n 2
1 (
n
)
e

x 2
x
n 2
1
,
x

0
2

0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)

( E(

概率论基础知识

概率论基础知识
独立是事 互斥是事 件间的概 件间本身 率属性 的关系
两事件相互独立 P ( AB ) P ( A) P ( B ) 两事件互斥
AB
二者之间没 有必然联系
定义2: 设A,B,C是三个事件,若满足: P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C) 则称A,B,C为相互独立的事件. 定义3:对n个事件A1,A2,…,An,如果对所有可 能的组合1≤i<j<k<…≤n成立着 P(AiAj)=P(Ai)P(Aj) P(AiAjAk)=P(Ai)P(Aj)P(Ak) P(A1A2…An)=P(A1)P(A2)…P(An), 则称这n个事件A1,A2,…,An相互独立.
概率的统计定义直观地描述了事件发生的 可能性大小,反映了概率的本质内容,但 也有不足,即无法根据此定义计算某事件 的概率。
2.2、古典概型
若随机试验满足以下特征:
(1)试验的可能结果只有有限个;
(2)各个结果的出现是等可能的. 则称此试验为古典概型.
古典概型中事件概率的计算公式
设随机试验E为古典概型,其样本空间Ω及 事件A分别为: Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
Ai — 第i次试验中A发生, 则
k P( X k ) Cn p k q nk , k 0,1,2,, n
称随机变量X服从参数为n,p的二项分布,记为
P( A n A1A 2 A n1 )
2.4 全概率公式和贝叶斯公式:
1. 样本空间的划分 定义 : 若B1, B2 , , Bn一组事件满足:
(i) Bi B j , i j, i, j 1, 2, ...,n,

《概率论》课件

《概率论》课件

物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学的一个分支,研究随机事件发生的概率。

以下是概率论中常用的公式。

1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本空间中的有利结果数量,n(S)表示样本空间中的总结果数量。

2.加法公式:P(A或B)=P(A)+P(B)-P(A且B)其中,P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。

3.乘法公式:P(A且B)=P(A)×P(B,A)其中,P(B,A)表示在事件A发生的条件下,事件B发生的概率。

4.条件概率公式:P(A,B)=P(A且B)/P(B)其中,P(A,B)表示在事件B发生的条件下,事件A发生的概率。

5.全概率公式:P(A)=Σ(P(A,Bi)×P(Bi))其中,P(A)表示事件A的概率,Bi表示S的一个划分,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。

6.贝叶斯公式:P(Bi,A)=(P(A,Bi)×P(Bi))/Σ(P(A,Bj)×P(Bj))其中,P(Bi,A)表示在事件A发生的条件下,事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。

7.期望值公式:E(X)=Σ(Xi×P(Xi))其中,E(X)表示随机变量X的期望值,Xi表示X的取值,P(Xi)表示X取值为Xi的概率。

8.方差公式:Var(X) = Σ((Xi - E(X))^2 × P(Xi))其中,Var(X)表示随机变量X的方差,Xi表示X的取值,E(X)表示X 的期望值,P(Xi)表示X取值为Xi的概率。

9.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。

10.二项分布的概率公式:P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示组合数,p表示单次实验成功的概率,n表示试验重复的次数,k表示成功发生的次数。

概率论公式

概率论公式

概率论公式1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni i n i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k kB A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = p nk p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有,2,1,0!)1(lim ==---∞→k k e p p C kkn n k n k n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x x td 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ 9. 二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y = )()()(y f xf x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y fy x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E ⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X E X 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数 XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±=相关系数 )()(),cov(Y D X D Y X XY =ρ。

概率论

概率论

S 7 : { ( x , y ) | T 0≤ x ≤ y ≤ T 1 }
返回主目录
第一章 概率论的基本概念
2、 随 机 事 件
定义: 定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件 随机事件; 可能发生,也可能不发生) 随机事件; 可能发生,也可能不发生) ( •基本事件 : 有一个样本点组成的单点集; 基本事件 有一个样本点组成的单点集; ( •必然事件 : 样本空间 S 本身; 必然发生) 必然事件 本身; 必然发生) •不可能事件 : 空集∅。 不可能事件 空集∅ (必然不发生) 必然不发生)
返回主目录
第一章 概率论的基本概念 2 ) 频率的稳定性 n=500时 时 nA 251 249 256 253 251 246 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492
244 0.488
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012 实验者 德•摩根 摩根 蒲 丰 n 2048 4040 nH 1061 2048 6019 fn(H) 0.5181 0.5096 0.5016 0.5005
A U A = A, A I A = A
A U B = B U A, A I B = B I A
( A U B ) U C = A U (B U C ) ( A I B ) I C = A I (B I C )
A U (B I C ) = ( A U B ) I ( A U C ) Morgan定律 定律: De Morgan定律: U A α = I Aα , I A α = U A α
不能同时发生 与 不能同时发生” 50 互不相容 A I B = ∅ “A与B不能同时发生” 60 对立(互逆)事件 A I B = ∅ 且 A U B = S 对立(互逆)

概率论

概率论

1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。

一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。

我们把这一类型现象称之为确定性现象或必然现象。

如在一个大气压下,水在100度时会沸腾等。

一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。

这一类型的现象我们称之为偶然性现象或随机现象。

如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。

二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。

基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。

则样本点有6个。

若记,16i i i ω=≤≤,i ω即为样本点。

样本空间为123456{,,,,,}ωωωωωωΩ=。

记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。

B 为一个复合事件。

三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。

第一章 概率论的基本理论

第一章  概率论的基本理论

第一章 概率论的基本理论前苏联数学家柯尔莫哥洛夫,1933年创立概率公理化体系。

⎧⎨⎩确定现象随机现象§1. 随机试验例:1E :抛一枚硬币,观察正反面出现情况; {}1,H T Ω=2E :将一枚硬币抛三次,观察正反面出现情况;{}2,,,,,,,HHH HHT HTH THH HTT THT TTH TTT Ω=3E :抛两颗色子,观察出现点数和; {}32,3,4,,12Ω=4E :在一批灯管中任取一只,测试它的寿命; {}40t t Ω=≥ 5E :将一尺之棰折成三段,观察各段长度;(){}5,,0,0,0,1x y z x y z x y z Ω=>>>++=特点:()()()123⎧⎪⎨⎪⎩试验可以在相同条件下重复进行;试验结果具有多种可能性,但能事先知道所有可能结果;进行试验前不能确定哪一结果出现。

满足上述特点的试验称之为随机试验,通过随机试验来研究随机现象。

§2. 样本空间 随机事件一、 样本空间随机试验E 的所有可能结果组成的集合,称为E 的样本空间。

样本空间通常用S 或Ω来表示。

(见上节)样本空间的元素——样本点。

二、 随机事件样本空间S 的子集——随机事件(事件),用,,A B C 表示;基本事件,必然事件,不可能事件。

事件A 发生⇔A 中有一样本点出现。

例1、 2E 2S1A :第一次出现H {}1,,,A H H H H H T H T H HT T = 2A :三个均出现T {}2A T T T =三、 事件间关系与事件的运算E S ,A B k A S ⊂1. A B ⊂ 事件B 包含事件A A 发生导致B 发生 A B =⇔A ⊂B 且B A ⊂。

2. A B ⋃1nk k A =1k k A ∞=3. A B A B ⋂1nk k A =1k k A ∞=4. A B A B -=5. A B ⋂=∅ ,A B 不相容,互斥6. A B S ⋃=且A B ⋂=∅——,A B 互逆,或对立事件 A B = A S A =- 算律同集合论例 设,,A B C 表示三个随机事件:○1 A 出现,,B C 都不出现 ABC ○2 ,A B 都出现,C 不出现 ABC ○3 三个事件均出现 ABC ○4 三个事件至少有一个出现 A B C ⋃⋃ ○5 三个事件均不出现 A B C ○6 不多于一个事件出现 ABC ABC ABC ABC 或AB BC AC○7 不多于两个事件出现 ABC ABC ABC ABC ABC ABC ABC or ABC ○8 三个事件至少有两个出现 ABC ABCABCABC○9 ,A B 至少有一个出现,C 不出现 ()A B C +⋅ ○10 ,,A B C 中恰好有两个出现 ABC ABC ABC§3. 频率与概率一、 排列、组合复习1. 不可重复排列(不放回) ()()()()!121!rn n A n n n n r n r =---+=-2. 可重复排列 (放回)n 个不同元素取r 个(未必不同)组成的排列种数 rn 3. 不可重复组合rnC n r ⎛⎫ ⎪⎝⎭4. 乘法原理、加法原理二、 频率1、E, n 次,A, A n()An n f A n=2、性质11121.0()12()13()()()()n n k n k n n n k f A f S A A f A A f A f A f A ≤≤⎧⎪=⎨⎪⎩=++……、、均不相容………… 例1, P8 例2, P9可见,n 逐渐增大-------()n f A 逐渐趋于一个常数-------------------频率稳定性-------- 统计规律性------- 概率(事件发生可能性的) -----------------概率定义三、 概率 Probability1. 定义: E S A E ⊂ 实数()P A 满足:()()()()()()()1210213,,,,,n i j P A P S A A A i j A A ⎧≥⎪⎪=⎨⎪≠⋅=∅⎪⎩非负性规范性设两两互不相容,即:时则()()()()1212nn P A A A P A P A P A =++++(可列可加性)则称P 为概率,()P A 为事件A 的概率。

概率论公式

概率论公式

概率论公式
概率论中常用的公式有:
1. 总概率公式:对于事件A和B,如果A和B构成一个完备事件组,则P(A) = P(A|B)P(B) + P(A|B')P(B'),其中B'
表示事件B的补集。

(该公式可以推广到多个事件的情况)
2. 乘法公式:对于事件A和B,P(A∩B) = P(A|B)P(B) =
P(B|A)P(A)。

3. 加法公式:对于不互斥的事件A和B,P(A∪B) = P(A)
+ P(B) - P(A∩B)。

4. 条件概率公式:对于事件A和B,如果P(B) > 0,则
P(A|B) = P(A∩B) / P(B)。

5. 贝叶斯公式:对于事件A和B,如果P(A) > 0和P(B) > 0,则P(A|B) = P(A)P(B|A) / P(B)。

6. 期望值公式:对于一个离散型随机变量X,其期望值E(X) = ΣxP(X=x),其中x为X的所有可能取值。

7. 方差公式:对于一个离散型随机变量X,其方差Var(X) = E[(X-E(X))^2] = Σ(x-E(X))^2P(X=x),其中E(X)为X的期望值。

请注意,以上公式只是概率论中的一部分常用公式,还有
许多其他公式可根据具体概率问题的性质和假设来使用。

概率论集合公式

概率论集合公式

概率论集合公式
一、基本集合运算公式。

1. 并集公式。

- 对于任意两个事件A和B,P(A∪ B)=P(A)+P(B)-P(A∩ B)。

- 如果A和B是互斥事件(即A∩ B = varnothing),那么P(A∪
B)=P(A)+P(B)。

2. 交集公式。

- P(A∩ B) = P(A)P(BA)(当P(A)>0时),这是条件概率下的交集公式,也可以写成P(A∩ B)=P(B)P(AB)(当P(B)>0时)。

3. 补集公式。

- 对于事件A,P(¯A) = 1 - P(A),其中¯A表示A的补集。

二、多个事件的公式。

1. 三个事件的并集公式。

- P(A∪ B∪ C)=P(A)+P(B)+P(C)-P(A∩ B)-P(A∩ C)-P(B∩ C)+P(A∩ B∩ C)。

2. 容斥原理(一般形式)
- 设A_1,A_2,·s,A_n是n个事件,则P(bigcup_i = 1^nA_i)=∑_i=1^nP(A_i)-
∑_1≤slant i
这些公式在解决概率论中的各种问题,如计算事件发生的概率、分析事件之间的关系等方面有着广泛的应用。

在人教版教材中,这些内容通常在高中数学选修2 - 3或者大学的概率论与数理统计教材中出现,通过大量的例题和练习可以加深对这些公式的理解和运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。

2、已知,6.0)(,4.0)(,==⊂B P A P B A 则)(A B P -= 。

3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。

4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率,8.0)|(=A B P 则=⋂)(B A P 。

5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。

6、假设X 是连续型随机变量,其概率密度函数为⎩⎨⎧<<=.030)(2其它,;,x cx x f ,则=c 。

7、设二维随机变量),(Y X 的联合分布函数为),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。

8、设Y 服从)4,5.1(N ,则=>}2{X P 。

9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。

10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y XT =的分布为自由度为 的 分布。

二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。

试分别按这两种抽取方式,求(a)、两件都是次品的概率?(b)、第一件是次品,第二件是正品的概率?三、一批零件共100个,其中次品有20个,今从中不放回的抽取2个,每次取1个,球第一次取到次品,第二次取到正品的概率?四、一项血液化验以概率95.0将带菌病人检出阳性,但也有%1的概率误将健康人检出阳性,设已知该种疾病的发病率为%5.0,求已知一个个体检出阳性的条件下,该个体确实患有疾病的概率?五、已知事件A 与事件B 相互独立,求证:事件A 与事件B 也独立。

六、袋中有5个球,分别编号,5,4,3,2,1从中同时取出3个球,以X 表示取出球的最大号码,求X 的分布律和分布函数。

七、设总体有均值μ及方差2σ,今有6个随机样本的观察数据为:30,84,45,12,36,23。

求2,σμ的矩估计?二1、用事件A ,B ,C 的运算关系式表示下列事件:(1)A 出现,B ,C 都不出现(2)A ,B 都出现,C 不出现(3)所有三个事件都出现(4)三个事件中至少有一个出现2.设A ,B 为两事件,P (A )=0.7,P(B)=0.5,P(A|B)=0.8,则P(A U B)=____3. 设A,B 为两相互独立的事件,P(A ⋃B)=0.6,P(A)=0.4,则P(B)=_________4.随机变量X 的分布律为 X -2 -1 0 1 2p 0.1 0.2 0.3 0.25 0.15则Y=X 2的分布律为____________________;5.一部4卷文集任意地排列在书架上,则卷号自左向右或自右向左恰好为1 ,2,3,4顺序的概率为________6. 一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后放回,则第二次抽出的是次品的概率为______7. 设随机变量X 的分布律为N k N a k X P ,,2,1,}{ ===,则常数=a ________ 。

8. 设X 1,X 2 ,X 3为总体的样本,θ=3215141CX X X ++ 为总体μ的无偏估计量,则C=__________9. 将一枚硬币抛掷4次,则至少出现1次正面的概率二、有两个袋子,第一个装有10只球,其中有3只红球,7只黑球;第二个袋子装有8只球,其中5只红球,3只黑球.现从两袋子,然后从该袋中取出2只球,若每个袋子被取到的可能性相等 ,求:1. 取出的球全为红球的概率;2. 若取出的球全为红球,则这些球是从第一个袋子中取到的概率。

三、已知随机变量X 的密度函数为⎪⎩⎪⎨⎧≤≤=其它04041)(x x f 求E(ξ),D(ξ).四、假设X 是连续型随机变量,其密度函数为2,02;()0,cx x f x ⎧<<=⎨⎩其他 求:(1)c 的值;(2)(11)P X -<<五、设随机变量X 的密度函数为 f(x)=0480xx ⎧≤≤⎪⎨⎪⎩其他 求Y=2X+1的密度函数.六、设X 1,X 2,……X n 为总体X 样本,X的概率密度函数为f(x)= 1010x x θθ-⎧<<⎪⎨⎪⎩其它 求参数θ的极大似然估计量。

七设),(~b a R X ,),(b a <求).(),(X D X E三1、用事件A ,B ,C 的运算关系式表示下列事件:(1)三个事件都不出现(2)不多于一个事件出现(3)不多于两个事件出现(4)三个事件中至少有两个出现2. 两射手独立地向同一目标射击,设甲击中目标的概率为0.8,乙击中目标的概率为0.7,则目标被击中的概率为_________3. 设A ,B 为两事件,B P(A)=0.65,P(A )=0.9,若A 、B 相互独立,则P(B)=____4. P (A )=0.1,P(B)=0.5且A 与B 互不相容,则P (A U B )=_____5.设随机变量X 的概率分布为: X-1 0 1 P 0.2 0.3 0.5 则 Y=2X+1的分布律为6. 若X N(1,3 ) ,Y N(2,4) 且X 与Y 相互独立则Z=3X-2Y _______7. 三个人独立破译一密码,他们能译出的概率分别为1/5,1/4,1/3,则此密码能被译出的概率为________8. 若1θ为总体均值μ的无偏估计,则有1()E θ=_____ 。

9. 一批零件共100个,其中次品有10个,今从中不放回抽取2次,每次取1件,求第一次为次品,第二次为正品的概率二、(12分) 有三个盒子,在甲盒中装有2个红球,4个白球;乙盒中装有4个红球2个白球;丙盒中装有2个红球3个白球,设到三个盒中取球的机会相等.今从其中任取一球,它是红球的概率是多少?又若取出的球是红球,则它是来自甲盒中的概率是多少?三、假设X 是连续型随机变量,其密度函数为2,02;()0,cx x f x ⎧<<=⎨⎩其他求:(1)c 的值;(2)(11)P X -<<四、设X 的分布律为 X -1 012 1 2 概率 31 61 61 121 41 求:(1)()E X ;(2)D (X )。

五、袋中装有10球,7白3红,取球两次,每次随机取一只,做无放回抽样,求:1. 取到的两只球都是白球的概率2.取到的两只球颜色相同的概率3.取到的两只球中至少有一只白球的概率六、设总体X 的概率密度函数为:0(;)0xe xf x θθθ-⎧⋅≥=⎨⎩其它(0θ>);12,,,n X X X 为其简单随机样本,试求参数θ的极大似然估计值.七、设某厂生产的一种零件尺寸X(cm)~ N(,μ2σ),为了检验产品是否正常工作,从中选取容量为16的样本,测得样本值为216,,x x 1x ,算得样本均值为x =20.58cm,,样本方差20.48=2s ,在显著性水平α=0.05下,能否认为这种零件的平均尺寸为20?0.050.0250.0250.050.025(15) 1.7531;(15) 2.1315;(16) 2.1199;1.645; 1.96t t t z z =====附表:四1、用事件C B A ,,的运算关系式表示:B A ,都出现,C 不出现可表示为 。

2、设B A ,为二个事件,2.0)(,4.0)(,6.0)(===AB P B P A P ,则=-)(B A P 。

3、某城市电话号码升位后为六位数,且第一位为6或8,则随机抽取的一个电话号码为不重复的六位数的概率为 。

4、一半径为r 的钱币随机地落在边长为l 的正方形桌面上)2(r l >,则事件=A “钱币不与桌面的四条边相交”的概率为 。

5、某人有一笔资金,他投入基金的概率的概率为58.0,购买股票的概率为28.0,两项投资都做的概率为19.0,已知他已投入基金,再购买股票的概率为 。

6、设有n 个人向保险公司购买人身意外(保险期为1年),假定投保人在一年内发生意外的概率为01.0,则该保险公司赔付的概率为 。

7、设离散型随机变量X 的分布律为i p i X P ==}{,),,,2,1( n i =,其中,10<<p 则p 的值为 。

8、设X 服从)1,0(N ,借助于标准正态分布的分布函数表计算=-≤}24.2{X P 。

9、设随机变量)02.0,12;(~k B X ,则=)(X E ,=)(X D 。

10、设n X X X ,,,21 为独立标准正态变量,称随机变量:212121X X X U +++= 的分布为自由度为 的 分布。

二、设有批量为100的同型号产品,其中次品有30件现按以下两种方式随机抽取2件产品:(a )有放回抽取,即先任意抽取一件,观察后放回批中,再从中任取一件;(b)不放回抽取,即先任取一件,抽后不放回,从剩下的产品中再取一件。

试分布按这两种抽取抽样方式求:(1)两件都是次品的概率;(2)第1件是次品,第2件是正品的概率。

三、设某工厂有C B A ,,三个车间,生产同一螺钉,各个车间的产量分别占总产量的%40%,35%,25。

各车间成品中次品的百分比分别为%2%,4%,5,如从该厂产品中抽取一件,得到的是次品,求它依次是车间C B A ,,生产的概率?四、设有一口袋中有标有3,3,2,2,2,1-数字的六个球,从中任意取一球,记随机变量X 取得的球标有的数字,求X 的分布律和分布函数五、设X 服从)16,1(-N ,借助标准正态分布函数表计算:(1)};44.2{<X P (2)};7{<X P (3)}.35{<<-X P六、设随机变量X 在4,3,2,1四个整数中等可能地取一个值,另一个随机变量Y 在X ~1中等可能地取一整数,试求),(Y X 的分布律?七、设总体为),(21θθ的均匀分布,21θθ<未知,今从中随机的抽取10个样本:10,14,15,12,16,18,8,19,22,13,用矩估计法估计21,θθ的值。

五1、用事件C B A ,,的运算关系式表示:三个事件中至少有两个出现可表示为 。

相关文档
最新文档