Lm386音频放大
智能产品LM386音频放大电路的设计与制作
LM386音频放大电路的设计与制作1、概述1.1、音频功率放大器产品功能音频功率放大器是通过功率放大器(简称功放)给音频放大器的负载RL(扬声器)提供一定的输出功率。
当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。
1.2、性能指标1.2.1、信噪比(S/N)又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。
设备的信噪比越高表明它产生的杂音越少。
1.2.2、灵敏度对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率, 在喇叭正前方1米远处能产生多少分贝的声压值。
1.2.3、阻尼系数负载阻抗与放大器输出阻抗之比。
使用负反的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。
1.2.4、动态范围信号最强的部分与最微弱部分之间的电平差.对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力。
1.2.5、响应频率响应:简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。
对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。
1.2.6、屏蔽在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。
1.3、生产成本电路简单,成本不高。
1.4、应用领域甲类功放失真最小,效率最低,发热最大。
功率不易做的很大。
乙类功放正负半周分别放大(推挽),引入多种失真,但效率高。
甲乙类功放小信号时工作于甲类大信号时工作于乙类,兼顾失真和效率,是目前主流功放类型,合理设计电路精选元器件,可以做出很高的指标。
丁类功放就是近年来兴起的数字功放,有极高的效率,也有相当高的技术指标,广泛用于小型电子产品中,比如汽车音响中。
但丁类功放在音响发烧友中还没有得到普遍认可。
LM386电路原理音频放大器
LM386电路原理音频放大器首先,我们来了解一下LM386的引脚功能。
LM386一共有8个引脚,其中1、8脚为电源引脚,2脚为音频输入引脚,3脚为反馈引脚,4脚为电源地引脚,5脚为输出引脚,6脚为增益选择引脚,7脚为旁路引脚。
LM386的电路原理如下:首先,输入信号通过2脚输入引脚进入IC。
在IC内部,输入信号经过一个多级放大器,增益可通过6脚的电阻选择来设定。
在放大器的输出端,通过5脚输出引脚输出放大后的信号。
同时,反馈引脚3和电源地引脚4之间的电容C2连接在放大器输出端,用于提供电流反馈,提高放大器的稳定性和线性度。
在输入信号通过放大器放大后,输出信号通过5脚输出引脚进入电容C3,然后再经过输出耦合电容C4,最终输出到扬声器或耳机等负载上。
为了提供电源供电,通常我们将1脚接到正电源,8脚接到地。
此外,为了提高抗干扰能力和音频品质,可在电源引脚和地之间再添加一个滤波电容C1在LM386电路中,还可以通过六脚增益选择引脚来设置增益的大小。
当增益选择引脚6未连接时,增益为20倍。
当将增益选择引脚6接地时,增益为200倍。
当将增益选择引脚6接到VCC电源上时,增益为指定的10倍。
另外,LM386还具有一个旁路引脚7、如果将旁路引脚接地,表示选择普通的电路工作模式。
如果将旁路引脚连接到VCC电源上,则选择旁路模式,可以实现更低的功耗。
需要注意的是,由于LM386是低功耗集成电路,因此在选择电源时要注意其电流输出能力。
同时,为了保证音频质量,应尽可能降低输入信号的幅度,避免出现过载,以及合理选择反馈和耦合电容的数值。
总之,LM386是一款功能齐全且易于使用的音频放大器集成电路。
我们可以根据实际需要调整增益和工作模式,实现不同的音频放大应用。
希望以上内容能对你理解LM386电路原理有所帮助。
智能产品LM386音频放大电路的设计和制作
技术资料LM386音频放大电路的设计与制作1、概述1.1、音频功率放大器产品功能音频功率放大器是通过功率放大器(简称功放)给音频放大器的负载RL(扬声器)提供一定的输出功率。
当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。
1.2、性能指标1.2.1、信噪比(S/N)又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。
设备的信噪比越高表明它产生的杂音越少。
1.2.2、灵敏度对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率, 在喇叭正前方1米远处能产生多少分贝的声压值。
1.2.3、阻尼系数负载阻抗与放大器输出阻抗之比。
使用负反的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。
1.2.4、动态范围信号最强的部分与最微弱部分之间的电平差.对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力。
1.2.5、响应频率响应:简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。
对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。
1.2.6、屏蔽在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。
1.3、生产成本电路简单,成本不高。
1.4、应用领域甲类功放失真最小,效率最低,发热最大。
功率不易做的很大。
乙类功放正负半周分别放大(推挽),引入多种失真,但效率高。
甲乙类功放小信号时工作于甲类大信号时工作于乙类,兼顾失真和效率,是目前主流功放类型,合理设计电路精选元器件,可以做出很高的指标。
丁类功放就是近年来兴起的数字功放,有极高的效率,也有相当高的技术指标,广泛用于小型电子产品中,比如汽车音响中。
但丁类功放在音响发烧友中还没有得到普遍认可。
LM386低电压音频功率放大器的原理与典型应用电路
LM386低电压音频功率放大器的原理与典型应用电路一、原理1.放大器电路LM386的输入引脚,可以通过调整外部元件电路调整增益,增益范围从20倍到200倍。
放大器电路包括输入、放大和输出级,其中输入有一个偏置电压,可以控制输入信号的直流偏置点。
输入级接收输入信号,并经过放大级放大,通过负反馈控制放大倍数。
2.功率放大器电路功率放大器电路主要是通过电阻分压来控制放大倍数,输出级通过高频电容分离耦合,使得直流分量被滤除。
功率放大器电路接受放大器电路的输出信号,并经过功率放大,输出给负载。
同时,电路还包括一个输出级,用于调整输出电平。
1.单端输入单端输出应用该电路适用于将单声道音频信号放大输出。
其中输入端是音频信号源,通过输入电阻分压至适合的放大范围,然后接入LM386芯片的PIN3引脚。
通过调节电阻和电容,设定合适的放大倍数和频率响应。
最后,从PIN5引脚获得放大的单声道音频信号,通过耳机等设备输出。
2.双端输入单端输出应用该电路适用于将双声道音频信号混合后放大输出,适合于立体声音频放大。
首先,将左声道音频信号经由电容耦合至LM386芯片的PIN2引脚,右声道信号经由电阻耦合至PIN3引脚。
然后,将两路信号通过电流相加,通过Rf电阻反馈至OP-AMP的控制端,使得两路信号进行混音。
最后,调节电阻和电容,得到合适的增益和频率响应。
3.平衡差动输入双端输出应用该电路适用于将左右两个声道信号分别放大输出,实现立体声播放。
先将左声道信号通过电容耦合至LM386芯片的PIN2引脚,右声道信号经由电容耦合至PIN3引脚。
然后,将两路信号分别通过对应的电阻反馈至OP-AMP的控制端,使得两路信号分别放大输出。
最后,通过输出级的电容和电流限制等元件,实现双端输出。
总结:LM386低电压音频功率放大器的原理基于运放放大器设计,包括放大器电路和功率放大器电路。
典型应用电路有单端输入单端输出、双端输入单端输出和平衡差动输入双端输出等,分别适合不同的音频放大需求。
功率放大器LM386的工作原理
功率放大器LM386的工作原理LM386是一种经典的功率放大器,广泛应用于音频放大和功率放大器电路中。
其工作原理如下:1.内部结构:LM386是一款单声道的音频功率放大器芯片,内部包含多个电路模块,如放大器、调节增益、音量控制等。
其主要特点是使用方便、稳定性好、功耗低等。
2.输入级:LM386的输入级主要是一个可控增益的放大器,用于接收音频信号。
它包括一个开环放大器和一个反馈电阻,通过调节反馈电阻的阻值可以改变放大倍数。
当输入的音频信号经过放大器放大后,将进入下一级电路。
3.中间级:LM386的中间级是一个用于控制增益并产生电流的电路。
它主要由两个电阻和一个电容组成,通过调节这两个电阻的阻值和电容的容值,可以控制功率放大器的增益和频率响应。
4.输出级:LM386的输出级主要是一个功率放大器,用于放大中间级输出信号的电流。
它包含一个输出电感和一个输出电容,通过调节这两个元件的参数可以控制输出信号的频率响应和幅度。
同时,输出级还包括一个管脚用于连接外部负载。
5.反馈回路:LM386的反馈回路主要是通过改变反馈电阻的阻值,将一部分输出信号重新引入到输入级,从而实现对放大倍数的控制。
当反馈电阻的阻值增大时,放大倍数将减小;反之,当阻值减小时,放大倍数将增大。
6.供电电路:LM386的供电电路主要是外部提供的两个直流电源,一个是正电源VCC,一个是负电源VSS。
这两个电源用于给芯片的不同部分提供正负的直流电压,从而使芯片能够正常工作。
在工作时,LM386将外部输入的音频信号经过放大、控制增益、输出等一系列处理后,输出到外接负载上。
通过控制芯片内部的电路结构和元件参数,可以调节放大倍数、频率响应和音量等参数,从而满足不同应用的需求。
总之,LM386功率放大器的工作原理主要是通过控制输入级、中间级和输出级之间的相互作用,将输入信号放大并输出到负载上。
同时,通过反馈回路和供电电路的控制,实现对放大倍数、频率响应和音量等参数的调节。
LM386 低电压音频功率放大器
LM386 低电压音频功率放大器
一、概述(Description):
LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。
输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
LM386的封装形式有塑封8引线双列直插式和贴片式。
二、特性(Features):
静态功耗低,约为4mA,可用于电池供电。
工作电压范围宽,4-12V or 5-18V。
外围元件少。
电压增益可调,20-200。
低失真度。
LM386电源电压4--12V,音频功率0.5w。
LM386音响功放是由NSC制造的,它的电源电压范围非常宽,最高可使用到15V,消耗静态电流为4mA,当电源电压为12V时,在8欧姆的负载情况下,可提供几百mW的功率。
它的典型输入阻抗为50K。
典型应用电路。
功率放大器LM386的工作原理
功率放大器LM386的工作原理
LM386是一款低电压,低功率音频功率放大器,可以用于各种音频设备,如小型无线电收音机,电视机,电子琴等。
它是一款单端放大器,具有非常高的增益,音质较好,同时使用成本也很低。
在这里,我们将详细介绍LM386功率放大器的工作原理。
LM386放大器由多个部分组成:
1.功率放大器 - 这是放大器的最重要部分,负责将输入信号放大到所需的输出信号水平。
它由多个电晶体管组成,以实现大功率放大。
2.反馈回路 - 通过将放大器的输出信号回馈到其输入端,反馈回路控制了放大器的增益。
反馈电路提供了用于精确控制增益和频率响应的选项。
3.输入电路 - 输入电路具有直接耦合和交流耦合两种方式。
直接耦合是指输入电路和放大器电路之间没有任何电容或其他组件,而交流耦合则是使用电容或变压器将输入信号传输到放大器电路中。
4.电源电路 - LM386的电源电路提供了能源,电源电路的稳定性对于要获得稳定的输出信号非常重要。
1.功率放大器部分接收输入信号,将其放大并产生输出信号。
放大器使用电压增益器的基本原理。
一旦输入信号进入放大器,其信号被放大器的第一级电晶体管放大。
2.放大器的反馈回路从输出端提取信号,并将其送回输入端。
输出信号在反馈回路返回之前被衰减,然后在输入端建立与输出信号相等的反馈信号。
3.反馈信号功率被放大器电路维持,从而形成一个稳定的、放大的信号。
总之,LM386功率放大器具有简单的电路构造,性能稳定,而且使用成本也较低。
它是一款非常适合于各种音频应用的功率放大器。
功率放大器LM386的工作原理
LM386说明:一、概述(Des cription):LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。
输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得L M386特别适用于电池供电的场合。
LM386的封装形式有塑封8引线双列直插式和贴片式。
二、特性(Features):静态功耗低,约为4mA,可用于电池供电。
工作电压范围宽,4-12V or 5-18V。
外围元件少。
电压增益可调,20-200。
低失真度。
典型应用电路\LM386是一种音频集成功放,具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,广泛应用于录音机和收音机之中。
封装形式LM386的封装形式有塑封8引线双列直插式和贴片式。
特性静态功耗低,约为4mA,可用于电池供电;工作电压范围宽,4-12V or 5-18V;外围元件少;电压增益可调,20-200;低失真度;应用特点LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。
输入端以地为参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
编辑本段LM386电气参数极限参数电源电压(LM386N-1,-3,LM386M-1)15V电源电压(LM386N-4)22V封装耗散(LM386N)1.25W(LM386M)0.73W(LM386MM-1)0.595W输入电压±0.4V储存温度-65℃至+150℃操作温度0℃至+70℃结温+150℃焊接信息焊接(10秒)260℃小外形封装(SOIC和MSOP)气相(60秒)215℃红外(15秒)220℃热电阻qJC (DIP)37℃/WqJA (DIP)107℃/WqJC (SO封装)35℃/WqJA (SO封装)172℃/WqJA (MSOP 封装)210℃/W qJC (MSOP 封装)56℃/W电气特性Parameter 参数 测试条件最小 典型 最大 单位 Operating Supply Voltage (VS) 操作电源电压-- LM386N-1,-3,LM386M-1,LM386MM-1 - 4 - 12 V LM386N-4-5 - 18 V Quiescent Current (IQ) 静态电流 VS = 6V, VIN =0 48 mAOutput Power (POUT) 输出功率 --LM386N-1,LM386M-1,LM386MM-1 VS = 6V, RL =8W, THD = 10% 250 325 - mW LM386N-3 VS = 9V, RL =8W, THD = 10% 500 700 - mW LM386N-4VS=16V, RL =32W, THD = 10% 700 1000 - mW Voltage Gain (AV) 电压增益 VS = 6V, f = 1 kHz 26 - dB 10 μF from Pin 1 to 8 46 - dB Bandwidth (BW) 宽带VS = 6V, Pins 1 and 8 Open300 - kHz Total Harmonic Distortion (THD)总谐波失 真 VS = 6V, RL =8W,POUT = 125 mWf = 1 kHz, Pins 1 and 8 Open - 0.2 - %Power Supply Rejection Ratio (PSRR)电源抑制比VS=6V, f=1kHz, CBYPASS =10 μF Pins 1 and 8 Open,Referred to Output - 50 - dBInput Resistance (RIN) 输入电阻- 50 - kΩ Input Bias Current (IBIAS) 输入偏置电流VS = 6V, Pins 2 and 3 Open- 250 - nA编辑本段详细介绍一、LM386内部电路LM386内部电路原理图如图所示。
LM386功放IC的使用方法
LM386功放IC的使用方法LM386功放IC是一款通用型音频功率放大器,它采用直接耦合的方式,将输入信号放大后直接输出到扬声器。
它具有20倍的电压放大倍数,同时可选择10倍和20倍的增益,具有较宽的频响范围,能够适应大多数音频信号的放大需求。
使用LM386功放IC需要掌握以下几个步骤:LM386功放IC可以采用单电源或双电源两种供电方式,一般建议采用单电源方式,因为它具有较低的功耗和较好的音质。
同时,需要将输入信号通过耦合电容接入功放IC的输入端,并将输出信号通过扬声器接入电路。
LM386功放IC的输出音量可以通过改变电阻R2和R3的阻值进行调整。
一般情况下,将R2和R3调整为相同阻值可以获得较好的音质。
如果需要调整音量大小,可以改变R2或R3的阻值,同时需要注意调整后的音质变化情况。
在使用LM386功放IC时,需要进行输出效果测试,以确保电路的正常运行。
可以使用音频分析仪或耳朵来测试输出信号的频率响应、信噪比、谐波失真等参数。
如果输出效果不理想,需要检查电路板上元件的布局和连接情况,以及供电电源是否稳定等因素。
LM386功放IC是一款性价比较高的音频功率放大器,掌握其使用方法对于实现音频设备的优质放大效果具有重要意义。
在实际应用中,需要根据具体设备的性能要求和电路环境来合理调整LM386功放IC 的相关参数,以达到最佳的使用效果。
建议在使用过程中注意产品的安全和规范操作,避免因不当操作导致设备损坏或引发安全隐患。
在本文的读者可以根据自己的实际需求和知识储备对LM386功放IC使用方法进行扩展和优化,不断提升音频设备的性能和用户体验。
标题:CCL和COCA在线语料库使用方法及应用研究摘要:本文介绍了CCL和COCA两个在线语料库的使用方法,为广大语言研究者提供了实用的资源获取和利用指南。
通过详细阐述这两个语料库的基本情况、使用技巧及实际应用,本文旨在帮助读者更好地利用这些语料库进行语言研究。
随着互联网技术的不断发展,在线语料库已经成为语言研究的重要工具。
LM386电路原理音频放大器
LM386电路原理音频放大器
LM386是一个小型音频功率放大器,属于应用中的放大器IC。
根据国
际标准,它的功能是将一个小的音频信号放大成一个可以听见的信号。
它
的最大输出电压可以达到200V,具有外部电容器过滤和外部电阻调节的
能力,是一种不太昂贵的,经济实用的音频放大器。
LM386的工作原理是借助一个放大倍数放大器来实现音频功放的功能。
它的输入和输出电路是一个放大比例,其输入和输出之间的放大比例可以
由外部电阻调节。
LM386具有低噪声,低失真,高质量,低成本等特点,
是一种常用的音频放大器IC。
LM386电路的组成比较简单,通常只需要2张基本的电路板,一个连
接输入,一个连接输出,只要正确连接好电路,就可以获得比较理想的音
频放大效果。
除了它的组成要素外,它还可以使用外部元件,如电容过滤器,电位器控制,和其它电子元件来改善音频放大效果。
LM386音频放大电路的设计与制作
LM386音频放大电路的设计与制作一、电路原理+-----------------+Input+------+18,+---++--C1--+---LM386-+-+-R2--+Audio In ,3 2 ,,Speaker+----R1-+-R3-----++------++---+Output+-----------------+1.选取合适的电源电压2.确定输入电路在音频输入端加入一个耦合电容C1(一般选择1uF左右的电容),将音频信号输入到LM386芯片的pin 33.设计反馈网络芯片的pin 1是一个反馈引脚,可以通过接入一个电阻R1和一个电容C2,来设置输出音频增益。
4.设计输出阻抗匹配为了匹配LM386的输出阻抗和音箱的输入阻抗,可以在输出端加入一个电阻R25.选择一个合适的电阻R3电阻R3决定了输出功率和音量的大小。
根据需要选择一个合适的电阻值。
通常选择10K左右的电阻。
6.连接音箱连接一个适配器,将输出引脚连接到扬声器上。
7.电路布线根据原理图布线,注意避免干扰和短路。
8.制作电路板设计好电路布局,制作电路板,焊接元件。
9.测试电路接入电源,通过输入音频信号测试输出音频效果。
可以通过调整电阻和电容的数值,来调整音量和增益。
10.完善外壳和电源等细节根据需要设计外壳,安装开关、电源插座等细节。
三、总结LM386是一种简单易用的音频放大器芯片,通过调整电阻和电容,可以实现音量和增益的调整。
设计与制作LM386音频放大电路,主要包括选取合适的电源电压、设计输入电路、反馈网络、输出阻抗匹配,选择合适的电阻、布线、制作电路板、测试电路和完善外壳等步骤。
通过这些步骤,我们可以制作一个简单的LM386音频放大电路,用于相应的应用。
基于LM386集成功率放大电路的制作与调试解读
基于LM386集成功率放大电路的制作与调试解读LM386是一种低电压音频功率放大器,非常适合搭建小功率音响系统。
它的特点是使用简单,性能稳定,成本低廉。
在本文中,我们将介绍如何制作和调试基于LM386集成功率放大电路,并解读其原理。
首先,我们需要准备以下材料和工具:1.LM386芯片2.电解电容:100μF(2个)、10μF(1个)、1μF(1个)3.陶瓷电容:0.1μF(1个)4.电阻:10kΩ(1个)5.音频输入插座6.小喇叭7.铜线8.隔离胶带9.铅锡焊锡10.电路板11.钳子12.焊锡枪13.多用途测试仪以下是电路的制作步骤:第一步,我们需要将电路设计图转移到电路板上。
使用铅锡焊锡固定电阻、电容和芯片。
第二步,将芯片插入焊接到电路板上,并将喇叭和音频输入插座与电路板相连。
确保插座的地线连接到芯片的地线引脚。
第三步,检查电路的焊接连接是否牢固,并使用隔离胶带将电路板与喇叭和音频输入插座绝缘。
第四步,用钳子固定喇叭的接线,并使用焊锡枪将焊锡点与铜线连接。
第五步,将电路板上的电容和芯片表面清洁,并通过多用途测试仪测试电路的连通性。
一旦我们完成了电路的制作,接下来是调试的过程。
第一步,接通电源并调整音量旋钮,确认电源电压是否正常。
LM386的工作电压范围为4V至12V。
第二步,通过多用途测试仪确定输入和输出的正极和负极。
第三步,将音频源连接到音频输入插座,并播放测试音频。
第四步,通过旋钮调整音量,确认音频是否能够被放大。
如果音频输出过大或过小,可以通过更换不同的电容或电阻来调整放大倍数。
第五步,调试完毕后,用隔离胶带将电路固定在适当的位置,并测试整个系统的音频效果。
解读:LM386集成功率放大电路是一种应用广泛的低电压音频功率放大器。
它通过输入音频信号,并经过放大处理后输出到喇叭上。
LM386芯片内部集成了放大电路所需的电压放大器、输出放大器和负载电阻等功能。
在制作和调试过程中,我们需要注意以下几点:1.牢固连接:焊接和连接电阻、电容和芯片时,要确保每个元件都连接得牢固可靠。
基于IM386的音频放大器制作
LM386是为低电压应用设计的音频功率放大器、集成电路适用于调幅- 调频,无线电放大器、便携式磁带重放设备、内部通信电路、电视音频系统、线性驱动器、超声波驱动器和功率变换电路。
LM386是为低电压应用设计的音频功率放大器。
增益在内部设定到20可使外部元件数少,在引脚 1 和 8 之间连接电阻和电容可使增益超过200 。
该集成电路适用于调幅- 调频无线电放大器、便携式磁带重放设备、内部通信电路、电视音频系统、线性驱动器、超声波驱动器和功率变换电路。
本设计是一个基于LM386的音频功率放大器,在设计中运用了功率放大的知识,结合放大电路与LM386芯片对功率放大实现音频的放大。
利用LM386芯片集成特性,再与固定电阻,电容构成简单的放大电路。
集成功率放大电路大多工作在音频范围,除具有可靠性高、使用方便,性能好、重量轻、造价低等集成电路的一般特点外,还具有功耗小,非线性失真小和温度稳定性好等优点。
并且集成功率放大器内部的各种过流、过压、过热保护齐全,其中很多新型的功率放大器具有通用模块化的特点,被称之为“傻瓜”型的集成功放,使用更加方便安全。
集成功率放大器是模拟集成电路的一个重要组成部分,广泛应用于各种电子电气设备中.由此可以看来它的原理简单,制作起来比较方便,它还具有操作灵活、使用方便、价格便宜、易于携带等特方案四,是低频提升电路,总体来说,它不适合我们设计的音频放大的电路。
所以我们选用了方案三放大器增益为200的设计。
LM386是美国国家半导体公司生产的音频功率放大器,主要应用于电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。
输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
LM386内部电路原理图和外形和引脚如图所示结果分析课程设计是让我们通过解决一、两个实际问题,巩固和加深在通信电子线路技术基础课程中所学的理论知识和实践技能,基本掌握电子电路一般设计方法,提高电子电路的设计和实践能力,为以后从事生产和科研工作打下一定的基础。
lm386音频功率放大器课程设计
lm386音频功率放大器课程设计一、教学目标本课程旨在让学生了解和掌握LM386音频功率放大器的工作原理、性能参数及应用方法。
通过本课程的学习,学生应能理解音频功率放大器在电子技术中的应用,掌握LM386音频功率放大器的引脚功能、电路连接和调试方法,并能够分析常见的音频电路问题。
1.了解音频功率放大器的基本原理和工作过程。
2.熟悉LM386音频功率放大器的引脚功能和电路结构。
3.掌握LM386音频功率放大器的应用电路设计和调试方法。
4.能够分析音频功率放大器的性能参数,并进行合理的选型。
5.能够根据实际需求设计LM386音频功率放大器的应用电路。
6.具备调试和故障排查音频功率放大器的能力。
情感态度价值观目标:1.培养学生对电子技术的兴趣和好奇心,提高学生的学习积极性。
2.培养学生团队合作意识,学会与他人分享和交流学习心得。
3.培养学生关注社会热点,将所学知识应用到实际生活中,提高学生的实践能力。
二、教学内容本课程的教学内容主要包括音频功率放大器的基本原理、LM386音频功率放大器的引脚功能、电路连接、应用电路设计和调试方法。
1.音频功率放大器的基本原理:介绍音频功率放大器的工作过程、性能参数及其重要性。
2.LM386音频功率放大器:讲解LM386音频功率放大器的引脚功能、内部结构和工作原理。
3.电路连接:讲解LM386音频功率放大器的电路连接方法,包括输入、输出和电源部分的连接。
4.应用电路设计和调试:介绍如何根据实际需求设计LM386音频功率放大器的应用电路,并讲解调试方法。
三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:通过讲解音频功率放大器的基本原理、LM386音频功率放大器的引脚功能和电路连接方法,使学生掌握相关知识。
2.案例分析法:分析实际案例,使学生了解LM386音频功率放大器在实际电路中的应用。
3.实验法:引导学生进行LM386音频功率放大器的电路搭建和调试,提高学生的实践能力。
智能产品LM386音频放大电路的设计与制作
LM386音频放大电路的设计与制作1、概述1.1、音频功率放大器产品功能音频功率放大器是通过功率放大器(简称功放)给音频放大器的负载RL (扬声器)提供一定的输出功率。
当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。
1.2、性能指标1.2.1 、信噪比(S/N)又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。
设备的信噪比越高表明它产生的杂音越少。
1.2.2 、灵敏度对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率, 在喇叭正前方 1 米远处能产生多少分贝的声压值。
1.2.3、阻尼系数负载阻抗与放大器输出阻抗之比。
使用负反的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。
1.2.4、动态范围信号最强的部分与最微弱部分之间的电平差.对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力。
1.2.5 、响应频率响应:简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。
对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。
1.2.6 、屏蔽在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。
1.3、生产成本电路简单,成本不咼。
1.4、应用领域甲类功放失真最小,效率最低,发热最大。
功率不易做的很大。
乙类功放正负半周分别放大(推挽),引入多种失真,但效率高。
甲乙类功放小信号时工作于甲类大信号时工作于乙类,兼顾失真和效率,是目前主流功放类型,合理设计电路精选元器件,可以做出很高的指标。
丁类功放就是近年来兴起的数字功放,有极高的效率,也有相当高的技术指标,广泛用于小型电子产品中,比如汽车音响中。
但丁类功放在音响发烧友中还没有得到普遍认可。
LM386中文资料
LM386中文资料目录1.LM386描述制造商:美国国家半导体公司种类:音频功率放大器LM386是一种音频集成功放,具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,广泛应用于录音机和收音机之中。
LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。
输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
LM386的封装形式有塑封8引线双列直插式和贴片式。
2.特性静态功耗低,约为4mA,可用于电池供电。
工作电压范围宽,4-12V or 5-18V。
外围元件少。
电压增益可调,20-200。
低失真度。
LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。
输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
LM386的封装形式有塑封8引线双列直插式和贴片式。
LM386典型应用电路3.详细介绍3.1 LM386内部电路LM386内部电路原理图如图所示。
与通用型集成运放相类似,它是一个三级放大电路。
第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。
使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。
第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。
小型功率音频放大器
电子设计实验三---小型功率音频放大器LM386性能测试201221362 一、实验目的通过集成功率放大器基本工作原理的学习,熟悉主要集成功放的组成及应用。
通过对集成功放的知识的学习和实际安装、调试、检测。
掌握集成芯片的基本参数的测定方法。
知识上:⑴熟悉集成音频功率放大器的不同类型,熟悉集成音频功率放大器的基本组成和工作原理。
⑵熟悉电子元件成形技术及整机电子装配工艺,能熟练阅读整机电子电路图,掌握电原理图的识读方法。
⑶掌握集成音频功率放大器安装与调试、测试和检修方法。
技能上:⑴能够阅读集成功率放大器电路图和印制电路图。
⑵掌握电子产品整机安装工艺,阅读装接工艺文件。
⑶熟练使用有关仪器仪表,能够正确测试电子元器件。
⑷能够按照工艺要求正确安装、调试和检测集成功率放大器。
⑸具备对集成功率放大器典型故障分析和检修的初步能力。
⑹通过安装,能按整机安装工艺要求,对本安装电路进行安装工位设计。
集成功放电路种类很多,一般用集成功放和外围元件构成OTL或OCL电路, 集成功放具有体积小、工作稳定可靠、使用方便等优点, 因而获得了广泛的应用。
二、实验原理(1)性能测试原理图(2)LM386芯片引脚图和内部电路(3)电路原理分析LM386是为低电压应用设计的音频功率放大器.LM386增益在内部设定到20可使外部元件数少,在引脚1和8之间连接电阻和电容可使增益超过200.LM386集成电路适用于调幅-调频无线电放大器、便携式磁带重放设备、内部通信电路、电视音频系统、线性驱动器、超声波驱动器和功率变换电路。
该集成电路由于外接元件少、电源电压VCC使用范围宽、静态功耗低。
因而在便携式无线电设备、收音机、录音机、小型放大设备中。
LM386内部电路如图所示, 共有3级。
V1~V6组成有源负载单端输出差动放大器作输入级, V5、V6构成镜像电流源作差放的有源负载以提高单端输出时差动放大器的放大倍数。
中间级是由V7构成的共射放大器, 也采用恒流源I作负载以提高增益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lm386音频放大电路
2007年12月08日 11:39 本站原创作者:本站用户评论(0)关键字:
lm386音频放大电路:
在电源的地方去耦电容
同时在进入LM386的输入口接上22uf或220uf的电容lm386
目录
编辑本段LM386概述
简介
lm386
制造商:美国国家半导体公司
种类:音频功率放大器
LM386是一种音频集成功放,具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,广泛应用于录音机和收音机之中。
封装形式
LM386的封装形式有塑封8引线双列直插式和贴片式。
特性
静态功耗低,约为4mA,可用于电池供电;
工作电压范围宽,4-12V or 5-18V;
外围元件少;
电压增益可调,20-200;
低失真度;
应用特点
LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
为使外围元件最少,电压增益内置为20。
但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。
输入端以地为参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。
编辑本段LM386电气参数
极限参数
电源电压
(LM386N-1,-3,LM386M-1)15V
电源电压(LM386N-4)22V
封装耗散
(LM386N)1.25W
(LM386M)0.73W
(LM386MM-1)0.595W
输入电压±0.4V
储存温度-65℃至+150℃
操作温度0℃至+70℃
结温+150℃
焊接信息
焊接(10秒)260℃
小外形封装(SOIC和MSOP)
气相(60秒)215℃
红外(15秒)220℃
热电阻
qJC (DIP)37℃/W
qJA (DIP)107℃/W
qJC (SO封装)35℃/W
qJA (SO封装)172℃/W
编辑本段详细介绍
一、LM386内部电路
LM386内部电路原理图如图所示。
与通用型集成运放相类似,它是一个三级放大电路。
第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输
出差分电路。
使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。
第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。
第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。
二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。
引脚2为反相输入端,引脚3为同相输入端。
电路由单电源供电,故为OTL电路。
输出端(引脚5)应外接输出电容后再接负载。
电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。
二、LM386的引脚图
引脚图
LM386的外形和引脚的排列如右图所示。
引脚2为反相输入端,3为同相输入端;引脚5为输出端;引脚6和4分别为电源和地;引脚1和8为电压增益设定端;使用时在引脚7和地之间接旁路电容,通常取10μF。
查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。
三、封装资料图
封装图片资料(2张)
1.LM386N-1、LM386N-3、LM386N-4 封装资料
2.LM386MM-1 封装资料
四、LM386应用电路
图1的应用电路为增益20的情形,于pin 1及pin 8间加一个10μF的电容即可使增益变成200,
如图2所示。
图
LM386典型应用电路(2张)
中10千欧的可变电阻是用来调整扬声器音量大小,若直接将Vin输入即为音量最大的状态。
五、应用注意事项
尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声。
1、通过接在1脚、8脚间的电容(1脚接电容+极)来改变增益,断开时增益为20。
因此用不到大的增益,电容就不要接了,不光省了成本,还会带来好处--噪音减少,何乐而不为?
2、PCB设计时,所有外围元件尽可能靠近LM386;地线尽可能粗一些;输入音频信号通路尽可能平行走线,输出亦如此。
这是死理,不用多说了吧。
3、选好调节音量的电位器。
质量太差的不要,否则受害的是耳朵;阻值不要太大,10K最合适,太大也会影响音质,转那么多圈圈,不烦那!
4、尽可能采用双音频输入/输出。
好处是:“+”、“-”输出端可以很好地抵消共模信号,故能有效抑制共模噪声。
5、第7脚(BYPASS)的旁路电容不可少!实际应用时,BYPASS端必须外接一个电解电容到地,起滤除噪声的作用。
工作稳定后,该管脚电压值约等于电源电压的一半。
增大这个电容的容值,减缓直流基准电压的上升、下降速度,有效抑制噪声。
在器件上电、掉电时的噪声就是由该偏置电压的瞬间跳变所致,这个电容可千万别省啊!
6、减少输出耦合电容。
此电容的作用有二:隔直+耦合。
隔断直流电压,直流电压过大有可能会损坏喇叭线圈;耦合音频的交流信号。
它与扬声器负载构成了一阶高通滤波器。
减小该电容值,可使噪声能量冲击的幅度变小、宽度变窄;太低还会使截
止频率(fc=1/(2π*RL*Cout))提高。
分别测试,发现10uF/4.7uF最为合适,这是我的经验值。
7、电源的处理,也很关键。
如果系统中有多组电源,太好了!由于电压不同、负载不同以及并联的去耦电容不同,每组电源的上升、下降时间必有差异。
非常可行的方法:将上电、掉电时间短的电源放到+12V处,选择上升相对较慢的电源作为LM386的Vs,但不要低于4V,效果确实非常不错!。