化工原理课程设计乙醇和水

合集下载

化工原理设计(水和乙醇的分离)

化工原理设计(水和乙醇的分离)

化工原理设计(水和乙醇的分离)水和乙醇是常用的工业溶剂,在化工生产中广泛应用,但因它们的物理性质相近,在分离过程中具有较高的难度。

本文将介绍水和乙醇的物理性质及其影响因素,然后介绍几种常用的分离方法,并根据实际情况进行设计选择。

1. 水和乙醇的物理性质水和乙醇的物理性质主要包括密度、沸点、溶解度等。

其中,密度和沸点可以用于分离这两种溶剂,而溶解度则会影响它们的混合物的分离效果。

1.1 密度水的密度为1 g/cm3,而乙醇的密度为0.789 g/cm3。

因此,在一定温度下,水和乙醇可以根据其密度的差异分离。

1.2 沸点水的沸点为100 ℃,而乙醇的沸点为78.5 ℃。

因此,在加热的过程中,水和乙醇的沸腾顺序也是有差异的,这也为它们的分离提供了一定的基础。

水和乙醇在一定温度下的溶解度也是有差异的。

在20 ℃时,乙醇的溶解度为90 g/100 mL,而水的溶解度仅为1 g/100 mL。

因此,如果想要分离一定比例的水和乙醇混合物,应选择能够有效控制溶解度的分离技术。

2. 分离方法及设计蒸馏是一种常用的水和乙醇分离方法,其原理基于两种溶质的沸点差异。

在蒸馏过程中,对于混合物在搅拌的情况下,当溶质一开始沸腾时,通过冷凝管冷却收集蒸汽,可以分离出相应的溶质。

该过程可用于分离大量的水和乙醇,但不适用于分离少量的这两种溶质。

设计时,应考虑收集溶液的方式。

若为小规模的实验,则可轻松进行。

但若为工业生产,收集和回收会较为困难,需要进行一定的后处理。

2.2 晶体化分离法晶体化分离法是一种通过控制溶解度来实现水和乙醇分离的方法。

其原理是将混合物加热至一定温度,然后缓慢降温,使部分溶质从溶液中结晶出来。

通过收集结晶物,便可实现水和乙醇的分离。

设计时需要考虑到晶体生长的条件,包括初液的质量组成、降温速率及晶体或母液的回收等。

同时还要注意控制晶体的物理形态和尺寸,并确保分离效果明显。

2.3 萃取法采用溶液萃取法,是一种常用的分离方法。

化工原理课程设计用于乙醇_水溶液分离的常压筛板精馏塔

化工原理课程设计用于乙醇_水溶液分离的常压筛板精馏塔

目录一、设计题 (1)二、原始数据及条件 (1)三、绪论 (1)四、装置的工艺计算 (4)五、筛板的流体力学计算 (15)六、塔附件的设计 (19)七、塔顶空间 (22)八、附件设备设计你 (22)九、设计结果—览表 (25)十、心得体会 (25)十一、参考文献 (26)十二、附图 (27)化工原理课程设计任务书一、设计题目设计用于乙醇——水溶液分离的常压筛板精馏塔二、原始数据及条件生产能力:处理量为6000kg/h原料:原料为含有乙醇20%(摩尔分数,下同)的泡点液体分离要求:馏出液体中含乙醇86%釜液中含乙醇不大于2%要求:取回流比为1.7倍的最小回流比,总板效率为0.6已知条件:x D=86% x F=20% x w=2%q=1R=1.7R min E T=0.6三、绪论:《化工原理》课程设计是学生在学完基础知识后所安排的工程实践性教学环节,是培养学生综合利用本门课程和有关选修课程知识去解决一次任务的一次训练,它是不仅与化工原理课程内容紧密相连,而且还与先修的物理化学,化工机械基础,计算机在化工中的应用等课程内容密切相关。

课程设计不同于平时的作业,它是通过设备的设计的基础程序和方法,选择流程,具备正确使用有关技术资料的能力,应用所学知识特别是本课程的有关知识解决化工实际问题的工作能力,使学生得到一次学习化工设计技能的初步训练,同时也起着培养学生独立工作能力的重要作用。

精馏操作时液体混合物分离方法之一,它是是根据混合物中的各组分的挥发度不同而达到分离的目的。

在工业上,这需要塔才能实现分离。

塔设备是化工,石油化工,生物化工,制药等生产过程中广泛采用的传质设备,根据塔内气体液体接触构件的结构形式,可分为板式塔和填料塔两大类。

工业上,塔设备主要用于蒸馏和吸收传质单元操作过程。

在传统的设计中,蒸馏过程多采用板式塔,而吸收过程多选用填料塔。

近年来随着塔设备设计水平的提高及新型塔构件的出现,上述传统已逐渐被打破。

化工原理课程设计乙醇—水板式精馏塔设计

化工原理课程设计乙醇—水板式精馏塔设计

摘要本设计采用板式精馏塔(浮阀塔)分离乙醇—水溶液,年处理量10620吨,进料组成(质量分数)35.4%,塔顶产品组成92.5%,塔底产品组成0.05%。

首先找出乙醇—水溶液的气液平衡数据,然后利用Excel作图,求出最小回流比为3.23,,再建立总费用和最小回流比之间的关系,求出实际回流比为6.46,逐板计算确定理论板数,利用塔板效率求出实际板数,然后对塔和塔板的工艺尺寸进行计算,计算圆整得塔径D T=1.2m,塔高H=30.2m。

进而对塔的流体力学性能进行验算,利用塔设备的强度要求确定塔体壁厚,再利用产量和分离要求确定塔的附属设备及其尺寸,使之符合要求。

关键词:浮阀塔;回流比;实际板数;工艺尺寸AbstractThe design use the float valve tower distilling and separating the ethanol-water solution, the handing capacity is 10620 tons ,the feed composition (wt%) is 35.4%, the composition of top product is 92.5% and the bottom is 0.05%.At first , we find some necessary date and then use “Excel” to make a drawing and obtain our minimum reflux ratio. Next , we establish the pattern between the reflux ratio and the total cost to select our optional reflux ratio .The reflux ratio is 6.46, and the theoretical and practical plate number of our tower is 13 and 26. We also calculated the size of the tower and the plate and we obtain that the diameter of the tower is 1.2 meters, the height of the tower is 30.2 meters. After the liquid mechanic calculation of the tower, it is suitable to the capable of this floating valve tower. By calculating the intensity of the tower , we can get the thickness of the tower ,then use the production and separation requirements to determine the size of the ancillary equipments of the tower.Keywords: ethanol-water solution; float valves; optional reflux ratio; liquid mechanic calculation; technology dimension目录目录 (1)引言 (3)第1章设计条件与任务 (4)1.1设计条件 (4)1.2设计任务 (4)第2章设计方案的确定 (4)2.1操作条件的确定 (4)2.1.1 装置流程的确定 (5)2.1.2操作压力 (5)2.1.3进料状态 (5)2.1.4加热方式 (5)2.1.5冷却剂与出口温度 (6)2.1.6回流比的选择 (6)2.1.7热能的利用 (6)2.2确定设计方案的原则 (7)2.2.1满足工艺和操作的要求 (7)2.2.2满足经济上的要求 (7)2.2.3保证安全生产 (7)2.3 工艺流程 (8)3.1全塔物料衡算 (9)3.1.1原料液、塔顶及塔底产品的摩尔分数 (9)3.1.2原料液、塔顶及塔底产品的平均摩尔质量 (9)3.1.3原料液的进料流量 (9)3.1.4物料衡算 (9)3.2实际回流比及操作线方程 (10)3.2.1最小回流比及实际回流比确定 (10)3.2.2操作线方程 (11)3.2.3汽、液相热负荷计算 (11)3.3理论塔板数确定 (12)3.4实际塔板数确定 (13)3.5精馏塔的工艺条件及有关物性数据计算 (15)3.5.1操作压力计算 (15)3.5.2操作温度计算 (15)3.5.3平均摩尔质量计算 (15)3.5.4平均密度计算 (16)3.5.5液体平均表面张力计算 (18)3.5.6液体平均黏度计算 (20)3.6精馏塔的塔体工艺尺寸计算 (20)3.6.1塔径计算 (20)3.6.2精馏塔有效高度计算 (22)第4章塔板工艺尺寸的计算 (23)4.1塔板工艺尺寸的计算 (23)4.1.1溢流装置计算 (23)4.1.2塔板设计............................................... 错误!未定义书签。

化工原理课程设计(乙醇和水的分离)

化工原理课程设计(乙醇和水的分离)

化工原理课程设计课题名称乙醇-水分离过程筛板精馏塔设计院系可再生能源学院班级应用化学0901班学号1091100128学生姓名蔡文震指导老师覃吴设计周数 1目录一、化工原理课程设计任务书 (4)1.1设计题目 (4)1.2原始数据及条件: (4)二、塔板工艺设计 (4)2.1精馏塔全塔物料衡算 (4)2.2乙醇和水的物性参数计算 (5)2.2.1 温度 (5)2.2.2 密度 (6)2.2.3相对挥发度 (9)2.2.4混合物的黏度 (9)2.2.5混合液体的表面张力 (9)2.3塔板的计算 (10)2.3.1 q、精馏段、提留段方程计算 (10)2.3.2理论塔板计算 (12)2.3.3实际塔板计算 (12)2.4操作压力的计算 (13)三、塔体的工艺尺寸计算 (13)3.1塔径的初步计算 (13)3.1.1气液相体积流量计算 (13)3.1.2塔径计算 (13)3.2塔体有效高度的计算 (15)3.3精馏塔的塔高计算 (16)3.4溢流装置 (16)3.4.1堰长 (16)3.4.2溢流堰高度 (16)3.4.3弓形降液管宽度和截面积 (17)3.5塔板布置 (17)3.5.1塔板的分块 (17)3.5.2边缘区宽度的确定 (18)3.5.3开孔区面积计算 (18)3.5.4筛孔计算及其排列 (18)四、筛板的流体力学验算 (19)4.1塔板压降 (19)4.1.1干板阻力 (19)4.1.2气体通过液层的阻力 (19)4.1.3液体表面张力的阻力(很小可以忽略不计) (20)4.1.4气体通过每层板的压降 (20)4.2液沫夹带 (20)4.3漏液 (21)4.4液泛 (21)五、塔板负荷性能图 (22)5.1漏液线 (22)5.2液沫夹带线 (22)5.3液相负荷下限线 (24)5.4液相负荷上限线 (24)5.5液泛线 (24)5.6图表汇总及负荷曲线图 (26)六、主要工艺接管尺寸的计算和选取 (26)七、课程设计总结 (27)八、参考文献 (28)一、化工原理课程设计任务书1.1设计题目分离乙醇一水筛板精馏塔的设计1.2原始数据及条件:生产能力:年处理乙醇一水混合液2.6万吨/年(约为87吨/天)。

化工原理课程设计报告乙醇_水精馏塔设计

化工原理课程设计报告乙醇_水精馏塔设计

大连民族学院化工原理课程设计说明书题目:乙醇—水连续精馏塔的设计设计人: 1104系别:生物工程班级:生物工程121班指导教师:老师设计日期:2014 年 10 月21 日~ 11月3日温馨提示:本设计有一小部分计算存在错误,但步骤应该没问题化工原理课程设计任务书一、设计题目乙醇—水精馏塔的设计。

二、设计任务及操作条件1.进精馏塔的料液含乙醇30%(质量),其余为水。

2.产品的乙醇含量不得低于92.5%(质量)。

3.残液中乙醇含量不得高于0.1%(质量)。

4.处理量为17500t/a,年生产时间为7200h。

5.操作条件(1)精馏塔顶端压强 4kPa(表压)。

(2)进料热状态泡点进料。

(3)回流比 R=2Rmin(4)加热蒸汽低压蒸汽。

(5)单板压降≯0.7kPa。

三、设备型式设备型式为筛板塔。

四、厂址厂址为大连地区。

五、设计内容1.设计方案的确定及流程说明2.塔的工艺计算3.塔和塔板主要工艺尺寸的设计(1)塔高、塔径及塔板结构尺寸的确定。

(2)塔板的流体力学验算。

(3)塔板的负荷性能图。

4.设计结果概要或设计一览表5.辅助设备选型与计算6.生产工艺流程图及精馏塔的工艺条件图7.对本设计的评述或有关问题的分析讨论目录前言 (1)第一章概述 (1)1.1塔型选择 (1)1.2操作压强选择 (1)1.3进料热状态选择 (1)1.4加热方式 (2)1.5回流比的选择 (2)1.6精馏流程的确定 (2)第二章主要基础数据 (2)2.1水和乙醇的物理性质 (2)2.2常压下乙醇—水的气液平衡数据 (3)2.3 A,B,C—Antoine常数 (4)第三章设计计算 (4)3.1塔的物料衡算 (4)3.1.1 料液及塔顶、塔底产品含乙醇摩尔分率 (4)3.1.2 平均分子量 (4)3.1.3 物料衡算 (4)3.2塔板数的确定 (4)3.2.1 理论塔板数N的求取 (4)T的求取 (5)3.2.2 全塔效率ET3.2.3 实际塔板数N (6)3.3塔的工艺条件及物性数据计算 (6) (6)3.3.1操作压强Pm3.3.2温度t (6)m (6)3.3.3平均摩尔质量Mm3.3.4平均密度ρ (7)m3.3.5液体表面张力σ (8)m3.3.6液体粘度μ (8)Lm3.4气液负荷计算 (9)3.5塔和塔板主要工艺尺寸计算 (9)3.5.1塔径D (9)3.5.2溢流装置 (11)3.5.3塔板布置 (12)3.5.4筛孔数n与开孔率φ (13)3.5.5塔有效高度Z (13)3.5.6塔高计算 (13)3.6筛板的流体力学验算 (14) (14)3.6.1气体通过筛板压强降的液柱高度hp的验算 (15)3.6.2雾沫夹带量eV3.6.3漏液的验算 (15)3.6.4液泛的验算 (15)3.7塔板负荷性能图 (16)3.7.1雾沫夹带线(1) (16)3.7.2液泛线(2) (17)3.7.3液相负荷上限线(3) (18)3.7.4漏液线(气相负荷下限线)(4) (18)3.7.5液相负荷下限线(5) (18)3.8筛板塔的工艺设计计算结果总表 (20)3.9精馏塔附属设备选型与计算 (20)3.9.1冷凝器计算 (20)3.9.2预热器计算 (21)3.9.3各接管尺寸计算 (21)第四章设计评述与心得 (23)4.1设计中存在的问题及分析 (23)4.2设计心得 (23)参考文献 (24)前言化工生产中所处理的原料中间产品几乎都是由若干组分组成的混合物,其中大部分是均相混合物。

化工原理课程设计乙醇和水筛板精馏塔

化工原理课程设计乙醇和水筛板精馏塔

化工原理课程设计乙醇和水筛板精馏塔
一、工艺原理
乙醇和水筛板精馏塔是一种以乙醇为介质的广泛应用的化学反应设备。

这种精馏塔主要是利用乙醇对水的抽提分离物质的蒸馏和沉淀形式,在乙醇中达到分离的目的。

其操作原理是:将一定比例的乙醇与水混合,通过螺杆螺桶升温,使乙醇蒸馏,吸收乙醇汽体并伴随水汽在热力学过程中分离开。

因此,当这两种物质同时沉淀分离时,乙醇和水就可以通过这种方法获得更纯净的液体。

通过这个过程,物质也可以进行混合或有机溶剂的分离。

二、工艺流程
1.投料:将水混合物经过投料口,均匀的进入精馏塔管内。

2.抽提:采用乙醇为介质,出口的温度和压强维持一定的范围,当介质达到一定温度时,可使水和有机溶剂通过抽提过程进行分离。

3.进料:将经过抽提的液体经过调节阀再次进料,使乙醇连续循环。

4.净化:当液体进行循环抽提时,可使有机溶剂、水和乙醇通过滤筛板分离,达到净化的效果,经过多次的净化过程,乙醇的干净度可以达到99%以上。

5.出料:乙醇和水筛板精馏塔中的液体通过调节阀分别流入工艺和控制系统中,其中纯乙醇可作为常温下的产品出料。

三、应用领域
1、医药:
乙醇和水筛板精馏塔可以用来分离生物分子,如蛋白质、多肽、核酸和抗体等.因为乙醇有很好的气溶能力,也可以用乙醇作为载体进行药物的辅料成分分离和分离。

2、催化:
乙醇的介质有利于催化剂的活性,可以使催化剂在乙醇环境中进行催化反应,从而获得合成催化剂所需的原料。

3、有机溶剂:
乙醇可以用作有机溶剂,特别是对一些有机物质有良好的溶解效果。

在乙醇和水
筛板精馏塔的应用中,可以实现在有机溶剂中分离固体物质的目的。

乙醇和水

乙醇和水
精馏段:
提馏段:
的一般经验数值为
本设计不设置进口堰高和受液盘
采用F1型重阀,重量为33g,孔径为39mm。
浮阀数目
气体通过阀孔时的速度
取动能因数 ,那么 ,因此

由于采用分块式塔板,故采用等腰三角形叉排。若同一横排的阀孔中心距 ,那么相邻两排间的阀孔中心距 为:
取 时画出的阀孔数目只有60个,不能满足要求,取 画出阀孔的排布图如图1所示,其中
可以查得 ,所以
取水为冷凝介质,其进出冷凝器的温度分别为25℃和35℃则
平均温度下的比热 ,于是冷凝水用量可求:
以釜残液对预热原料液,则将原料加热至泡点所需的热量 可记为:
其中
在进出预热器的平均温度以及 的情况下可以查得比热 ,所以,
釜残液放出的热量
若将釜残液温度降至
那么平均温度
其比热为 ,因此,
可知, ,于是理论上可以用釜残液加热原料液至泡点
全塔的平均温度:
在温度 下查得
因为
所以,
全塔液体的平均粘度:
全塔效率
块(含塔釜)
其中,精馏段的塔板数为: 块
整理精馏段的已知数据列于表3(见下页),由表中数据可知:
液相平均摩尔质量:
液相平均温度:
表3精馏段的已知数据
位置
进料板
塔顶(第一块板)
质量分数
摩尔分数
摩尔质量/
温度/℃
83.83
78.62
在平均温度下查得
0.30
0.575
0.95
0.942
0.35
0.595
1.0
1.0
根据生产任务,若按年工作日300天,每天开动设备24小时计算,产品流量为 ,由于产品粘度较小,流量较大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选用浮阀塔。

化工原理课程设计乙醇和水

化工原理课程设计乙醇和水

设计任务书(一) 设计题目:试设计一座乙醇-水连续精馏塔提纯乙醇。

进精馏塔的料液含乙醇25% (质量分数,下同),其余为水;产品的乙醇含量不得低于94% ;残液中乙醇含量不得高于0.1% ;要求年产量为17000吨/年。

(二) 操作条件1) 塔顶压力4kPa(表压)2) 进料热状态自选3) 回流比自选4) 塔底加热蒸气压力0.5Mpa(表压)5) 单板压降≤0.7kPa。

(三) 塔板类型自选(四) 工作日每年工作日为300天,每天24小时连续运行。

(五) 设计内容1、设计说明书的内容1) 精馏塔的物料衡算;2) 塔板数的确定;3) 精馏塔的工艺条件及有关物性数据的计算;4) 精馏塔的塔体工艺尺寸计算;5) 塔板主要工艺尺寸的计算;6) 塔板的流体力学验算;7) 塔板负荷性能图;8) 精馏塔接管尺寸计算;9) 对设计过程的评述和有关问题的讨论。

2、设计图纸要求:1) 绘制生产工艺流程图(A2号图纸);2) 绘制精馏塔设计条件图(A2号图纸)。

目录1. 设计方案简介 (1)1.1设计方案的确定 (1)1.2操作条件和基础数据 (1)2.精馏塔的物料衡算 (1)2.1 原料液及塔顶、塔底产品的摩尔分率 (1)2.2原料液及塔顶、塔底产品的平均摩尔质量 (1)2.3物料衡算 (2)3.塔板数的确定 (2)3.1理论板层数N T的求取 (2)3.1.1 求最小回流比及操作回流比 (2)3.1.2 求精馏塔的气、液相负荷 (3)3.1.3 求操作线方程 (3)3.1.4 图解法求理论板层数 (3)3.2 塔板效率的求取 (4)3.3 实际板层数的求取 (5)4.精馏塔的工艺条件及有关物性数据的计算 (5)4.1操作压力计算 (5)4.2 操作温度计算 (5)4.3 平均摩尔质量的计算 (5)4.4 平均密度的计算 (6)4.4.1 气相平均密度计算 (6)4.4.2 液相平均密度计算 (6)4.5液体平均表面张力计算 (7)4.6液体平均黏度计算 (7)5.精馏塔的塔体工艺尺寸计算 (8)5.1塔径的计算 (8)5.1.1精馏段塔径的计算 (8)5.1.2提馏段塔径的计算 (9)5.2精馏塔有效高度的计算 (9)5.3精馏塔的高度计算 (10)6.塔板主要工艺尺寸的计算 (10)6.1溢流装置计算 (10)6.1.1堰长lw (10)6.1.2 溢流堰高度hw (11)6.1.3 弓形降液管宽度W d和截面积A f (11)6.1.4 降液管底隙高度h o (11)6.2塔板布置 (12)6.2.1塔板的分块 (12)6.2.2边缘区宽度确定 (12)6.2.3开孔区面积计算 (12)6.2.4筛孔计算及其排列 (12)7.筛板的流体力学验算 (13)7.1塔板降 (13)7.1.1干板阻力h c计算 (13)7.1.2气体通过液层的阻力h l计算 (13)7.1.3液体表面张力的阻力hσ计算 (13)7.2液面落差 (13)7.3液沫夹带 (14)7.4漏液 (14)7.5液泛 (14)8.塔板负荷性能图 (15)8.1漏液线 (15)8.2液沫夹带线 (15)8.3液相负荷下限线 (16)8.4液相负荷上限线 (17)8.5液泛线 (17)9.主要接管尺寸计算 (19)9.1蒸汽出口管的管径计算 (19)9.2回流液管的管径计算 (19)9.3进料液管的管径计算 (19)9.4釜液排出管的管径计算 (19)10.塔板主要结构参数表 (20)11.设计过程的评述和有关问题的讨论 (21)参考文献 (23)1. 设计方案简介1.1设计方案的确定本设计任务为分离乙醇—水混合物提纯乙醇,采用连续精馏塔提纯流程。

化工原理课程设计乙醇水精馏塔设计doc

化工原理课程设计乙醇水精馏塔设计doc

化工原理课程设计-乙醇-水精馏塔设计.doc化工原理课程设计:乙醇-水精馏塔设计一、设计任务本设计任务是设计一个乙醇-水精馏塔,用于分离乙醇和水混合物。

给定混合物中,乙醇的含量为30%,水含量为70%。

设计要求塔顶分离出95%以上的乙醇,塔底剩余物中水含量不超过5%。

二、设计方案1.确定理论塔板数根据给定的乙醇含量和设计要求,利用简捷计算法计算理论塔板数。

首先确定乙醇的回收率和塔顶产品的浓度,然后根据简捷计算公式计算理论塔板数。

2.塔的总体积和尺寸根据理论塔板数和每块理论板的液相体积流量,计算塔的总体积。

根据总体积和塔内件设计要求,确定塔的外形尺寸。

3.塔内件设计塔内件包括溢流管、进料口、冷凝器、再沸器和出口管等。

溢流管的尺寸和形状应根据塔径和物料性质进行设计。

进料口的位置和尺寸应根据进料流量和进料组成进行设计。

冷凝器和再沸器应根据物料的热力学性质和工艺要求进行设计。

出口管应根据塔径和出口流量进行设计。

4.塔板设计每块塔板的设计包括板上液相和气相的流动通道、堰和降液管等。

根据物料的物理性质和操作条件,确定液相和气相的流动通道尺寸和形状。

堰的高度和形状应根据液相流量和操作条件进行设计。

降液管的设计应保证液相流动顺畅且无滞留区。

5.塔的支撑结构和保温根据塔的外形尺寸和操作条件,设计支撑结构的形状和尺寸。

考虑保温层的设置,以减小热量损失。

三、设计计算1.确定理论塔板数根据简捷计算法,乙醇的回收率为95%,塔顶产品的乙醇浓度为95%。

通过简捷计算公式,得到理论塔板数为13块。

2.塔的总体积和尺寸每块理论板的液相体积流量为0.01m3/min,因此总体积为0.013m3/min。

考虑一定裕度,确定塔的外径为0.6m,高度为10m。

3.塔内件设计溢流管的尺寸为Φ10mm,形状为直管上升式。

进料口的位置位于第3块理论板处,尺寸为Φ20mm。

冷凝器采用列管式换热器,再沸器采用釜式再沸器。

出口管采用标准出口管,直径为Φ20mm。

化工原理课程设计乙醇水混合液精馏塔设计

化工原理课程设计乙醇水混合液精馏塔设计

化工原理课程设计乙醇水混合液精馏塔设计化工原理课程设计乙醇水混合液精馏塔设计一、引言精馏是石油化工、化学工业等领域中非常重要的分离和纯化方法之一。

在工业生产中,乙醇与水混合液的精馏分离技术应用非常广泛。

本文针对乙醇水混合液的精馏塔设计展开探讨。

二、乙醇水混合液的精馏分离原理通常将乙醇水混合液进行精馏时,可以利用其两种组分的沸点差异来实现分离。

在常压下,100克水的沸点为100℃,而100克乙醇的沸点为78.5℃,因此在一定的操作条件下,乙醇可以被分离出来。

三、精馏塔结构及工作原理精馏塔是一种具有特殊内部结构的容器,它可以用来将液体混合物分离成其组分。

精馏塔通常包括塔体、进料口、下塔液口和顶部气体口。

在塔体内部,有许多被称为塔板的“板子”,可以使物质沿着塔的高度进行反复蒸馏和冷凝,以达到分离组分的目的。

四、乙醇水混合液精馏塔设计对于乙醇水混合液的精馏塔设计,主要需要掌握以下几个参数。

4.1 精馏塔塔板数量精馏塔塔板数量对精馏分离效率有着决定性的影响。

一般来说,塔板的数量越多,分离效率越高。

在设计乙醇水混合液精馏塔时,需要根据不同的情况选择适当的塔板数量。

4.2 进料口位置和进料速度进料口位置和进料速度对于精馏分离的效果也有比较大的影响。

在设计乙醇水混合液精馏塔时,需要根据实际情况确定进料口位置和进料速度。

4.3 塔顶气体口和旋流板塔顶气体口和旋流板的设置也是精馏塔设计中必不可少的环节。

旋流板能够使得气体在塔体内形成旋涡,加速液体蒸发,从而提高精馏塔的分离效率。

五、结论乙醇水混合液的精馏塔设计是一项非常重要的工作,直接影响到分离效率和产品质量。

在进行精馏塔设计时,需要对塔板数量、进料口位置和进料速度、塔顶气体口和旋流板等参数进行合理的把握,以达到最佳的分离效果。

化工原理课程设计--乙醇——水混合液常压连续精馏

化工原理课程设计--乙醇——水混合液常压连续精馏

化工原理课程设计--乙醇——水混合液常压连续精馏课程设计任务书一、设计题目:乙醇——水混合液常压连续精馏二、设计原始数据:原料液处理量28000吨/年原料液初温20℃原料液含乙醇45%(质量)馏出液含乙醇93%(质量)乙醇回收率99.9%(质量)三、设计任务:完成精馏工艺设计,精馏塔设备设计和有关附属设备的设计、选用;编写设计说明书;绘制工艺流程图和塔板结构简图。

四、设计完成日期: 2013年01月18日五、设计者:王尧尧设计指导教师:张鸿发目录:1.…………………………………………………………………绪论2.………………………………………………………………工艺计算3.…………………………………………………………塔设备的计算4.………………………………………………………泵的选择及计算5.……………………………………………………………主凝器选型6.…………………………………再沸器加热釜中水蒸汽的用量计算7.………………………………………………………计算结果汇总表8.…………………………………………………………工艺流传简图绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。

精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。

化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。

化工原理课程设计乙醇——水精馏塔设计

化工原理课程设计乙醇——水精馏塔设计

化工原理课程设计乙醇——水精馏塔设计乙醇-水精馏塔是一种常用的工业分离设备,在乙醇生产和燃料乙醇制备过程中被广泛使用。

本文将针对乙醇-水精馏塔的设计进行分析,并确定适当的工艺参数,以提高精馏过程的效率和产品质量。

首先,我们将根据乙醇-水体系的相图,确定该体系在精馏条件下的温度和压力。

乙醇-水体系具有正常的沸点-成份成分曲线,根据该曲线,我们可以得出在大气压下,纯乙醇的沸点约为78.15摄氏度,纯水的沸点约为100摄氏度。

为了提高乙醇的产率,我们需要在尽可能低的温度下进行精馏。

因此,我们可以设置塔底的进料温度为80摄氏度,以确保乙醇能够以尽量低的温度进入塔体。

同时,在塔顶设置回流装置,利用较低温度的冷凝液将一部分乙醇回流至塔顶,以进一步提高精馏效率。

在塔体设计方面,我们将采用传统的浮阀塔设计。

浮阀塔是一种常见的分离设备,通过浮阀的升降来实现液体的分馏。

在塔内部设置多层分隔板,以确保流体在塔体内的充分混合和接触,从而提高分离效率。

同时,通过调整浮阀的数量和高度,可以控制液体的分布和流速,以适应不同的操作需求。

为了提高塔体内的传质效率,我们还可以在塔内设置填料。

填料能够增加塔体的表面积,促进乙醇和水之间的质量传递。

常用的填料包括碎石、金属网和板式填料等。

我们可以根据乙醇-水体系的特性,选择合适的填料类型和形状。

在操作过程中,我们需要通过加热器将塔内的液体加热至沸点,使液体蒸发,并且在塔顶通过冷凝器将蒸汽冷凝成液体。

通过控制塔底的进料量和顶部回流量,可以控制乙醇和水的分离效果。

同时,通过调整加热器的温度和冷凝器的冷却水流量,可以控制塔内的温度和压力,进一步影响精馏效果。

最后,为了确保操作的安全性和稳定性,我们需要在塔体上设置相应的监测仪表和安全设备,以及控制系统。

监测仪表包括温度计、压力计和流量计等,用于监测塔体内各参数的变化。

安全设备包括安全阀和过流保护装置,用于防止塔体发生过压和过流情况。

控制系统通过监测和调节各参数,保证塔体内的操作在合适的范围内进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计任务书(一) 设计题目:试设计一座乙醇-水连续精馏塔提纯乙醇。

进精馏塔的料液含乙醇25% (质量分数,下同),其余为水;产品的乙醇含量不得低于94% ;残液中乙醇含量不得高于0.1% ;要求年产量为17000吨/年。

(二) 操作条件1) 塔顶压力4kPa(表压)2) 进料热状态自选3) 回流比自选4) 塔底加热蒸气压力0.5Mpa(表压)5) 单板压降≤0.7kPa。

(三) 塔板类型自选(四) 工作日每年工作日为300天,每天24小时连续运行。

(五) 设计内容1、设计说明书的内容1) 精馏塔的物料衡算;2) 塔板数的确定;3) 精馏塔的工艺条件及有关物性数据的计算;4) 精馏塔的塔体工艺尺寸计算;5) 塔板主要工艺尺寸的计算;6) 塔板的流体力学验算;7) 塔板负荷性能图;8) 精馏塔接管尺寸计算;9) 对设计过程的评述和有关问题的讨论。

2、设计图纸要求:1) 绘制生产工艺流程图(A2号图纸);2) 绘制精馏塔设计条件图(A2号图纸)。

目录1. 设计方案简介 (1)1.1设计方案的确定 (1)1.2操作条件和基础数据 (1)2.精馏塔的物料衡算 (1)2.1 原料液及塔顶、塔底产品的摩尔分率 (1)2.2原料液及塔顶、塔底产品的平均摩尔质量 (1)2.3物料衡算 (2)3.塔板数的确定 (2)3.1理论板层数N T的求取 (2)3.1.1 求最小回流比及操作回流比 (2)3.1.2 求精馏塔的气、液相负荷 (3)3.1.3 求操作线方程 (3)3.1.4 图解法求理论板层数 (3)3.2 塔板效率的求取 (4)3.3 实际板层数的求取 (5)4.精馏塔的工艺条件及有关物性数据的计算 (5)4.1操作压力计算 (5)4.2 操作温度计算 (5)4.3 平均摩尔质量的计算 (5)4.4 平均密度的计算 (6)4.4.1 气相平均密度计算 (6)4.4.2 液相平均密度计算 (6)4.5液体平均表面张力计算 (7)4.6液体平均黏度计算 (7)5.精馏塔的塔体工艺尺寸计算 (8)5.1塔径的计算 (8)5.1.1精馏段塔径的计算 (8)5.1.2提馏段塔径的计算 (9)5.2精馏塔有效高度的计算 (9)5.3精馏塔的高度计算 (10)6.塔板主要工艺尺寸的计算 (10)6.1溢流装置计算 (10)6.1.1堰长l w (10)6.1.2 溢流堰高度h w (11)6.1.3 弓形降液管宽度W d和截面积A f (11)6.1.4 降液管底隙高度h o (11)6.2塔板布置 (12)6.2.1塔板的分块 (12)6.2.2边缘区宽度确定 (12)6.2.3开孔区面积计算 (12)6.2.4筛孔计算及其排列 (12)7.筛板的流体力学验算 (13)7.1塔板降 (13)7.1.1干板阻力h c计算 (13)7.1.2气体通过液层的阻力h l计算 (13)7.1.3液体表面张力的阻力hσ计算………………………………………137.2液面落差 (13)7.3液沫夹带 (14)7.4漏液 (14)7.5液泛 (14)8.塔板负荷性能图 (15)8.1漏液线 (15)8.2液沫夹带线 (15)8.3液相负荷下限线 (16)8.4液相负荷上限线 (17)8.5液泛线 (17)9.主要接管尺寸计算 (19)9.1蒸汽出口管的管径计算 (19)9.2回流液管的管径计算 (19)9.3进料液管的管径计算 (19)9.4釜液排出管的管径计算 (19)10.塔板主要结构参数表 (20)11.设计过程的评述和有关问题的讨论 (21)参考文献 (23)1. 设计方案简介1.1设计方案的确定本设计任务为分离乙醇—水混合物提纯乙醇,采用连续精馏塔提纯流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。

塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,回流比较大,故操作回流比取最小回流比的1.5倍。

塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。

1.2操作条件和基础数据进料中乙醇含量(质量分数) w F = 0.25; 产品中乙醇含量(质量分数) w D = 0.94; 塔釜中乙醇含量(质量分数) w W = 0.001; 处理能力 G F = 17000吨/年; 塔顶操作压力 4 kPa ; 进料热状况 泡点进料; 单板压降 ≤0.7kPa ;2.精馏塔的物料衡算2.1 原料液及塔顶、塔底产品的摩尔分率 乙醇的摩尔质量 M A =46.07kg/kmol 水的摩尔质量 M B =18.02kg/kmo l x F =02.18/75.007.46/25.007.46/25.0+=0.115x D =02.18/06.007.46/94.007.46/94.0+=0.860x W =02.18/999.007.46/001.007.46/001.0+=0.00042.2原料液及塔顶、塔底产品的平均摩尔质量 M F ==⨯-+⨯02.18)115.01(07.46115.021.25kg/kmolM D ==⨯-+⨯02.18860.0107.46860.0)(42.14kg/kmolM W ==⨯-+⨯02.18)001.01(07.46001.018.05kg/kmol 2.3物料衡算每年300天,每天工作24小时,其处理量为17000吨/年故原料液的处理量为 F==⨯⨯25.2124300/10170003)(111.11kmol/h 总物料衡算 111.11= D + W乙醇的物料衡算 111.11⨯0.115 = 0.860D + 0.0004W 联立解得 D = 14.81kmol/h W = 96.30kmol/h3.塔板数的确定3.1理论板层数N T 的求取3.1.1 求最小回流比及操作回流比乙醇-水是非理想物系,先根据乙醇-水平衡数据(见下表1),绘出平衡线,如下图所示。

表1乙醇—水系统t —x —y 数据在上图对角线上,自点c (0.115,0.115)作垂线ec 即为q 线,该线与相平衡线的由a 点引出的切线的交点坐标为 y q =0.354 , x q =0.115 故最小回流比为 R min =--=115.0354.0354.086.012.2R =1.5R min =1.5⨯2.12=3.18 3.1.2 求精馏塔的气、液相负荷 L 10.4781.1418.3=⨯==RD kmol/h V =91.6181.14)118.3()1(=⨯+=+D R kmol/hL '21.15811.11110.47=+=+=F L kmol/h V '91.61==V kmol/h 3.1.3 求操作线方程 精馏段操作线方程为 y 206.0761.0860.091.6181.1491.6110.47+=⨯+=+=x x x V D x V L D 提馏段操作线方程为y '001.0555.20004.091.6130.9691.6121.158''''''-=⨯-=-=x x x V W x V L W 3.1.4 图解法求理论板层数采用图解法求理论板层数,结果见上图,得理论塔板数N T =15块(不包括再沸器),精馏段12块,提馏段3块(不包括再沸器) 3.2 塔板效率的求取 操作温度计算:由乙醇—水的气液两相平衡图【1】可查得组成分别为⎪⎩⎪⎨⎧===0004.0115.0860.0W F D x x x 的泡点温度:⎪⎩⎪⎨⎧===℃塔釜温度:℃进料板温度:℃塔顶温度:5.99t 5.85t 5.78t W F D 由乙醇—水的气液两相平衡图可查得:塔顶和塔釜的气液两相组成为:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧==⎩⎨⎧==002.00004.0860.0860.0A A A A y x y x 塔釜:塔顶:查化工物性算图手册得:⎩⎨⎧==2.1502.1底顶αα则塔内相对挥发度:94.32.1502.1=⨯=⋅=底顶αααm 全塔液体平均粘度的计算:液相平均粘度的计算,即 i i Lm x μμlg lg ∑= 塔顶液相平均粘度的计算 由C 5.78︒=D t ,查手册【2】得:s mPa A ⋅=45.0μ s mPa B ⋅=36.0μ )36.0lg(140.0)45.0lg(860.0lg +=LDm μ 解出 s mPa LDm ⋅=44.0μ 塔底液相平均粘度的计算042.0=A y 塔釜由C 5.99︒=W t ,查手册【3】得:s mP A ⋅=34.0μ s mPa B ⋅=29.0μ 【1】)29.0lg(958.0)34.0lg(042.0lg +=LWm μ 解出 s mPa LWm ⋅=29.0μ 则全塔液相平均粘度为s mP Lm ⋅=+=37.02)29.044.0(μ 故 s mP Lm m ⋅=⨯=46.137.094.3μα 查奥康内尔(o'connell )关联图【1】得: %450=E因为筛板塔全塔效率相对值为1.1【1】,故精馏塔的全塔效率为 %50%451.11.10=⨯=⨯=E E 3.3 实际板层数的求取精馏段实际板层数 N 2450.0/12==精 提馏段实际板层数 N ==50.0/3提64.精馏塔的工艺条件及有关物性数据的计算4.1操作压力计算塔顶操作压力 3.10543.101=+=D P kpa 每层塔板压降 kPa P 7.0=∆进料板压力 1.122247.03.105=⨯+=F P kpa精馏段平均压力 7.1132/1.1223.105m =+=)(P kpa 4.2 操作温度计算从乙醇-水溶液的气液相平衡图【1】查得泡点温度(近似看作是操作温度)为:塔顶温度 C 5.78︒=D t进料板温度 ℃5.85=F t 精馏段平均温度为:℃822/)5.855.78(=+=m t 4.3 平均摩尔质量的计算 塔顶平均摩尔质量计算由860.01==y x D ,查平衡曲线(x -y 图),得kmol kg M kmol kg M x LDm VDm /81.4102.18)848.01(07.46848.0/14.4202.18)860.01(07.46860.0848.01=⨯-+⨯==⨯-+⨯==进料板平均摩尔质量计算 由图解理论板(x -y 图),得 415.0=F y查平衡曲线(x -y 图),得 105.0=F xkmol kg M VFm /08.3002.18)430.01(07.46415.0=⨯-+⨯= kmol kg M LFm /25.2102.18)115.01(07.46105.0=⨯-+⨯= 精馏段平均摩尔质量kmol kg M Vm /11.362)08.3014.42(=+= kmol kg M Lm /53.312)25.2181.41(=+= 4.4 平均密度的计算 4.4.1 气相平均密度计算 由理想气体状态方程计算,即 55.1)15.27382(314.811.367.113m =+⨯⨯==m Vm m V RT M P ρkg/3m 4.4.2 液相平均密度计算 液相平均密度依下式计算,即 i i Lm a ρρ∑=1 塔顶液相平均密度的计算 由C 5.78︒=D t ,查手册【2】得3/0.611m kg A =ρ 3/7.972m kg B =ρ 塔顶液相的质量分率 940.002.18140.007.46860.007.46860.0=⨯+⨯⨯=A a3/9.6247.060.00.611940.01m kg LDm =+=ρ进料板液相平均密度的计算 由℃5.85=F t ,查手册【2】得3/0.505m kg A =ρ 3/6.867m kg B =ρ 进料板液相的质量分率 230.002.18895.007.46105.007.46105.0=⨯+⨯⨯=A a3/2.7736.867770.00.505230.01m kg LFm =+=ρ精馏段液相平均密度为3/1.6992)2.7739.624(m kg Lm =+=ρ 4.5液体平均表面张力计算 液相平均表面张力依下式计算,即 ∑=i i Lm x σσ塔顶液相平均表面张力的计算 由C 5.78︒=D t ,查手册【2】得m mN A /3.17=σ m mN B /9.62=σ m mN LDm /7.239.62140.03.17860.0=⨯+⨯=σ 进料板液相平均表面张力的计算 由℃5.85=F t ,查手册得m mN A /9.15=σ m mN B /4.60=σ m mN LDm /3.554.60885.09.15115.0=⨯+⨯=σ 精馏段液相平均表面张力为m mN Lm /5.392)3.557.23(=+=σ 4.6液体平均黏度计算 液相平均粘度依下式计算,即i i Lm x μμlg lg ∑= 塔顶液相平均粘度的计算 由C 5.78︒=D t ,查手册【2】得:s mPa A ⋅=45.0μ s mPa B ⋅=36.0μ )36.0lg(140.0)45.0lg(860.0lg +=LDm μ 解出 s mPa LDm ⋅=44.0μ 进料板液相平均粘度的计算 由℃5.85=F t ,查手册【3】得:s mP A ⋅=45.0μ s mPa B ⋅=36.0μ 【1】 )36.0lg(926.0)45.0lg(074.0lg +=LFm μ 解出 s mPa LWm ⋅=37.0μ 精馏段液相平均粘度为s mPa Lm ⋅=+=41.02)37.044.0(μ5.精馏塔的塔体工艺尺寸计算5.1塔径的计算5.1.1精馏段塔径的计算 精馏段的气、液相体积流率为 40.055.1360011.3691.613600=⨯⨯==Vm Vm s VM V ρm 3/s0006.01.699360053.3110.473600=⨯⨯==Lm Lm s LM L ρm 3/s由 VVL Cu ρρρ-=max 式中C 由式2.02020⎪⎭⎫ ⎝⎛=L C C σ计算,式中C 20由图(史密斯关系图)【4】查得,图的横坐标为032.055.11.69940.00006.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫⎝⎛V L s s V L ρρ取板间距m H T 40.0=,板上液层高度m h L 06.0=,则 m h H L T 34.006.040.0=-=-查图(史密斯关系图)【4】得 073.020=C084.0205.39073.0202.02.020=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=L C C σs m u /78.155.155.11.699084.0max =-=取安全系数为0.7,则空塔气速为 25.178.17.07.0max =⨯==u u m/s 64.025.114.340.044=⨯⨯==u V D s πm 5.1.2提馏段塔径的计算提馏段塔径计算,所需数据可从相关手册【1,2,4】查得,计算方法同精馏段。

相关文档
最新文档