考研数学常用微积分公式背诵表

合集下载

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

考研数学分必背公式大全

考研数学分必背公式大全

全国硕士研究生统一入学考试数学公式大全导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研高分必备——高等数学(微积分)公式

考研高分必备——高等数学(微积分)公式

考研高分必备——高等数学(微积分)公式导数公式: 基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式: ·诱导公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

微积分公式大全

微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。

1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。

1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。

考研数学常用积分公式

考研数学常用积分公式

(x2 a2 )3
x2 a2
51.
dx = 1 arccos a C
x x2 a2 a
x
52.
x2
dx = x2 a2
x2 a2 a2x
C
53. x2 a2 dx = x x2 a2 a2 ln x x2 a2 C
2
2
54. ( x2 a2 )3dx = x (2x2 5a2 ) x2 a2 3 a4 ln x
c bx ax2
a
2 a3
b2 4ac
(十)含有 x a 或 ( x a)(b x) 的积分 xb
79.
x a dx = (x b) x a (b a) ln(
xb
xb
xa
x b )C
80.
x a dx = (x b) bx
考研数学助手 您考研的忠实伴侣
常用积分公式
(一)含有 ax b 的积分( a 0 )
1.
dx ax
b

1 a
ln
ax

b

C
2. (ax b)dx = 1 (ax b)1 C ( 1 )
a( 1)
3.
x ax
dx b

1 a2
(ax

b

x
x
72.
a2 x2
x2
dx


a2 x2 arcsin x C
x
a
(九)含有 ax2 bx c (a 0) 的积分
73.
dx
= 1 ln 2ax b 2 a ax2 bx c C

微积分的公式大全

微积分的公式大全

微积分的公式大全1.极限的基本公式:(1)常数规则:lim(c) = c (c 为常数)(2)零规则:lim(0) = 0(3)单位规则:lim(x) = x (x 为自变量)(4)和差规则:lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))(5)乘法规则:lim(f(x) * g(x)) = lim(f(x)) * lim(g(x))(6)除法规则:lim(f(x) / g(x)) = lim(f(x)) / lim(g(x)) (若lim(g(x)) ≠ 0)2.导数的基本公式:(1)常数函数的导数:(c)'=0(c为常数)(2)幂函数的导数:(x^n)' = nx^(n-1) (n 为实数)(3)指数函数的导数:(e^x)'=e^x(4)对数函数的导数:(ln(x))' = 1/x(5)三角函数的导数:(sin(x))' = cos(x)、(cos(x))' = -sin(x)、(tan(x))' = sec^2(x)(6)反三角函数的导数:(arcsin(x))' = 1/√(1-x^2)、(arccos(x))' = -1/√(1-x^2)、(arctan(x))' = 1/(1+x^2)3.基本积分公式:(1)幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n ≠ -1)(2)指数函数的积分:∫(e^x)dx = e^x + C(3)对数函数的积分:∫(1/x)dx = ln,x, + C(4)三角函数的积分:∫sin(x)dx = -cos(x) + C、∫cos(x)dx = sin(x) + C、∫tan(x)dx = -ln,cos(x), + C(5)反三角函数的积分:∫(1/√(1-x^2))dx = arcsin(x) + C、∫(-1/√(1-x^2))dx = arccos(x) + C、∫(1/(1+x^2))dx = arctan(x)+ C4.微分中值定理:(1)罗尔定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(a)=f(b),则存在一个c(a<c<b),使得f'(c)=0。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。

考研数学公式大全--高数--线代--必背公式

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

考研数学三必背知识点:微积分

考研数学三必背知识点:微积分

微积分必考知识点一、函数、极限与连续性1、无穷小量(假设:0)(lim ,0)(lim 0==→→x g x f x x x x )(1)若)()(lim=→x g x f x x ,则)(x f 为)(x g 的高阶无穷小量,记为)]([)(x g o x f =(2)若∞=→)()(limx g x f x x ,则)(x f 为)(x g 的低阶无穷小量(3)若A x g x f x x =→)()(lim,则)(x f 为)(x g 的同阶无穷小量(4)若1)()(lim=→x g x f x x ,则)(x f 为)(x g 的等价无穷小量,记为)(~)(x g x f2、常见无穷小等价代换(0→x 时)x nx x x x x x e x x x x x x x x x x n x1~11,21~11,21~cos 1,~1,~)1ln(,~arctan ,~arcsin ,~tan ,~sin 2-+-+--+2、极限存在准则(1) 夹逼准则:若)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0(2) 单调有界数列必有极限 (3) 两个重要极限:ex xxx x x xx x =+=+=→∞→→1)1(lim )11(lim ,1sin lim3、间断点 (1) 第一类间断点:)(lim),(limx f x f x x x x +-→→都存在,当)(lim)(limx f x f x x x x +-→→=时为可去间断点,)(lim)(limx f x f x x x x +-→→≠时为跳跃间断点。

(2) 第二类间断点:)(lim),(limx f x f x x x x +-→→其中一个不存在。

4、闭区间上连续函数定理(1) 零点定理:设)(x f 在],[b a 上连续,0)()(<b f a f 则必有),(b a ∈ξ使得0)(=ξf(2) 介值定理:设)(x f 在],[b a 上连续,)()(b f a f ≠,且有c 介于)(),(b f a f 之间,则必有),(b a ∈ξ使得c f =)(ξ (3) 最值定理:设)(x f 在],[b a 上连续,mM,分别为最大最小值,且Mc m<<,则必有),(b a ∈ξ使得c f =)(ξ二、一元函数微分学1、导数 (1) 导数的概念hx f h x f x f x x x f x f x f h x x )()(lim)(,)()(lim)(0000000-+='--='→→当00=x ,则xf x f f x )0()(lim)0(0-='→(2) 左右导数xx f x f x f xx f x f x f x x ∆-='∆-='-+→∆-→∆+)()(lim )(,)()(lim )(000002、常用基本求导公式x x x x xx ax x e e a a a axx c axx x x a sin )(cos ,cos )(sin ,1)(ln ,ln 1)(log,,ln ,)(,01-='='='='==='='-α22222211)cot (,11)(arctan ,11)(arccos ,11)(arcsin ,sin1)(cot ,cos1)(tan xx arc xx xx xx xx xx +-='+='--='-='-='='3、导数四则运算:2)(,)(,)(vv u v u vu v u v u uv v u v u '-'=''+'=''±'='±4、微分中值定理(1) 罗尔中值定理:如果)(x f 满足在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,则在),(b a ∈ξ有0)(='ξf (2) 拉格朗日中值定理:如果)(x f 满足在],[b a 上连续,在),(b a 内可导,则在),(b a ∈ξ有a b a f b f f --=')()()(ξ (3) 柯西中值定理:如果)(),(x F x f 满足在],[b a 上连续,在),(b a 内可导,则在),(b a ∈ξ有)()()()()()(ξξF f a F b F a f b f ''=--(4) 泰勒公式(00=x 的麦克劳林公式):)()0(!1)0(!21)0()0()()(2nnn x o x fn x f x f f x f ++''+'+=5、洛必达法则:当0x x →时,函数)(),(x g x f 都趋于零或者趋于无穷大,则)()(lim)()(limx g x f x g x f x x x x ''=→→注意:洛必达法则只适用于“0”“∞∞”型极限,而其它类型极限需要变形和化简为此二类极限。

考研数学公式总结

考研数学公式总结

考研数学公式总结考研数学是考研数学专业课中的重要一科,掌握好数学公式是考研数学的关键。

下面是考研数学常用的一些公式总结。

1.代数与数论1.1二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 +...+ C(n,n-1)ab^(n-1) + C(n,n)b^n1.2二次方程求根公式:x = (-b ± sqrt(b^2 - 4ac)) / 2a1.3勾股定理:a^2+b^2=c^21.4平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^21.5一元二次不等式求解方法:ax^2 + bx + c > 0 或 < 0当a>0,则解集为(-∞,x1)∪(x2,+∞)当a<0,则解集为(x1,x2)1.6等差数列求和公式:S = n(a1 + an) / 21.7等比数列求和公式:S = (a1 - an*q) / (1 - q),当,q, < 12.数学分析2.1极限相关公式:x,<1时,1/(1-x)的幂级数展开为1+x+x^2+x^3+..sin(x) 的幂级数展开为 x - x^3/3! + x^5/5! - ...cos(x) 的幂级数展开为 1 - x^2/2! + x^4/4! - ...e^x的幂级数展开为1+x+x^2/2!+x^3/3!+...2.2微积分相关公式:微分公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)积分公式:∫(f(x) + g(x))dx = ∫f(x)dx + ∫g(x)dx 2.3泰勒展开公式:函数f(x)在x=a处的泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n3.概率论与数理统计3.1排列组合:排列公式:P(n,m)=n!/(n-m)!组合公式:C(n,m)=n!/[(n-m)!*m!]3.2二项分布:P(X=k)=C(n,k)*p^k*q^(n-k),其中q=1-p3.3正态分布:P(a < X < b) = ∫[a, b] (1/sqrt(2πσ^2)) * exp(-(x-μ)^2 / (2σ^2)) dx3.4样本均值:样本均值的期望:E(¯X)=μ样本均值的方差:Var(¯X) = σ^2 / n3.5方差:总体方差的估计量:s^2 = Σ(xi - x_bar)^2 / (n - 1)以上是考研数学中较为常见的一些公式总结,这些公式涵盖了代数与数论、数学分析、概率论与数理统计等知识点。

考试必过 微积分公式完全汇总

考试必过 微积分公式完全汇总

直线:K = 0; 1 半径为a的圆:K = . a
定积分的近似计算:
矩形法: ∫ f ( x) ≈
a b
b
b−a ( y 0 + y1 + L + y n−1 ) n b−a 1 [ ( y0 + y n ) + y1 + L + y n−1 ] n 2 b−a [( y0 + y n ) + 2( y 2 + y 4 + L + y n−2 ) + 4( y1 + y3 + L + y n−1 )] 3n
a b c = = = 2R sin A sin B sin C
余弦定理: c = a + b − 2ab cos C
2 2 2
α
2
正弦定理:
反三角函数性质: arcsin x =
π
2
− arccos x arctgx =
π
2
− arcctgx
高阶导数公式——莱布尼兹(L e i b n i z )公式:
sin 2α = 2 sin α cosα cos 2α = 2 cos2 α − 1 = 1 − 2 sin 2 α = cos2 α − sin 2 α ctg 2α − 1 ctg 2α = 2ctgα 2tgα tg 2α = 1 − tg 2α
半角公式:
sin 3α = 3 sin α − 4 sin 3 α cos 3α = 4 cos3 α − 3 cosα tg 3α = 3tgα − tg 3α 1 − 3tg 2α
基本积分表:
1 − x2 1 (arccos x)′ = − 1 − x2 1 (arctgx)′ = 1+ x2 1 (arcctgx)′ = − 1+ x2

微积分的公式大全

微积分的公式大全

微积分的公式大全微积分是数学的一个重要分支,应用广泛,内容繁多。

在这里,我将为您介绍一些微积分中的基本公式和定理。

请注意,这里只是列举一些常用的公式,若要深入学习微积分,请参考相关教材和课程。

1.导数的基本公式:- 常数导数法则:对于常数c,其导数为0,即d/dx(c) = 0。

- 幂函数导数法则:对于幂函数f(x) = x^n ,其中n是常数,则其导数为d/dx(x^n) = nx^(n-1)。

-和差导数法则:若f(x)和g(x)都可导,则(f(x)±g(x))'=f'(x)±g'(x)。

-积法则:若f(x)和g(x)都可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

-商法则:若f(x)和g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.基本积分公式:- 反微分法则:若F(x)是f(x)的一个原函数,则∫f(x)dx = F(x) + C,其中C为常数。

- 平方差公式:∫(a^2 - x^2)^(1/2) dx = (1/2)(x√(a^2 - x^2) + a^2sin^(-1)(x/a)) + C。

- 指数函数积分:∫e^x dx = e^x + C,其中e是自然对数的底数。

- 三角函数积分:∫cos(x) dx = sin(x) + C,∫sin(x) dx = -cos(x) + C。

3.特殊函数和公式:-泰勒级数展开:函数f(x)在点a处的泰勒展开式为f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...。

- 自然对数函数和指数函数的微分法则:d/dx(ln(x)) = 1/x,d/dx(e^x) = e^x。

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全微积分是数学的一个重要分支,涵盖了导数、积分、极限等概念和公式。

在学习微积分的过程中,掌握一些常用的微积分公式对于解题和理解概念非常重要。

下面是一些常用的微积分公式的介绍。

1. 导数的基本公式:- 常数函数导数为0:(c)' = 0,其中 c 是常数。

- 幂函数导数公式:(x^n)' = n*x^(n-1),其中 n 是常数。

- 乘积法则:(f*g)' = f'*g + f*g',其中 f 和 g 是可导函数。

- 商法则:(f/g)' = (f'*g - f*g')/g^2,其中 f 和 g 是可导函数,并且 g 不等于0。

- 链式法则:(f(g(x)))' = f'(g(x))*g'(x),其中 f 是可导函数,g 是可导函数。

2. 基本积分公式:- 变上限定积分公式:∫(f(x)'dx) = f(x) + C,其中 C 是常数。

- 幂函数积分公式:∫(x^n dx) = (x^(n+1))/(n+1) + C,其中 n 不等于-1,C 是常数。

- 指数函数积分公式:∫(e^x dx) = e^x + C,其中 C 是常数。

- 三角函数积分公式:∫(sin(x) dx) = -cos(x) + C,∫(cos(x) dx) = sin(x) + C,∫(tan(x) dx) = -ln|cos(x)| + C,C 是常数。

- 分部积分法:∫(f(x)g(x) dx) = f(x)∫(g(x) dx) - ∫(f'(x)∫(g(x) dx) dx,其中 f 和 g 是可导函数。

3. 极限的基本公式:- 夹逼定理:如果对于 x -> a,有g(x) ≤ f(x) ≤ h(x),且 g(x) 和h(x) 的极限都等于 L,则 f(x) 的极限也等于 L。

- 幂函数极限公式:lim(x -> a) (x^n) = a^n,其中 n 是正整数。

微积分的公式大全

微积分的公式大全

微积分的公式大全1.导数的定义和性质:- 导数的定义:若函数 f(x) 在点 x0 处的导数存在,且为 f'(x0),则导数为 f'(x) = lim(h->0) [f(x0 + h) - f(x0)] / h。

-导数的性质:(1)和差的导数法则,(2)常数倍数的导数法则,(3)乘积的导数法则,(4)商的导数法则,(5)复合函数的导数法则。

2.常见函数的导数公式:- 幂函数的导数:d(x^n)/dx = nx^(n-1)。

- 指数函数的导数:d(e^x)/dx = e^x。

- 对数函数的导数:d(ln(x))/dx = 1/x。

- 三角函数的导数:(1) d(sin(x))/dx = cos(x),(2)d(cos(x))/dx = -sin(x),(3) d(tan(x))/dx = sec^2(x)。

3.微分和积分的基本公式:- 微分:dy = f'(x) dx。

- 积分基本定理:若 F'(x) = f(x),则∫f(x) dx = F(x) + C,其中 C 是常数。

-积分的性质:(1)定积分,(2)不定积分,(3)函数的积分求导,(4)分部积分法。

4.常见函数的积分公式:- 幂函数的积分:∫x^n dx = x^(n+1) / (n+1) + C,其中n ≠ -1- 指数函数的积分:∫e^x dx = e^x + C。

- 对数函数的积分:∫(1/x) dx = ln,x, + C。

- 三角函数的积分:(1) ∫sin(x) dx = -cos(x) + C,(2) ∫cos(x) dx = sin(x) + C,(3) ∫tan(x) dx = -ln,cos(x), + C。

5.微分方程的公式:- 一阶线性常微分方程的通解:dy/dx + P(x) y = Q(x),通解为 y= e^(-∫P(x)dx) (∫Q(x) e^(∫P(x)dx) dx + C)。

数学考研必备公式速记方法

数学考研必备公式速记方法

数学考研必备公式速记方法考研数学是许多考生的难点,公式多、概念复杂,记不住是常见的问题。

在备战考研数学过程中,熟练掌握公式是非常重要的一部分。

本文将为大家介绍几种数学考研必备公式的速记方法,帮助大家更好地记忆并应用这些公式。

一、线性代数公式1. 矩阵转置:(A^T)ij = Aji2. 矩阵求逆:若矩阵A可逆,则AA^{-1} = I,其中I为单位矩阵。

快速记忆方法:矩阵转置可记为括号外的T,矩阵求逆可记为括号外的-1。

二、微积分公式1. 导数定义:f'(x) = lim(h->0) (f(x+h)-f(x))/h2. 常见导数表达式:- 幂函数:(x^n)' = nx^(n-1)- 指数函数:(a^x)' = a^x ln(a)- 对数函数:(ln(x))' = 1/x- 三角函数:(sin(x))' = cos(x), (cos(x))' = -sin(x)快速记忆方法:导数定义中的差分项可以记为分数形式,各类函数的导数公式尽量熟记为模板,通过做题巩固记忆。

三、概率论与数理统计公式1. 条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A与事件B同时发生的概率。

2. 期望公式:E(X) = Σx·P(X=x),其中X为离散随机变量,x为X可能取到的值。

快速记忆方法:条件概率公式可记为等号两边各有一个P,期望公式可记为等号左边为E,右边为累加求和。

四、高等数学公式1. 泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...2. 微分公式:(uv)' = u'v + uv',(u/v)' = (u'v - uv')/v^2快速记忆方法:泰勒展开公式与微分公式的系数需要熟记,可将其视为模板,在具体计算时代入对应的函数和变量。

(完整版)微积分公式大全

(完整版)微积分公式大全

(完整版)微积分公式大全1. 极限极限是微积分的基本概念之一,用于描述函数在某一点处的趋近情况。

常见的极限公式包括:- $\lim\limits_{x \to a} f(x) = L$:函数 $f(x)$ 在点 $a$ 处的极限为 $L$。

- $\lim\limits_{x \to \infty} f(x) = L$:函数 $f(x)$ 在正无穷远处的极限为 $L$。

- $\lim\limits_{x \to a^+} f(x) = L$:函数 $f(x)$ 在点 $a$ 的右侧极限为 $L$。

- $\lim\limits_{x \to a^-} f(x) = L$:函数 $f(x)$ 在点 $a$ 的左侧极限为 $L$。

2. 导数导数用于描述函数在某一点处的斜率,常见的导数公式有:- $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) +\frac{d}{dx}g(x)$:和的导数等于各个函数导数之和。

- $\frac{d}{dx}(k \cdot f(x)) = k \cdot \frac{d}{dx}f(x)$:常数倍的函数导数等于常数与函数导数的乘积。

- $\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx}g(x) + g(x) \cdot \frac{d}{dx}f(x)$:乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数。

- $\frac{d}{dx}(f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx}$:复合函数的导数等于外函数对内函数的导数乘以内函数对自变量的导数。

3. 积分积分是导数的逆运算,用于计算曲线与坐标轴之间的面积或曲线的长度。

常见的积分公式有:- $\int f(x) dx$:函数 $f(x)$ 的不定积分。

广西壮族自治区考研数学微积分重要公式速查

广西壮族自治区考研数学微积分重要公式速查

广西壮族自治区考研数学微积分重要公式速查微积分是数学中的一门重要学科,也是广西壮族自治区考研数学科目中的一部分。

在考研数学微积分的学习过程中,了解和掌握重要的公式是非常关键的。

本文将为考生们提供广西壮族自治区考研数学微积分重要公式速查,以帮助考生更好地备考。

一、函数与极限1. 常见函数极限:(1)常数函数极限:\[\lim_{{x \to a}}c = c\]其中 \(a\) 和 \(c\) 分别表示实数。

(2)幂函数极限:\[\lim_{{x \to a}}x^n = a^n\]其中 \(n\) 是正整数。

(3)指数函数极限:\[\lim_{{x \to a}}a^x = a^a\]其中 \(a > 0\) 且 \(a \neq 1\)。

(4)对数函数极限:\[\lim_{{x \to a}}\log_a x = \log_a a = 1\]其中 \(a > 0\) 且 \(a \neq 1\)。

2. 无穷小与无穷大:(1)无穷小定义:如果对任意正数 \(\varepsilon\) ,存在正数 \(\delta\) ,当 \(|x-a| <\delta\) 时,有 \(|f(x) - A| < \varepsilon\),则称函数 \(f(x)\) 在 \(x = a\) 处为无穷小。

(2)无穷小性质:若函数 \(y = f(x)\) 在点 \(x = a\) 处为无穷小,那么有以下性质成立:- \(y = kf(x)\) 也是无穷小,其中 \(k\) 为常数;- \(y = f(x) + g(x)\) 为无穷小时,\(y = f(x)\) 和 \(y = g(x)\) 均为无穷小;- \(y = f(x)g(x)\) 为无穷小时,\(y = f(x)\) 和 \(y = g(x)\) 中至少有一个为无穷小。

二、导数与微分1. 常用导数公式:(1)基本函数导数:\[\frac{{d}}{{dx}}(c) = 0\]\[\frac{{d}}{{dx}}(x^n) = nx^{n-1}\]\[\frac{{d}}{{dx}}(a^x) = a^x\log_ae\]\[\frac{{d}}{{dx}}(\log_ax) = \frac{{1}}{{x\ln a}}\](2)常用函数导数:\[\frac{{d}}{{dx}}(\sin x) = \cos x\]\[\frac{{d}}{{dx}}(\cos x) = -\sin x\]\[\frac{{d}}{{dx}}(\tan x) = \sec^2x\]\[\frac{{d}}{{dx}}(\cot x) = -\csc^2x\]\[\frac{{d}}{{dx}}(\sec x) = \sec x\tan x\]\[\frac{{d}}{{dx}}(\csc x) = -\csc x\cot x\]2. 高阶导数公式:\[f^{(n)}(x) = \frac{{d^n}}{{dx^n}}(f(x))\]三、积分与微积分应用1. 基本积分公式:(1)基本函数积分:\[\int{c}\,dx = cx + C\]\[\int{x^n}\,dx = \frac{{x^{n+1}}}{{n+1}} + C\]\[\int{a^x}\,dx = \frac{{a^x}}{\ln a} + C\]\[\int{\frac{{1}}{{x}}}\,dx = \ln |x| + C\](2)三角函数积分:\[\int{\sin x}\,dx = -\cos x + C\]\[\int{\cos x}\,dx = \sin x + C\]\[\int{\tan x}\,dx = -\ln |\cos x| + C\]2. 微积分应用:(1)定积分:如果函数 \(f(x)\) 在区间 \([a, b]\) 上连续,则称 \([a, b]\) 上的定积分为区间 \([a, b]\) 上的函数 \(f(x)\) 的定积分。

内蒙古自治区考研数学复习资料常用公式整理

内蒙古自治区考研数学复习资料常用公式整理

内蒙古自治区考研数学复习资料常用公式整理一、微积分1.导数公式:(1)常用函数的导数公式:(2)指数函数和对数函数的导数公式:(3)三角函数的导数公式:(4)反三角函数的导数公式:(5)复合函数的导数公式:2.微分公式:(1)常用函数的微分公式:(2)复合函数的微分公式:3.积分公式:(1)基本积分公式:(2)常用函数的定积分公式:(3)换元法:二、线性代数1.矩阵运算公式:(1)矩阵的基本运算:(2)矩阵的转置与逆:(3)矩阵的乘法:(4)矩阵的行列式:2.向量运算公式:(1)向量的模长:(2)向量的点乘与叉乘:(3)向量的投影与角度:三、概率论与数理统计1.概率公式:(1)事件的概率计算公式:(2)条件概率公式:2.随机变量公式:(1)离散型随机变量的概率分布公式:(2)连续型随机变量的概率密度函数和分布函数:3.常用分布函数及其性质:(1)正态分布:(2)均匀分布:(3)指数分布:(4)二项分布:四、数学分析1.级数公式:(1)常用级数的和公式:(2)常用级数判断收敛公式:2.函数极限公式:(1)常用函数的极限公式:(2)函数极限运算法则:五、常微分方程1.常微分方程的基本公式:(1)一阶线性常微分方程的通解公式:(2)二阶常微分方程的通解公式:(3)常系数齐次线性微分方程的通解公式:(4)常系数非齐次线性微分方程的特解公式:六、高等数学1.多重积分公式:(1)二重积分公式:(2)三重积分公式:2.曲线积分公式:(1)第一类曲线积分公式:(2)第二类曲线积分公式:七、离散数学1.组合公式:(1)排列组合公式:(2)二项式定理:(3)简单图的性质:八、数值分析1.常用数值求解方法公式:(1)牛顿迭代法:(2)二分法:(3)高斯消元法:以上是内蒙古自治区考研数学复习资料中的常用公式整理,希望对考生们的备考有所帮助。

祝大家取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档