2014考研数学公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分: 2
2
2
2
122
11cos 12sin u
du dx x tg u u
u x u
u x +=
=+-=+=
, , ,
一些初等函数: 两个重要极限:
三角函数公式: ·诱导公式:
a
x x a a a ctgx x x tgx x x x ctgx x tgx a x
x
ln 1)(log
ln )(csc )(csc sec )(sec csc )(sec )(2
2
=
'='⋅-='⋅='-='='2
2
22
11)(11)(11)(arccos 11)(arcsin x
arcctgx x
arctgx x
x x
x +-
='+=
'--='-='x
x arthx x x archx x x arshx e
e e e chx
shx thx e
e chx e
e shx x
x
x x x
x
x
x
-+=
-+±=++=+-=
=+=-=----11ln 21)
1ln(1ln(:2:2:2
2)双曲正切双曲余弦双曲正弦...
590457182818284
.2)11(lim 1
sin lim
==+
=∞
→→e x
x x x
x x
·和差角公式: ·和差化积公式:
2
sin
2
sin
2cos cos 2
cos 2
cos 2cos cos 2
sin
2
cos
2sin sin 2
cos 2
sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α
ββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(
·倍角公式:
·半角公式:
α
αα
αα
αα
α
αααα
αα
α
α
α
α
cos 1sin sin cos 1cos 1cos 12
cos 1sin sin cos 1cos 1cos 12
2cos 12
cos 2cos 12
sin -=
+=
-+±=+=-=+-±
=+±
=-±=ctg
tg
·正弦定理:R C
c
B
b A
a 2sin sin sin ==
=
·余弦定理:C ab b a c cos 22
2
2
-+=
·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
)
()
()
()
2()
1()
(0
)
()
()
(!
)
1()1(!
2)1()(n k k n n n n n
k k k n k n
n uv
v
u
k k n n n v u
n n v nu
v u
v
u
C
uv +++--+
+''-+
'+==
---=-∑
中值定理与导数应用:
拉格朗日中值定理。
时,柯西中值定理就是
当柯西中值定理:
拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )
()()
()()()()
)(()()(ξξξ
曲率:
α
ααααααααα233
3
3133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=
-=-=α
ααααααααααα
αα22
2
2
2
2
122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=
-=-=-=-==
.
1;
0.)
1(lim
M s M M :.,13
2
2
a
K a K y y ds
d s
K M M s
K tg y dx y ds s =
='+''==∆∆='∆'∆∆∆=
=''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变
点到从平均曲率:其中弧微分公式:ααααα
定积分的近似计算:
⎰⎰⎰----+++++++++-≈
++++-≈
+++-≈
b
a
n n n b
a
n n b
a n y y y y y y y y n
a b x f y y y y n a b x f y y y n
a b x f )]
(4)(2)[(3)(])(21
[)()
()(1312420110110 抛物线法:梯形法:矩形法:
定积分应用相关公式:
⎰
⎰
--=
=⋅=⋅=b
a
b
a
dt
t f a
b dx
x f a
b y k r
m m k
F A p F s F W )(1)(1,2
2
21均方根:
函数的平均值:为引力系数引力:水压力:功:
空间解析几何和向量代数: