用matlab仿真余弦信号与白噪声
matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一姓名:张英伟学号:133320085208036 班级:13级理工部3班利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声 plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴 y5=abs(f4);plot(l2,y5);如有侵权请联系告知删除,感谢你们的配合!。
MATLAB中产生高斯白噪声的两个函数

MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或'complex'。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。
y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。
POWERTYPE可以是'dB'或'linear'。
如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。
matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数(word文档良心出品)

现代通信原理作业一姓名:张英伟学号:133320085208036 班级:13级理工部3班利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);plot(l2,y5);。
Matlab中的噪声分析与滤波方法

Matlab中的噪声分析与滤波方法导言在数字信号处理中,噪声是一个不可避免的问题。
噪声会给信号的分析、处理和传输带来很大的干扰。
因此,对于噪声的分析和滤波方法的研究显得尤为重要。
Matlab是一种功能强大的数学计算和数据处理软件,提供了丰富的工具和函数来处理和分析信号中的噪声。
本文将讨论在Matlab中进行噪声分析和滤波所涉及的主要方法。
一、噪声的基本概念和特性噪声是指在信号中非期望的、随机的干扰成分。
噪声会干扰信号的传输和处理,并降低信号的质量和可靠性。
了解噪声的基本概念和特性对于噪声分析和滤波方法的选择具有重要意义。
噪声可以分为不同的类型,常见的噪声类型包括白噪声、高斯噪声、脉冲噪声等。
白噪声是指具有平均功率谱密度且功率谱密度在所有频率范围内都相等的噪声。
高斯噪声是一种具有高斯分布特性的噪声,其概率密度函数可用正态分布描述。
脉冲噪声是一种具有突发性干扰的噪声,其干扰主要出现在短时间内。
噪声的统计特性包括均值、方差和自相关函数等。
均值是噪声信号的数学期望值,反映了噪声信号的中心位置。
方差是噪声信号的离散程度,反映了噪声信号的幅度。
自相关函数描述了噪声信号在不同时间点之间的相关性。
二、噪声分析方法噪声分析是指对信号中的噪声进行定量和定性的分析。
在Matlab中,可以使用多种方法进行噪声分析,包括频率域分析、时间域分析和统计分析等。
频率域分析是一种常用的噪声分析方法,可以通过计算信号的功率谱密度来确定信号中的噪声频率分布。
在Matlab中,可以使用fft函数对信号进行傅里叶变换,然后计算功率谱密度。
功率谱密度表示了信号在每个频率点上的能量密度。
通过分析功率谱密度,可以确定信号中噪声的频率特性,从而选择合适的滤波方法进行噪声抑制。
时间域分析是另一种常用的噪声分析方法,可以通过计算信号的自相关函数来确定信号中的噪声相关性。
在Matlab中,可以使用xcorr函数计算信号的自相关函数。
自相关函数反映了信号在不同时间点之间的相似性,通过分析自相关函数,可以得到信号中噪声的统计特性,如噪声的均值和方差等。
通过matlab产生wav的白噪声

MATLAB 中产生高斯白噪声MATLAB 中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN 用于产生高斯白噪声,AWGN 则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m 行n 列的高斯白噪声的矩阵,p 以dBW 为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN 的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p 的单位。
POWERTYPE 可以是’dBW’, ‘dBm’或’linear’。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE 可以是’real’或’complex’。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x 中加入高斯白噪声。
信噪比SNR 以dB 为单位。
x 的强度假定为0dBW。
如果x 是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER 是数值,则其代表以dBW 为单位的信号强度;如 果SIGPOWER 为’measured’,则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN 的状态。
y = awgn(…,POWERTYPE) 指定SNR 和SIGPOWER 的单位。
POWERTYPE 可以是’dB’或’linear’。
如果POWERTYPE 是’dB’,那么SNR 以dB 为单位,而SIGPOWER 以dBW 为单位。
如果POWERTYPE 是’linear’,那么SNR 作为比值来度量,而SIGPOWER 以瓦特为单位。
实验一-基于MATLAB的白噪声信号u(n)、sinc函数、chirp信号产生实验

实验一基于MATLAB的白噪声信号u(n)、sinc函数、chirp信号产生实验一、实验目的:1.学会使用MATLAB2.通过实验了解MATLAB如何产生各种常用信号3.掌握MATLAB的编程方法二、实验内容:1.用MATLAB编程产生一均匀分布的白噪声信号u(n),画出其波形,并检验其分布情况。
代码:clear;N = 50000;u = rand(1,N);u_mean = mean(u);power_u = var(u);subplot(211);plot(u(1:100));grid on;ylabel('u(n)');xlabel('n');subplot(212);hist(u,100);grid on;ylabel('histogranm of u(n)');运行结果:2.用MATLAB编程产生一均匀分布、均值为零、功率为0.01的白噪声信号u(n),画出其波形。
代码:clear;p = 0.01;N = 50000;u = rand(1,N);u = u - mean(u);a = sqrt(12*p);u1 = u*a;power_u1 = dot(u1,u1)/N;subplot(111);plot(u1(1:200));grid on;ylabel('u(n)');xlabel('n');运行结果:3.用MATLAB编程产生高斯分布的白噪声信号,使功率为p,并观察数据分布的直方图。
代码:p = 0.1;N = 50000;u = rand(1,N);u = u*a;power_u = var(u);subplot(211);plot(u(1:200));grid on;ylabel('u(n)');xlabel('n');subplot(212);hist(u,50);grid on;ylabel('histgram of u(n)');运行结果:4.用MATLAB编程产生一sinc函数,画出其波形。
MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明一、信号的产生及时域观察1、设定正选信号的频率为10HZ ,抽样频率为100HZ ;2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ;3、最后将噪声叠加到正弦信号上,观察其三者时域波形。
二、信号频谱及白噪声功率谱的求解与观察1、对原正弦信号直接进行FFT ,得出其频谱;2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为:1^01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^()()xx xx r m r m =- 01m N <<-对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。
源程序:1.产生正弦信号fs=100;fc=10;x=(0:1/fs:2);n=201;y1=sin(2*pi*fc*x); %原正弦信号,频率为10a=0;b=0.5; %均值为a ,方差为b^2subplot(2,2,1);plot(x,y1,'r');title('y=sin(20pi*x)');ylabel('y');xlabel('x/20pi');grid;2.产生高斯白噪声y2=a+b*randn(1,n); %高斯白噪声subplot(2,2,2);plot(x,y2,'r');title('N(0,0.25)的高斯白噪声');ylabel('y');xlabel('x/20pi');grid;3.复合信号y=y1+y2; %加入噪声之后的信号subplot(2,2,3);plot(x,y,'r');title('混合信号');ylabel('y');xlabel('x/20pi');grid;4.复合信号功率谱密度%求复合信号的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);%无偏自相关函数的估计Rx(49+j)=R(j);Rx(51-j)=R(j);endFy2=fft(Rx); %傅里叶变换得出复合信号功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(2,2,4);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 1]);title('复合信号功率谱函数图');ylabel('F(Rx)');xlabel('w');grid;。
MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

姓名:朱奇峰 专业:电子与通信工程 方向:数字广播电视技术 学号:103320430109033MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明一、信号的产生及时域观察1、设定正选信号的频率为10HZ ,抽样频率为100HZ ;2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ;3、最后将噪声叠加到正弦信号上,观察其三者时域波形。
二、信号频谱及白噪声功率谱的求解与观察1、对原正弦信号直接进行FFT ,得出其频谱;2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为:1^01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^()()xx xx r m r m =- 01m N <<-对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。
三、仿真结果:附源程序代码:fs=100;fc=10;x=(0:1/fs:2);n=201;y1=sin(2*pi*fc*x); %原正弦信号,频率为10 a=0;b=0.5; %均值为a,方差为b^2subplot(3,2,1);plot(x,y1,'r');title('y=sin(20pi*x)');ylabel('y');xlabel('x/20pi');grid;y2=a+b*rand(1,n); %均匀白噪声subplot(3,2,2);plot(x,y2,'r');title('N(0,0.25)的均匀白噪声');ylabel('y');xlabel('x/20pi');grid;y=y1+y2; %加入噪声之后的信号subplot(3,2,3);plot(x,y,'r');title('叠加了均匀白噪声的sinx');ylabel('y');xlabel('x/20pi');grid;FY=fft(y); %傅里叶变换得出频谱函数FY1=fftshift(FY); %频谱校正f=(0:200)*fs/n-fs/2;subplot(3,2,4);plot(f,abs(FY1),'r');title('函数频谱图');ylabel('F(jw)');xlabel('w');grid;%求均匀白噪声的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR1(j)=sum(y2(1:n-j-1).*y2(j:199),2)/(n-j);%无偏自相关函数的估计R1x(49+j)=R1(j);R1x(51-j)=R1(j);endsubplot(3,2,5);plot(i,R1x,'r');%plot(leg*1/fs,R1x,'r');title('白噪声自相关函数图');ylabel('R1x');xlabel('x');grid;Fy2=fft(R1x); %傅里叶变换得出白噪声功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(3,2,6);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 6]);title('白噪声功率谱函数图');ylabel('F(R1x)');xlabel('w');grid;%求正弦波加均匀白噪声的自相关函数m=50;i=-0.49:1/fs:0.49;for j=1:mR2(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);%无偏自相关函数的估计R2x(49+j)=R2(j);R2x(51-j)=R2(j);endsubplot(3,2,5);plot(i,R2x,'r');%plot(leg*1/fs,R2x,'r');title('正弦波加白噪声自相关函数图');ylabel('R2x');xlabel('x');grid;Fy2=fft(R2x); %傅里叶变换得出正弦波加白噪声功率谱函数Fy21=fftshift(Fy2); %功率谱校正f=(0:98)*fs/99-fs/2;subplot(3,2,6);plot(f,abs(Fy21),'r');axis([-50 50 -0.5 6]);title('白噪声功率谱函数图'); ylabel('F(R2x)');xlabel('w');grid;clc;clear all;close all;fs=100;%采样频率100hzN=1000;%采样点数t=(0:1:N-1)/fs;f=10;%正弦信号频率10hzs0=sin(2*pi*f*t);%正弦信号am=max(abs(s0));% % -------加噪方案1(由加噪后信噪比确定高斯白噪声)-----snr=5; %设定加入白噪声后的信噪比为5db(均值为0)Pv=(am/(10^(snr/20)))^2;%噪声方差% % --------------------------------------------------% % -------加噪方案2(由噪声方差确定高斯白噪声)--------% % Pv=3; %设定白噪声方差(均值为0)% % snr=20*log10(am/(sqrt(Pv))); %求信噪比% % % % ---------------------------------------------------% % % ---------加噪声-------------v=rand(1,N);v=v*sqrt(Pv);%白噪声s=s0+v;%信号加噪声% % ----------信号画图-------------figure(1)subplot(3,1,1),plot(s0);title('原始信号')subplot(3,1,2),plot(s);title(['加噪信号信噪比= ',num2str(snr),' dB. 噪声方差= ',num2str(Pv)])s1=detrend(s);%去趋势ffs=abs(fft(s1));ffs=ffs*2/N;%频谱%%ffs=ffs.^2;%功率谱subplot(3,1,3),plot(ffs(1:N/2));title('加噪信号FFT')。
matlab 协方差白噪声

matlab 协方差白噪声
在MATLAB中,可以使用xawgn函数来生成协方差白噪声。
下面是一个示例,生成长度为1000的白噪声序列,并将其绘制成时间序列图。
matlab
% 设置随机种子以保证结果可重复
rng(0);
% 生成长度为1000的白噪声序列
n = 1000;
x = xawgn(n, 0, 1);
% 绘制时间序列图
plot(x);
在上述代码中,xawgn函数的第一个参数是生成的噪声序列的长度,第二个参数是相对于参考值的功率谱密度,第三个参数是白噪声的方差。
在这个示例中,我们设置第
二个参数为0,表示使用参考值,第三个参数为1,表示白噪声的方差为1。
生成的噪声序列是一个随机过程,其自相关函数和功率谱密度都是无穷大,因此被称为“白噪声”。
在实际应用中,我们通常将白噪声用作测试信号或模拟随机干扰。
除了xawgn函数之外,MATLAB还提供了其他函数来生成不同类型的噪声序列,例如randn函数生成标准正态分布的随机数序列,randi函数生成离散随机数序列等。
matlab中给信号加噪声的方法

在信号处理中经常需要把噪声叠加到信号上去,在叠加噪声时往往需要满足一定的信噪比,这样产生二个问题,其一噪声是否按指定的信噪比叠加,其二怎么样检验带噪信号中信噪比满足指定的信噪比。
在MATLAB中可以用randn产生均值为0方差为1的正态分布白噪声,但在任意长度下x=randn(1,N),x不一定是均值为0方差为1(有些小小的偏差),这样对后续的计算会产生影响。
在这里提供3个函数用于按一定的信噪比把噪声叠加到信号上去,同时可检验带噪信号中信噪比。
1. 把白噪声叠加到信号上去:function [Y,NOISE] = noisegen(X,SNR)% noisegen add white Gaussian noise to a signal.% [Y, NOISE] = NOISEGEN(X,SNR) adds white Gaussian NOISE to X. The SNR is in dB. NOISE=randn(size(X));NOISE=NOISE-mean(NOISE);signal_power = 1/length(X)*sum(X.*X);noise_variance = signal_power / ( 10^(SNR/10) );NOISE=sqrt(noise_variance)/std(NOISE)*NOISE;Y=X+NOISE;其中X是纯信号,SNR是要求的信噪比,Y是带噪信号,NOISE是叠加在信号上的噪声。
2. 把指定的噪声叠加到信号上去有标准噪声库NOISEX-92,其中带有白噪声、办公室噪声、工厂噪声、汽车噪声、坦克噪声等等,在信号处理中往往需要把库中的噪声叠加到信号中去,而噪声的采样频率与纯信号的采样频率往往不一致,需要采样频率的校准。
function [Y,NOISE] = add_noisem(X,filepath_name,SNR,fs)% add_noisem add determinated noise to a signal.% X is signal, and its sample frequency is fs;% filepath_name is NOISE's path and name, and the SNR is signal to noise ratio in dB. [wavin,fs1,nbits]=wavread(filepath_name);if fs1~=fswavin1=resample(wavin,fs,fs1);endnx=size(X,1);NOISE=wavin1(1:nx);NOISE=NOISE-mean(NOISE);signal_power = 1/nx*sum(X.*X);noise_variance = signal_power / ( 10^(SNR/10) );NOISE=sqrt(noise_variance)/std(NOISE)*NOISE;Y=X+NOISE;其中X是纯信号,filepath_name是指定噪声文件(.wav)的路径和文件名,SNR是要求的信噪比,fs是信号X的采样频率,Y是带噪信号,NOISE是叠加在信号上的噪声。
如何用matlab仿真白噪声信号

如何用matlab仿真白噪声信号MATLAB中产生高斯白噪声的两个函数MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。
WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。
1. WGN:产生高斯白噪声y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。
y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。
y = wgn(m,n,p,imp,state) 重置RANDN的状态。
在数值变量后还可附加一些标志性参数:y = wgn(…,POWERTYPE) 指定p的单位。
POWERTYPE可以是'dBW', 'dBm'或'linear'。
线性强度(linear power)以瓦特(Watt)为单位。
y = wgn(…,OUTPUTTYPE) 指定输出类型。
OUTPUTTYPE可以是'real'或'complex'。
2. AWGN:在某一信号中加入高斯白噪声y = awgn(x,SNR) 在信号x中加入高斯白噪声。
信噪比SNR以dB为单位。
x的强度假定为0dBW。
如果x是复数,就加入复噪声。
y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。
y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。
y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。
POWERTYPE可以是'dB'或'linear'。
如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。
用matlab仿真余弦信号与白噪声

(3)功率谱密度仿真方法:自相关函数法,又称间接法, 随机信号 x(n)的相关函数是在时间域内描述随机过程的重要特征。
自相关函数是随机信号在不同时刻的值之间的依赖性的量度,是一个很有用的统计平均量。
在随机信号处理中,自相关函数可以用来检测淹没在随机噪声干扰中的信号,随机信号的自功率谱等于它的自相关函数的傅里叶变换。
因此,通过自相关估计可求得信号的功率谱。
利用计算机计算自相关估值有两种方法。
一种是直接方法,先计算出随机信号和它的滞后序列的乘积,再取其平均值即得相关函数的估计值。
另一种是间接方法,先用快速变换算法计算随机序列的功率谱密度,再作反变换计算出相关函数。
本题则采用自相关函数法。
()(),||1Mjw jwm N m M S e R m e M N -=-=<=-∑这个实验是对白噪声与带限白噪声进行对比,其中带限白噪声 的产生是由于白噪声通过滤波器产生的,而本实验采用的是IIR 滤波器。
IIR 滤波器有如下特点:单位冲击响应h(n)是无限长的。
系统函数H (z )在有限Z 平面(1<|z|<∞)上有极点存在。
结构上存在着输出到输入的反馈,也就是结构递归型的。
因果稳定的IIR 滤波器全波极点一定在单位圆内。
一个IIR 滤波器的有理系统函数为:01()()/(1)()/()M Nk k k k k k H z b za z Y z X z --===-=∑∑clear all;randn('state',0)NFFT=1024; %采样点数Fs=1000; %取样频率(单位为Hz ) t=0:1/Fs:.2;y1=cos(t*20*pi); %余弦序列 figure(1)plot(t,y1);ylabel('余弦序列');grid on;%余弦序列的图像:%白噪声m=(0:NFFT-1)/Fs;y=0.1*randn(size(m)); %产生高斯白噪声。
MATLAB中的信号噪声分析与处理方法

MATLAB中的信号噪声分析与处理方法一、引言信号噪声是在实际工程应用中普遍存在的问题,噪声会对信号的质量和准确性产生不良影响。
因此,对信号噪声进行分析和处理是非常重要的。
MATLAB作为一款强大的科学计算软件,提供了丰富的信号处理工具和算法,可以方便地进行信号噪声分析与处理。
本文将介绍一些常用的MATLAB工具和方法,帮助读者更好地处理信号噪声。
二、信号噪声分析在进行信号噪声分析之前,首先需要了解噪声的特性和类型。
常见的噪声类型有白噪声、高斯噪声、脉冲噪声等。
其中,白噪声是一种功率谱密度恒定的噪声,常用于模拟信号分析。
高斯噪声则符合正态分布特性,常用于数字信号处理。
脉冲噪声则表现为突然出现的噪声干扰。
对于信号噪声的分析,可以使用MATLAB中的频谱分析工具来实现。
例如,可以利用MATLAB中的fft函数对信号进行频谱分析,得到信号的功率谱密度。
通过观察功率谱密度图,可以清楚地看到信号的频域特性和噪声的功率分布情况。
此外,MATLAB还提供了丰富的统计工具,可以计算信号的均值、方差等统计参数,帮助进一步分析信号的噪声特性。
三、信号噪声处理1. 滤波方法滤波是一种常用的信号噪声处理方法,其目的是通过选择合适的滤波器对信号进行处理,抑制或消除噪声。
在MATLAB中,可以利用fir1、butter等函数来设计和应用滤波器。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型。
根据信号噪声的特点和需求,选择合适的滤波器类型是十分重要的。
例如,如果信号中的噪声主要集中在高频段,可以选择高通滤波器进行去噪处理。
2. 去噪算法除了滤波方法外,还有其他一些去噪算法可以应用于信号噪声处理。
例如,小波去噪算法是一种常用的信号去噪方法。
该算法通过对信号进行小波分解,并利用小波系数的特性进行噪声抑制。
MATLAB提供了丰富的小波变换函数和去噪函数,可以方便地进行信号去噪处理。
另外,独立分量分析(ICA)是一种基于统计的信号盲源分离方法,也可以用于信号噪声的降维和去噪。
matlab-正弦波-高斯白噪声-均匀白噪声-功率谱密度-自相关函数

现代通信原理作业一利用matlab完成:●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦波信号上,绘出波形。
●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波形。
一、白噪声区别及产生方法1、定义:均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。
高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。
2、matlab仿真函数:rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:z2=a+(b-(a))*rand(m,n)............(公式1)randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。
利用公式:z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。
二、自相关函数与功率谱密度之间的关系1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。
2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
3、维纳-辛钦定理:由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。
幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。
4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。
(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)二、源代码及仿真结果1、正弦波x=(0:0.01:2); %采样频率100Hzy1=sin(10*pi*x); %产生频率5Hz的sin函数plot(x,y1,'b');2、高斯白噪声+正弦波z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');y2=y1+z1; %叠加高斯白噪声的正弦波plot(x,y2,'b');3、均匀白噪声+正弦波z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');y3=y1+z2; %叠加均匀白噪声的正弦波plot(x,y3,'b');4、高斯白噪声序列自相关函数及功率谱密度z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计plot(lags,r1);f1=fft(r1);f2=fftshift(f1); %频谱校正l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴y4=abs(f2);plot(l1,y4);5、均匀白噪声序列自相关函数及功率谱密度z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计plot(lags,r2);f3=fft(r2);f4=fftshift(f3); %频谱校正l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);plot(l2,y5);。
MATLAB白噪声正弦信号分析

1.程序设计目的机械故障诊断中,通过在机械设备上布置传感器,利用传感器采集机械设备工作时的振动信号,通过对采集得到的信号进行加工分析,从而了解设备的工作状态,达到对机械设备故障诊断的目的。
2.程序实现功能本次作业设计了一段程序分析信号,信号采用加白噪声的正弦信号,实现以下目的:1)绘制出信号时域波形图。
2)计算信号时域特征值。
3)通过快速傅里叶变换,使信号由时域转频域.4)绘制出信号的频域波形图,幅值图,相位图。
5)计算信号频域特征值。
3. 程序运行结果:00.050.1-4-2024t x (t )白噪声-0.1-0.0500.050.1-2-1012tr u(t)白噪声自相关00.050.1-4-2024t x (t)带白噪声的正弦时域图-0.1-0.0500.050.1-1000100200tr x(t )带白噪声的正弦函数自相关图一00.050.1-4-2024t x (t )带白噪声的正弦时域图05001000-20-101020频率幅值频谱图0500100000.511.5f 幅值幅值谱05001000-4-224f 相位角相位谱图二MATLAB白噪声正弦信号分析时域特性:平均值=—0。
072681最小值=-3.049843最大值=3。
859065标准差=1。
268557方差=1。
609236幅频特性:平均值=0。
840376最小值=1。
791697最大值=1。
077591标准差=12.678479方差=160。
7438204.源程序:%正弦带白噪声信号时域,频域分析%时域分析fs=1000;N=100;t=(0:N—1)/fs;n=0:N-1;mlag=100;u=randn(size(t));[ru,lags]=xcorr(u,mlag,'unbiased');x=sin(2*pi*60*t)+u;fprintf(’时域特性:\n’)ag=mean(x);fprintf(’平均值=%f\n',ag);mi=min(x);fprintf('最小值=%f\n’,mi);ma=max(x);fprintf(’最大值=%f\n’,ma);st=std(x);fprintf('标准差=%f\n’,st);fc=st.^2;fprintf(’方差=%f\n’,fc);figure(1)subplot(2,2,1)plot(t,u)xlabel(’t’);ylabel('x(t)’);title(’白噪声');subplot(2,2,2)plot(lags/fs,ru)xlabel(’t’);ylabel('ru(t)’);title('白噪声自相关’);[rx,lags]=xcorr(x,mlag);subplot(2,2,3)plot(t,x)xlabel(’t’);ylabel('x(t)’);title(’带白噪声的正弦时域图');subplot(2,2,4)plot(lags/fs,rx)xlabel(’t');ylabel(’rx(t)’);title(’带白噪声的正弦函数自相关');%频域分析figure(2)subplot(2,2,1)plot(t,x)xlabel(’t');ylabel(’x(t)’);title(’带白噪声的正弦时域图');X=fft(x,N);f=n*fs/N;mag=2*abs(X)/N;pha=angle(X);subplot(2,2,2)plot(f,X)xlabel('频率');ylabel('幅值');title(’频谱图’);subplot(2,2,3)plot(f,mag)xlabel(’f');ylabel(’幅值’);title(’幅值谱');subplot(2,2,4)plot(f,pha)xlabel('f');ylabel('相位角’);title(’相位谱');fprintf(’幅频特性:\n’);Ag=mean(X);fprintf(’平均值=%f\n’,Ag);Mi=min(X);fprintf('最小值=%f\n',Mi);Ma=max(X);fprintf(’最大值=%f\n’,Ma);St=std(X);fprintf('标准差=%f\n',St);Fc=St。
高斯白噪声 matlab

高斯白噪声matlab如何在MATLAB中生成高斯白噪声(Gaussian White Noise)引言:在信号处理和统计学中,高斯白噪声是一种常见且重要的随机信号。
它具有特定的统计性质,并被广泛应用于许多领域,如通信、图像处理、声音分析等。
在本文中,我们将通过MATLAB编程语言来学习如何生成高斯白噪声信号,并讨论它的基本特征。
第一步:了解高斯白噪声的定义和统计特性高斯白噪声是一种具有以下特性的随机信号:1. 具有高斯分布的概率密度函数(PDF)。
2. 平稳的时域特性,即均值为零且自协方差矩阵不变。
3. 频谱平坦,也就是在所有频率上具有相等的功率密度。
第二步:使用MATLAB生成高斯分布的随机数序列MATLAB提供了许多生成随机数的函数,其中包括生成高斯分布的函数。
我们可以使用randn函数(randn命令)生成高斯分布的随机数序列。
例如,我们可以使用以下语句生成一个长度为N的高斯分布的随机数序列:matlabN = 1000; 设置序列长度mu = 0; 均值sigma = 1; 标准差x = mu + sigma * randn(1, N);这将生成一个长度为N的随机数序列x,它的均值为mu,标准差为sigma。
第三步:生成高斯白噪声信号在MATLAB中,我们可以通过生成高斯分布的随机数序列并进行适当的处理来生成高斯白噪声信号。
生成的随机数序列可以被认为是高斯白噪声信号的一个样本。
我们可以通过对随机数序列进行归一化处理,使其均值为零:matlabx = x - mean(x);接下来,我们可以计算序列的自协方差矩阵,并将其设置为单位矩阵(由于高斯白噪声信号的平稳性质):matlabRxx = xcorr(x, 'biased');Rxx = toeplitz(Rxx(N:2*N-1));Rxx是序列x的自协方差矩阵,xcorr函数用于计算序列的自相关函数。
toeplitz函数则将自相关函数转换为自协方差矩阵。
matlab 白噪声功率谱

matlab 白噪声功率谱
白噪声是一种在所有频率上具有相等功率的随机信号。
在
Matlab中,我们可以使用pwelch函数来估计白噪声的功率谱密度。
pwelch函数可以对信号进行傅里叶变换并计算功率谱密度估计值。
以下是一个简单的示例代码,演示如何使用pwelch函数来计算白噪
声的功率谱密度:
matlab.
% 生成白噪声信号。
Fs = 1000; % 采样频率。
t = 0:1/Fs:1-1/Fs; % 时间向量。
x = randn(size(t)); % 生成白噪声信号。
% 计算白噪声的功率谱密度估计。
[Pxx, f] = pwelch(x, [], [], [], Fs);
% 绘制功率谱密度图。
plot(f, 10log10(Pxx));
xlabel('频率 (Hz)');
ylabel('功率谱密度 (dB/Hz)');
title('白噪声功率谱密度估计');
在这个示例中,我们首先生成了一个白噪声信号x,然后使用pwelch函数计算了其功率谱密度估计值。
最后,我们绘制了功率谱密度图。
你可以根据自己的需求调整采样频率Fs和时间向量t来生成不同的白噪声信号,并使用pwelch函数来计算其功率谱密度估计值。
除了pwelch函数,Matlab还提供了其他用于信号分析和频谱估计的函数,如periodogram和welch等。
这些函数可以帮助你更深入地了解信号的频谱特性,包括白噪声的功率谱密度估计。
希望这些信息能够帮助到你理解在Matlab中如何计算白噪声的功率谱密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)功率谱密度仿真方法:自相关函数法,又称间接法, 随机信号 x(n)的相关函数是在时间域内描述随机过程的重要特征。
自相关函数是随机信号在不同时刻的值之间的依赖性的量度,是一个很有用的统计平均量。
在随机信号处理中,自相关函数可以用来检测淹没在随机噪声干扰中的信号,随机信号的自功率谱等于它的自相关函数的傅里叶变换。
因此,通过自相关估计可求得信号的功率谱。
利用计算机计算自相关估值有两种方法。
一种是直接方法,先计算出随机信号和它的滞后序列的乘积,再取其平均值即得相关函数的估计值。
另一种是间接方法,先用快速变换算法计算随机序列的功率谱密度,再作反变换计算出相关函数。
本题则采用自相关函数法。
()(),||1M
jw jwm N m M S e R m e M N -=-=<=-∑
这个实验是对白噪声与带限白噪声进行对比,其中带限白噪声 的产生是由于白噪声通过滤波器产生的,而本实验采用的是IIR 滤波器。
IIR 滤波器有如下特点:
单位冲击响应h(n)是无限长的。
系统函数H (z )在有限Z 平面(1<|z|<∞)上有极点存在。
结构上存在着输出到输入的反馈,也就是结构递归型的。
因果稳定的IIR 滤波器全波极点一定在单位圆内。
一个IIR 滤波器的有理系统函数为:
01()()/(1)()/()M N
k k k k k k H z b z
a z Y z X z --===-=∑∑
clear all;
randn('state',0)
NFFT=1024; %采样点数
Fs=1000; %取样频率(单位为Hz ) t=0:1/Fs:.2;
y1=cos(t*20*pi); %余弦序列 figure(1)
plot(t,y1);
ylabel('余弦序列');
grid on;
%余弦序列的图像:
%白噪声
m=(0:NFFT-1)/Fs;
y=0.1*randn(size(m)); %产生高斯白噪声。
figure(2);
plot(m,y);
title('白噪声波形');
grid on;。