《声速测量》实验报告
声速测量实验报告 声速测量实验数据
声速测量实验报告声速测量实验数据一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位比较法测量声速。
3、掌握示波器、信号发生器等仪器的使用方法。
4、培养实验数据处理和误差分析的能力。
二、实验原理1、驻波法声波在空气中传播时,入射波与反射波相互叠加形成驻波。
在驻波系统中,相邻两波节(或波腹)之间的距离为半波长的整数倍。
通过测量相邻两波节(或波腹)之间的距离,就可以计算出声波的波长,再根据声波的频率,即可求得声速。
2、相位比较法发射波和接收波通过示波器显示时,其振动相位存在差异。
当改变接收端的位置,使发射波和接收波的相位差发生变化。
当相位差为 0 或π时,示波器上的图形会出现直线,通过测量两个直线位置之间的距离,即可求出波长,进而得到声速。
三、实验仪器1、信号发生器2、示波器3、声速测量仪(含超声换能器)4、游标卡尺四、实验步骤1、驻波法测量声速(1)按图连接好实验仪器,将超声换能器 S1 和 S2 分别接入信号发生器和示波器。
(2)调节信号发生器的输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动S2,观察示波器上的波形变化,当出现振幅最大时,即为波腹位置,记录此时 S2 的位置 x1。
(4)继续移动S2,当示波器上的波形振幅最小时,即为波节位置,记录此时 S2 的位置 x2。
(5)重复上述步骤,测量多组数据,计算相邻波腹(或波节)之间的距离,取平均值作为波长λ。
2、相位比较法测量声速(1)连接好实验仪器,将示波器置于“XY”工作方式。
(2)调节信号发生器的频率,使示波器上显示出李萨如图形。
(3)缓慢移动 S2,观察李萨如图形的变化,当图形由椭圆变为直线时,记录此时 S2 的位置 x3。
(4)继续移动 S2,当图形再次变为直线时,记录此时 S2 的位置x4。
(5)重复上述步骤,测量多组数据,计算 x3 和 x4 之间的距离,取平均值作为波长λ。
五、实验数据1、驻波法测量数据|测量次数|波腹位置 x1(mm)|波节位置 x2(mm)|相邻波腹(或波节)距离Δx(mm)||||||| 1 | 3520 | 6850 | 3330 || 2 | 4250 | 7580 | 3330 || 3 | 5020 | 8350 | 3330 || 4 | 5800 | 9130 | 3330 || 5 | 6580 | 9910 | 3330 |平均值:Δx = 3330mm2、相位比较法测量数据|测量次数|第一次直线位置 x3(mm)|第二次直线位置 x4(mm)|波长λ(mm)||||||| 1 | 2560 | 5890 | 3330 || 2 | 3280 | 6610 | 3330 || 3 | 4000 | 7330 | 3330 || 4 | 4720 | 8050 | 3330 || 5 | 5440 | 8770 | 3330 |平均值:λ = 3330mm六、数据处理已知实验中信号发生器的输出频率 f = 3500kHz,根据公式 v =fλ,可得声速 v:驻波法:v =fΔx = 3500×10³Hz×3330×10⁻³m = 11655m/s相位比较法:v =fλ = 3500×10³Hz×3330×10⁻³m = 11655m/s七、误差分析1、仪器误差(1)游标卡尺的精度有限,可能导致测量的距离存在误差。
测量声速实验报告
测量声速实验报告第1篇:测量声速这事儿,听起来挺高大上的,其实操作起来还挺接地气的。
那天,我们物理课上就来了一波实践操作,老师说这能帮我们更好地理解声速这个概念,我心想,这不就是玩儿嘛,谁不喜欢动手啊。
实验开始前,老师先给我们普及了声速的基本知识,原来声音在空气中的传播速度大约是340米每秒。
这数字听着没啥感觉,直到老师说:“如果你们在百米赛跑中,听到枪声再起跑,那估计冠军都到终点了。
”这话一出,大家立刻来了精神,想着得好好做这个实验,看看这声速到底有多快。
我们的实验工具很简单,就是一把尺子、一个计时器和两个木块。
老师让我们两个人一组,一个人负责敲击木块发出声音,另一个人则用计时器记录从看到敲击动作到听到声音的时间差。
我跟小明一组,他负责敲击,我负责计时。
一开始,我还担心自己反应慢,结果发现这事儿比想象中容易多了。
我们选择了一个比较长的走廊来做实验,这样可以尽可能地减少误差。
小明站得远远的,我站在起点,准备好了计时器。
随着小明的一声敲击,我按下了计时器,然后等着声音传到我的耳朵里。
那一刻,我突然有种穿越时空的感觉,就像是在等待着一个来自远方的信息。
虽然实际上只是一两秒的事儿,但那种期待的心情,让我觉得这声速实验也挺有意思的。
经过几轮的测量和计算,我们终于得到了声速的一个大概值。
虽然跟标准值有点差距,但老师说这是正常的,毕竟我们用的是最简单的工具,加上环境因素的影响,能有这样的结果已经很不错了。
最重要的是,通过这次实验,我们对声速有了更直观的认识。
实验结束后,我跟小明还在讨论,如果用不同的材料做实验,比如水或者金属,声速会不会不一样呢?这又激起了我对物理的好奇心,原来学习也可以这么好玩,既能动手又能动脑,真是太棒了。
说真的,这次测量声速的实验给我留下了深刻的印象,不仅仅是因为它让我了解到了声速的概念,更重要的是,它教会了我如何用实践去验证理论,这种体验是书本上学不到的。
以后要是有机会,我还想尝试更多这样的实验,探索科学的奥秘。
声速的测量实验报告及数据处理
声速的测量实验报告及数据处理一、实验目的与原理1.1 实验目的为了研究声速的测量方法,我们进行了一次声速的测量实验。
通过实验,我们希望能够了解声速的定义、测量原理以及影响声速的因素,从而为实际应用提供理论依据。
1.2 实验原理声速是指在某种介质中,声波传播的速度。
声音是由物体振动产生的机械波,当这种振动传播到介质中时,会引起介质分子的振动,从而形成声波。
声波在介质中的传播速度与其内部分子的振动速度有关,而分子的振动速度又受到温度、压力等因素的影响。
因此,声速的测量实际上是测量介质中分子振动速度的过程。
二、实验设备与材料2.1 设备本次实验使用的设备包括:声源(用于产生声波)、麦克风(用于接收声波)、计时器(用于计算声波传播时间)、数据处理软件(用于分析实验数据)。
2.2 材料实验所使用的材料包括:水、玻璃、铝箔等。
这些材料都是常见的介质,可以用于测量声速。
三、实验步骤与数据处理3.1 实验步骤1) 将水倒入一个透明的容器中,使其充满水。
2) 将玻璃和铝箔分别放在水中。
3) 用麦克风分别对玻璃和铝箔进行录音。
4) 使用计时器记录每次录音所需的时间。
5) 重复以上步骤多次,以获得较为准确的数据。
6) 使用数据处理软件对实验数据进行分析,得出声速的测量结果。
3.2 数据处理我们需要计算每次录音所需的时间。
由于实验过程中可能会受到环境噪声的影响,因此我们需要在每次录音前先将麦克风校准,以减小误差。
接下来,我们可以使用以下公式计算声波在介质中传播的距离:距离 = (时间 * 频率) / 声速其中,时间是以秒为单位的时间长度,频率是以赫兹为单位的声音频率,声速是以米/秒为单位的声波传播速度。
通过对所有数据的分析,我们可以得到不同介质中声波传播速度的测量结果。
四、实验结果与分析根据我们的实验数据,我们得到了不同介质中声波传播速度的结果。
通过对比实验数据与理论预测值,我们发现实验结果与理论预测值基本一致,说明我们的实验方法是可行的。
测声速实验报告
测声速实验报告一、实验目的本次实验旨在通过不同的方法测量声音在空气中的传播速度,加深对声学基本原理的理解,并提高实验操作和数据处理的能力。
二、实验原理声音在介质中传播的速度取决于介质的性质和状态。
在常温常压下,声音在空气中的传播速度约为 340 米/秒。
测量声速的方法主要有以下几种:1、利用时差法:通过测量声音在一定距离内传播的时间差来计算声速。
2、共鸣法:利用共振现象,当声源的频率与管内空气柱的固有频率相同时,产生共鸣,从而测量声速。
三、实验仪器1、信号发生器2、扬声器3、麦克风4、示波器5、米尺6、共鸣管四、实验步骤(一)时差法1、用米尺测量出声音传播的距离,记作 L。
2、将扬声器和麦克风分别放置在距离 L 的两端,并保持在同一直线上。
3、信号发生器连接扬声器,产生一定频率的声波。
4、麦克风连接示波器,观察示波器上声音信号的到达时间。
5、多次测量,记录数据,并计算声音传播的时间 t。
6、根据公式 v = L / t 计算声速。
(二)共鸣法1、将共鸣管竖直放置,管内注入适量的水。
2、信号发生器连接扬声器,逐渐改变频率,同时观察管内水面的振动情况。
3、当水面出现强烈振动时,记录此时信号发生器的频率 f。
4、根据共鸣管的长度 L 和公式 v =f × λ(λ 为波长,对于共鸣管,波长等于 4L)计算声速。
五、实验数据与处理(一)时差法数据|测量次数|传播距离(m)|传播时间(s)|声速(m/s)||||||| 1 | 1000 | 00295 | 33966 || 2 | 1000 | 00298 | 33691 || 3 | 1000 | 00290 | 34483 |平均声速:(33966 + 33691 + 34483) / 3 = 34047 m/s(二)共鸣法数据|测量次数|共鸣管长度(m)|共鸣频率(Hz)|声速(m/s)||||||| 1 | 035 | 27857 | 37143 || 2 | 035 | 28000 | 36800 || 3 | 035 | 27500 | 38000 |平均声速:(37143 + 36800 + 38000) / 3 = 37314 m/s六、误差分析1、实验环境的影响:如温度、湿度、风速等因素都会对声音的传播速度产生一定的影响。
大物实验报告声速的测定
大物实验报告声速的测定篇一:大学物理实验报告-声速的测量实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:vf(1)由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用v?L/t(2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中S1和S2为压电晶体换能器,S1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S2为超声波接收器,声波传至它的接收面上时,再被反射。
当S1和S2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L=n×,n=0,1,2, (3)2λ时,S1发出的声波与其反射声波的相位在S1处差2nπ(n=1,2 ……),因此形成共振。
因为接收器S2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器S2的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
声速的测定实验报告
声速的测定实验报告(一)1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。
(2)进一步掌握示波器、低频信号发生器的使用方法。
(3)学会用逐差法处理数据。
2、实验仪器超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。
3、实验原理3.1 实验原理声速V 、频率f 和波长λ之间的关系式为λf V =。
如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。
常用的测量声速的方法有以下两种。
3.2 实验方法3.2.1 驻波共振法(简称驻波法)S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。
当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。
驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:3,2,1,2==n nL λ(1)即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。
在示波器上得到的信号幅度最大。
当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。
移动S 2,可以连续地改变L 的大小。
由式(1)可知,任意两个相邻共振状态之间,即S 2所移过的距离为:()22211λλλ=⋅-+=-=∆+n n L L L n n (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。
此距离2λ可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ⋅=λ,就可求出声速。
3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。
其轨迹方程为:()()φφφφ122122122122-=--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛Sin Cos A A XY A Y A X (5)在一般情况下,此李沙如图形为椭圆。
声速测量实验报告_公式
一、实验目的1. 掌握声速测量的基本原理和方法。
2. 了解声波在空气中的传播特性。
3. 学会使用声速测量仪器,提高实验技能。
二、实验原理声速是指声波在介质中传播的速度。
在空气中,声速受温度、湿度等因素的影响。
声速的测量方法主要有共振干涉法、相位法、时差法等。
本实验采用共振干涉法进行声速测量。
共振干涉法的基本原理是:当声波在两个平行平板之间传播时,声波会在平板间产生驻波,当驻波的波长相等时,声波达到共振,此时声波的能量达到最大。
根据共振条件,可以计算出声速。
声速的公式如下:\[ v = \frac{f \lambda}{2} \]其中,\( v \) 为声速,\( f \) 为声源振动频率,\( \lambda \) 为声波波长。
三、实验仪器1. 超声波发射器2. 超声波接收器3. 低频信号发生器4. 示波器5. 驻波干涉仪6. 温度计7. 相对湿度计四、实验步骤1. 将超声波发射器和接收器分别固定在驻波干涉仪的两个臂上。
2. 开启低频信号发生器,调节频率至超声波发射器的共振频率。
3. 将信号发生器的输出端与超声波发射器的输入端连接,同时将超声波接收器的输出端与示波器的输入端连接。
4. 调节驻波干涉仪,使声波在两个平板间形成驻波。
5. 观察示波器,当声波达到共振时,记录此时的振动波形。
6. 根据共振条件,计算声速。
五、数据处理1. 记录实验过程中超声波发射器的共振频率 \( f \)。
2. 记录实验过程中驻波干涉仪的臂长 \( L \)。
3. 根据公式 \( v = \frac{f \lambda}{2} \) 计算声速 \( v \)。
4. 将实验数据整理成表格,进行误差分析。
六、实验结果与分析1. 计算声速的平均值和标准差。
2. 分析实验误差产生的原因,如仪器误差、操作误差等。
3. 将实验结果与理论值进行比较,讨论实验误差对结果的影响。
七、结论通过本次实验,掌握了声速测量的基本原理和方法,了解了声波在空气中的传播特性。
声速测量实验报告范文(共五则)
声速测量实验报告范文(共五则)第一篇:声速测量实验报告范文实验时间:2019 年月日,第批签到序号:【进入实验室后填写】福州大学【实验一】声速测量(303 实验室)学学院班班级学学号姓姓名实验前必须完成【实验预习部分】登录下载预习资料携带学生证提前 10 分钟进实验室实验预习部分【实验目的】】【实验仪器】(名称、规格或型号)【实验原理】(文字叙述、主要公式、原理图)实验预习部分【实验内容和步骤】】实验预习部分一、写出示波器以下标号的功能(用中文表述),并复习它们的位置(参本考课本 P148 图图 19-13):39(或 11)25。
二、在下图方框中标出函数信号发生器的四个部位分别对应哪个选项。
A、CH1B、CH1使能C、CH2D、CH2使能三、实验中在测量声波波长之前,必须确定系统的。
频率。
动调节方法是:先移动 S1 到距 S2 为为 5 ~10 cm,缓慢调节函数信号发生器频率(在~kHz 连续调节),观察哪个频率下接收波电压动幅度最大。
然后移动S1,使示波器显示的正弦幅度最大,再细调信号以频率(以0.01kHz。
为步长调节),直到接收波振幅最大。
记下此时频率。
注意:本实验用的声速测定装置动子是发射端,定子是接收端。
于两个换能器之间的距离最好大于 5 cm,严禁将两个换能器接触。
数据记录与处理【一】测量系统的谐振频率 f =k H z此时换能器间距 L=mm 【二】用共振干涉法测波长((v 公 =340.00 m/s)1L =mm,11L =mm,λ=mm声速 v =百分偏差 B=【三】用相位比较法测波长(v 公 =340.00m/s)数次数 i L i /mm 数次数 i+6 L i+6 m/mm6()/6()i iL L mmλ+=-()mm λ声速 v =百分偏差 B=思考题:用相位法测量波长时,指出本实验用哪两个图形之间的距离:测量波长:(在正确的图下画√)进入实验室后,按实验指导老师要求撰写。
声速的测量实验报告及数据处理
声速的测量实验报告及数据处理一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位比较法测量声速。
3、掌握示波器和信号发生器的使用方法。
4、培养实验操作能力和数据处理能力。
二、实验原理1、驻波法当声源发出的平面波在管内沿轴线传播时,入射波与反射波叠加形成驻波。
在驻波中,波节处的声压最小,波腹处的声压最大。
相邻两波节(或波腹)之间的距离为半波长。
通过测量相邻两波节(或波腹)之间的距离,就可以计算出声波的波长,再根据声波的频率,即可求出声速。
2、相位比较法声源发出的声波分别通过两个路径到达接收器,一路是直接传播,另一路是经过反射后传播。
这两列波在接收器处会产生相位差。
当移动接收器时,相位差会发生变化。
通过观察示波器上两列波的相位变化,找到同相或反相的位置,从而测量出声波的波长,进而求出声速。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法(1)按实验装置图连接好仪器,将信号发生器的输出频率调节到大致与换能器的固有频率相同。
(2)缓慢移动游标卡尺的活动端,观察示波器上的波形,当出现振幅最大时,即为波腹位置,记录此时游标卡尺的读数。
(3)继续移动活动端,当振幅最小(为零)时,即为波节位置,记录此时的读数。
(4)依次测量多个波腹和波节的位置,计算相邻波腹(或波节)之间的距离,取平均值作为波长。
2、相位比较法(1)连接好仪器,调节信号发生器的频率,使示波器上显示出稳定的李萨如图形。
(2)缓慢移动接收器,观察李萨如图形的变化,当图形由斜椭圆变为正椭圆时,记录此时接收器的位置。
(3)继续移动接收器,当图形再次变为正椭圆时,再次记录位置。
(4)测量两次正椭圆位置之间的距离,即为声波波长的一半。
五、实验数据记录与处理1、驻波法|测量次数|波腹位置(mm)|波节位置(mm)|相邻波腹(或波节)距离(mm)||::|::|::|::|| 1 | 2050 | 1520 | 530 || 2 | 2680 | 2150 | 530 || 3 | 3310 | 2780 | 530 || 4 | 3940 | 3410 | 530 || 5 | 4570 | 4040 | 530 |相邻波腹(或波节)距离的平均值:\\begin{align}\overline{d}&=\frac{530 + 530 + 530 + 530 + 530}{5}\\&=\frac{2650}{5}\\&=530 \text{mm}\end{align}\已知信号发生器的频率\(f = 3500 kHz\),声速\(v =f\lambda\),其中波长\(\lambda = 2\overline{d} = 2×530 = 1060 \text{mm} = 106×10^{-2} \text{m}\)\\begin{align}v&= 3500×10^3 × 106×10^{-2}\\&= 371 \text{m/s}\end{align}\2、相位比较法|测量次数|第一次正椭圆位置(mm)|第二次正椭圆位置(mm)|波长(mm)||::|::|::|::|| 1 | 1850 | 3780 | 1930 || 2 | 2520 | 4450 | 1930 || 3 | 3200 | 5130 | 1930 || 4 | 3870 | 5800 | 1930 || 5 | 4540 | 6470 | 1930 |波长的平均值:\\begin{align}\overline{\lambda}&=\frac{1930 + 1930 + 1930 + 1930 +1930}{5}\\&=\frac{9650}{5}\\&=1930 \text{mm} = 193×10^{-2} \text{m}\end{align}\声速\(v = f\overline{\lambda} = 3500×10^3 × 193×10^{-2} = 6755 \text{m/s}\)六、误差分析1、仪器误差实验仪器本身存在一定的精度限制,如游标卡尺的读数误差、信号发生器频率的稳定性等,会对测量结果产生影响。
声速测量实验实验报告
一、实验目的1. 掌握测量超声波在空气中传播速度的方法。
2. 理解驻波和振动合成理论。
3. 学会逐差法进行数据处理。
4. 了解压电换能器的功能和培养综合使用仪器的能力。
二、实验原理1. 声波在空气中的传播速度:在标准状态下,干燥空气中的声速为v₀ = 331.5 m/s,温度T = 273.15 K。
室温t时,干燥空气的声速v可以表示为:v = v₀ √(T/t)其中,T为绝对温度,t为室温。
2. 测量声速的实验方法:利用压电换能器产生和接收超声波,通过测量超声波的频率f和波长λ,可以计算声速v:v = f λ其中,频率f由声源振动频率得到,波长λ可以通过相位法测得。
3. 相位法:当超声波发生器发出的声波是平面波时,当接收器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。
沿传播方向移动接收器时,总可以找到一个位置使得接收到的信号与发射器的激励电信号同相。
继续移动接收器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。
三、实验仪器1. 函数信号发生器一台2. 超声波发射器一台3. 超声波接收器一台4. 双踪示波器一台5. 压电陶瓷换能器两台6. 同轴电缆若干7. 温度计一台8. 卷尺一把四、实验步骤1. 将函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接收器的输出端和示波器的通道2相连。
2. 将压电陶瓷换能器安装在支架上,使其相对位置固定。
3. 调整函数信号发生器的输出频率,使其在超声波发射器的工作频率范围内。
4. 使用示波器观察发射器和接收器信号的波形,并调整接收器位置,使接收到的信号与发射器的激励电信号同相。
5. 记录此时接收器与发射器之间的距离,即为声波的波长λ。
6. 重复步骤4和5,记录多组数据。
7. 利用逐差法对实验数据进行处理,计算声速v。
五、实验结果1. 测量得到的声波波长λ的平均值为λ = 0.0200 m。
2. 利用公式v = f λ计算得到的声速v的平均值为v = 402.0 m/s。
声速的测量实验报告
声速的测量实验报告不会写声速的测量实验报告的朋友,下面请看小编给大家整理收集的声速的测量实验报告,仅供参考。
声速的测量实验报告1实验目的:测量声音在空气中的传播速度。
实验器材:温度计、卷尺、秒表。
实验地点:平遥县状元桥东。
实验人员:爱物学理小组实验分工:张灏、成立敬——测量时间张海涛——发声贾兴藩——测温实验过程:1 测量一段开阔地长;2 测量人在两端准备;3 计时员挥手致意,发声人准备发声;4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止)5 多测几次,记录数据。
实验结果:时间17∶30温度21℃发声时间0.26″发声距离 93m实验结论:在21℃空气中,声音传播速度为357.69m/s.实验反思:有一定误差,卡表不够准确。
声速的测量实验报告2实验目的:1)探究影响声速的因素,超声波产生和接收的原理。
2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。
4)三种声速测量方法作初步的比较研究。
实验仪器:1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。
4)信号发生器: 5)示波器实验原理: 1)空气中:a.在理想气体中声波的传播速度为v88(式中8088cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。
)标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下(T0�8�8273.15K,p�8�8101.3�8�8kPa),干燥空气中的声速为v0=331.5m/s。
在室温t℃下,干燥空气中的声速为v88v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。
当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。
声速的测量实验报告
声速的测量实验报告一、实验目的通过本次实验,掌握测量声速的方法及原理,熟悉实验仪器的操作,并进一步加深对声学基础理论的理解。
二、实验器材•信号发生器、功放器•话筒•扬声器•Oscilloscope•PC机三、实验原理声速指的是在自由空气中声波传播的速度。
实验使用的原理是产生谐振,求出谐振频率,进而计算出波长和声速的值。
实验中使用两个分别为x和x+l的话筒,用扬声器向话筒内产生声音。
由于声音在两个话筒之间反射,从而产生谐振。
此时,发生器的频率即为一共振频率。
当两个话筒之间的距离为整数倍的半波长时,声波信号会在两个话筒之间构成明显的谐振。
根据声波波长、振幅、频率之间的关系,公式为:$\\lambda=4(x_l - x)$, $v_s=f\\lambda$。
四、实验步骤1.连接仪器:将信号发生器和功放器连接到扬声器上,将话筒和示波器连接。
2.调整扬声器音量至较小的幅度,并调整发生器频率。
3.将两个话筒放置在合适位置,打开附近的窗户保证室内空气流通,调节话筒位置以保证话筒下方的空气流畅。
4.调节发生器频率直到观察到谐振现象,记录下其频率f。
5.移动一个话筒,调节其位置,直至观察到下一个谐振现象,记录此时的频率f′。
6.重复步骤5,直到观察到5个不同的谐振现象,记录各自的频率和距离x l−x。
7.对于每一个谐振现象,使用公式:$\\lambda=4(x_l-x)$计算出波长,并使用公式:$v_s=f\\lambda$计算出声速的值,记录到实验数据表中。
8.最终计算所得的声速的平均值为本次实验的测量值。
五、实验数据以下为本次实验所获得的数据:序号频率f(Hz)x l−x(m)波长$\\lambda$(m)声速v s(m/s)1 332.47 0.125 0.500 166.232 665.86 0.250 0.500 332.933 998.74 0.375 0.500 499.374 1332.09 0.5 0.50 666.045 1665.90 0.625 0.500 832.95六、实验结论通过本次实验,我们成功地使用谐振的方法测量了自由空气中声音的速度,获得了声速v s的落差数据。
实验报告--声速的测量
实验报告--声速的测量一声速,这个词听上去有点儿高大上,其实生活中随处可见。
想象一下,阳光明媚的日子里,朋友们在操场上打球,远处传来一声巨响。
你有没有注意到,你先看到球飞过,耳朵里却慢了一拍,才听到声音?这就是声速的魅力,快得让人惊叹。
1.1 实验的准备首先,我们得准备一些简单的工具。
一个计时器,一根长长的绳子,当然还有个听得见的声音源,比如说一个小鼓或一根哨子。
听起来简单吧?没错,实际操作时却充满乐趣。
把绳子拉直,朋友们站在不同的位置,准备好,等着那一瞬间。
大家心里都激动不已。
1.2 测量的方法我们决定用“看声”的方式。
有人在远处敲鼓,另一个人则在离鼓约100米的地方,眼睛紧盯着。
鼓声一响,计时器开始计时。
等到声音传来,计时器停下。
每个人的心跳都在加速,生怕错过了那一瞬间。
数据记录下来,一切都那么直接,那种感觉,真是妙不可言。
二2.1 数据的分析接下来,我们得分析这些数据。
为了得到声速,我们需要用公式:声速等于距离除以时间。
假设我们记录到的时间是0.3秒,距离是100米,那么声速就成了333米每秒。
听到这里,是不是觉得声音就像一阵风,瞬间吹过?当然,这只是一个粗略的估计,真实情况可能会受到许多因素的影响。
2.2 环境因素的影响在不同的环境下,声速是有差异的。
比如,水里的声速比空气快得多。
想象一下,如果在水下,你的声音仿佛穿越了时空。
再说说温度,热空气中的声音传播得更快。
记得那次实验吗?我们在阳光下和阴凉处分别测试,结果差别不小。
这就像是在说,同样的声音,放在不同的地方,效果却大相径庭。
2.3 误差的来源当然,实验总是有误差的。
第一,环境噪声会影响我们的判断,谁能保证鼓声和其他声音的清晰度?第二,计时的准确性也会影响结果。
手一抖,可能就多了几毫秒。
这样想来,实验不仅是测量,更是一个探寻的过程,让我们不断接近真实。
三3.1 实验的意义声速的测量,不仅仅是为了求得一个数字。
它揭示了声波传播的奥秘。
想想音乐,声波通过空气传递到我们的耳朵,触动了我们的心弦。
《声速测量》实验报告
《声速测量》实验报告声速是声波在介质中传播的速度,本实验的目的是测量实验室中空气中的声速,以及通过声速的测量,推导出空气的密度。
实验装置包括电脑、声卡芯片、microphone、speaker、发声器和又称RC发射谐振器的震荡电路。
实验首先要校准实验装置,即使用一个精确已知的参考频率对声卡进行调节。
然后通过发射谐振器发出音频信号,经过空气传播后,由microphone接收信号并使用声卡将信号转化为数字信号。
通过分析这些数字信号的特征,如频率、相位、时间延迟等等,就可以得到声音在空气中传播的速度和空气的密度。
实验步骤如下:1. 点击声卡控制面板,进入声卡设置窗口。
点击“选项”-“属性”-“高级”-“立体声混音”,打开“测量”选项卡。
将“线路”改为“音频输入”,“测量信号”改为“PCM31”。
点击“测量”按钮,打开调节界面。
2. 点击“参考值”,设置参考频率为1000Hz,点击“OK”并关闭对话框,即可准确地调整电平到说话者的目录电平。
3. 点击“开始测量”按钮,可以看到一个实时的音量波形图,此时室内应保持安静。
点击“收集”按钮,即可获得此电平下的频率和振幅信息。
4. 关闭“收集”对话框,并反复点击“收集”按钮,每个采样点的于分别记录。
5. 使用震荡电路发射频率为1000Hz的声音信号,让它在室内自由传播并记录下所有信号特征。
6. 通过计算测量的信号特征,包括频率、振幅、相位、时间延迟等等,计算出声音在空气中的传播速度。
1. 自适应电平调整结果:目录电平为0.9V2. 第一次测量结果:频率为1000Hz,振幅为1.2V,相位为0度,时间延迟为0ms通过以上数据可以计算出声音在空气中的平均传播速度为341.2m/s,由此可以推导出空气在20°C下的密度为1.20kg/m³。
总体来说,此实验通过测量声音在空气中的传播速度,推导出空气的密度,加深了我们对声波的认识。
该实验需要精确的仪器和对声波有一定了解,需高度重视实验安全。
测声速实验报告实验步骤
一、实验目的1. 理解声速测量的基本原理。
2. 学会使用声速测量仪器,如声速计、示波器等。
3. 通过实验,掌握测量声速的方法和技巧。
二、实验原理声速是指声波在介质中传播的速度。
声速与介质的密度、弹性模量等因素有关。
本实验采用声速计直接测量声速,通过测量声波在已知距离内传播的时间,计算出声速。
三、实验器材1. 声速计一台2. 示波器一台3. 音频信号发生器一台4. 长度测量工具(如卷尺)5. 耳塞(可选)四、实验步骤1. 准备工作(1)检查声速计、示波器、音频信号发生器等实验器材是否完好。
(2)将声速计、示波器、音频信号发生器连接好,确保各仪器工作正常。
(3)将音频信号发生器的输出端连接到声速计的输入端,示波器的通道1连接到声速计的输出端。
2. 测量环境准备(1)选择一个开阔、安静的实验场地,确保声波传播不受干扰。
(2)使用长度测量工具测量实验场地的长度,确保长度足够长,以便于测量声速。
3. 声速测量(1)将音频信号发生器调至合适的频率,如1kHz。
(2)将声速计放置在实验场地的一端,确保声速计与地面平行。
(3)打开音频信号发生器,同时开启声速计。
(4)在实验场地另一端,使用示波器观察声速计输出信号的变化。
(5)当示波器显示信号稳定后,记录声速计显示的声速值。
(6)重复步骤3-5,进行多次测量,取平均值作为最终结果。
4. 数据处理(1)将多次测量的声速值进行平均,得到实验测得的声速。
(2)根据实验原理,计算理论声速,并与实验测得的声速进行比较,分析误差来源。
5. 实验结束(1)关闭音频信号发生器,关闭声速计和示波器。
(2)整理实验器材,确保实验场地整洁。
五、注意事项1. 在实验过程中,确保实验场地安静,避免外界干扰。
2. 在使用声速计和示波器时,注意观察仪器显示,确保数据准确。
3. 实验过程中,避免触碰实验器材,确保安全。
4. 实验结束后,及时整理实验器材,保持实验室整洁。
通过以上实验步骤,我们可以掌握声速测量的基本方法,为后续相关实验奠定基础。
(完整)《声速测量》实验报告
《声速测量》实验预习报告一、 实验原理 1.理论计算理想气体中声波的传播速度为MRTv γ=其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=8。
31441J/(mol ·K )在室温t 下,干燥空气中的声速为01T t v v += 其中,s m v /5.3310=,K T 15.2730=.但实际中空气并不是干燥的,所以修正的结果为⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+=p rp Ttv s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1⨯=。
2.实验方法由于λf v =,故只要测出频率和波长,就可以求出声速。
其中,声波频率由声源振动频率得到,再用相位法测得波长即可。
波可以看成是相位的传播。
沿传播方向上的任意两点,只要他们的振动状态相同,即同相或者相位差为2π的整数倍,这时两点间的距离应等于波长λ的整数倍,即λn l =.当在发射器的声波中沿传播方向移动接受器时,总可以找到一个位置,使得接受器接受到的电信号和发射器的激励电信号同相。
继续移动接受器,知道接受的信号再一次和激励电信号同相的时候,移过的距离必然等于声波的波长。
利用利萨如图形在两个电信号同相或反相时椭圆退化为友斜或左斜直线即可判断。
二、实验步骤1.连接电路。
函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的通道2相连.函数信号发生器置于正弦波输出,频率置于100kHz档,输出幅度调到峰值10V左右。
2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。
先将函数信号发生器的频率调节到40kHz左右,然后细调频率,使接受器输出信号最大,记下此频率,即超声波频率。
实验过程中若有改变,记下最大最小值,最后取平均值。
3.用相位法测波长。
利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处理.得到波长的平均值。
最新实验报告-声速测量
最新实验报告-声速测量在本次实验中,我们旨在通过两种不同的方法来测量声速,并对结果进行比较分析。
实验的主要目的是加深对声速这一物理量的理解,并熟悉相关测量技术。
实验方法一:共振管法1. 制备一根密封良好的玻璃管,管内充满水。
2. 使用标准音叉产生固定频率的声音,并通过水面上方的扬声器播放。
3. 逐渐降低水位,直到在管的开口端听到共振的声音,记录此时的水位高度。
4. 通过测量共振时管内水的长度,结合声波的波长公式(波长=声速/频率),计算声速。
实验方法二:闪光摄影法1. 准备一个封闭的室内空间,设置好麦克风和闪光灯。
2. 利用电子触发器控制闪光灯的开启,同时记录麦克风接收到声音信号的时间。
3. 通过改变麦克风与闪光灯之间的距离,重复实验多次,记录不同距离下的声速数据。
4. 利用声速公式(声速=距离/时间),计算并求平均值。
实验结果与分析通过共振管法,我们得到了声速的初步测量值为343米/秒,与理论值相当接近。
而闪光摄影法得到的声速测量值为342米/秒,略有偏差,这可能是由于实验操作中的微小误差或环境因素造成的。
两种方法所得结果均在可接受误差范围内,验证了实验的可靠性。
通过对比两种方法,我们可以看出,共振管法操作简单,但对环境要求较高;而闪光摄影法虽然设备要求较高,但能提供更为精确的测量结果。
结论本次实验成功地通过两种不同的物理方法测量了声速,并对结果进行了比较。
实验结果表明,尽管存在微小的误差,但两种方法都能有效测量声速,且结果具有一致性。
这不仅加深了我们对声速测量技术的理解,也为我们提供了实验设计和数据分析的宝贵经验。
未来的工作可以集中在进一步减小误差和提高测量精度上。
声速测量实验报告
声速测量实验报告一、实验背景声速,听起来似乎很简单,但它的测量却是个有趣的挑战。
科学家们早就发现,声音在不同的介质中传播的速度不一样。
这次实验,目的是想更深入了解声速在空气中的表现。
记得小时候,听见雷声总是先于闪电,那时候就好奇,声音究竟是多快的呢?1.1 声速的基本概念声速,简单来说,就是声音在某个介质中传播的速度。
在空气中,声速大约是343米每秒,哇,想想就觉得快得吓人。
温度、气压等因素都会影响声速。
比如,温度越高,声速越快,理由也很简单,空气分子的运动加快,声音就能更快传递了。
1.2 声速的影响因素声音的传播还受很多因素影响。
气温、湿度、风速,甚至是周围的环境都能左右声速。
在寒冷的冬天,声音就没那么迅速,而在潮湿的环境中,声音又能跑得飞快。
总之,声速不是一成不变的,这让我们在实验中充满了期待。
二、实验设计2.1 实验目的我们希望通过这次实验,亲身测量声速,并观察环境变化对声速的影响。
通过实际操作,加深对声速的理解,激发我们对物理学的热爱。
2.2 实验器材实验器材准备得相当简单。
需要一个音响,当然越响越好;一个麦克风,用来接收声音;还有个计时器,记录时间。
哎,科学实验就是这样,少不了各种“黑科技”的辅助。
2.3 实验步骤实验步骤也不复杂。
首先,选择一个安静的环境。
接着,将音响放在一端,麦克风放在另一端。
然后,播放一个声音,开始计时。
等声音到达麦克风时,立刻停止计时。
最后,根据公式,计算声速。
嘿,简单明了吧?三、实验结果3.1 数据记录实验过程中,我们记录了不同温度下声速的变化。
在20度时,声速是343米每秒;在30度时,声速上升到了349米每秒。
数据真是显而易见,温度一升,声速就跟着“飞”起来。
3.2 数据分析分析这些数据,能够看出温度对声速的影响是显著的。
气温升高时,空气分子运动加快,声音传播自然也就迅速了。
这个道理很简单,却又十分有趣。
四、总结通过这次声速测量实验,我们不仅收获了数据,也收获了对声速的深刻理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《声速测量》实验预习报告
一、 实验原理 1.
理论计算
理想气体中声波的传播速度为
M
RT
v γ=
其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=8.31441J/(mol ·K)
在室温t 下,干燥空气中的声速为
01T t v v +
= 其中,s m v /5.3310=,K T 15.2730=。
但实际中空气并不是干燥的,所以修正的结果为
⎪⎪⎭
⎫
⎝
⎛+⎪⎪⎭⎫ ⎝
⎛+=p rp T
t
v s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1⨯=。
2.
实验方法
由于λf v =,故只要测出频率和波长,就可以求出声速。
其中,声波频率由声源振动频率得到,再用相位法测得波长即可。
波可以看成是相位的传播。
沿传播方向上的任意两点,只要他们的振动状态相同,即同相或者相位差为2π的整数倍,
这时两点间的距离应等于波长λ的整数倍,即λn
l=。
当在发射器的声波中沿传播方向移动接受器时,总可以找到一
个位置,使得接受器接受到的电信号和发射器的激励电信号同
相。
继续移动接受器,知道接受的信号再一次和激励电信号同
相的时候,移过的距离必然等于声波的波长。
利用利萨如图形
在两个电信号同相或反相时椭圆退化为友斜或左斜直线即可
判断。
二、实验步骤
1.连接电路。
函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的
通道2相连。
函数信号发生器置于正弦波输出,频率置于100kHz
档,输出幅度调到峰值10V左右。
2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。
先将函数信号发生器的频率调节到40kHz左右,然后细调频率,使接受器输出信号最大,记下此频率,即超声
波频率。
实验过程中若有改变,记下最大最小值,最后取平均
值。
3.用相位法测波长。
利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处
理。
得到波长的平均值。
计算声速。
4.在测量开始和结束时,先后记录室温t1和t2,以及相对湿
度r 1和r 2,并查出平均室温对应的饱和蒸汽压。
若温度不是整数值,则按线性内插法求出准确的饱和蒸汽压值。
计算理论值,和实验值比较。
三、 数据处理
超声波的频率f= 40.009 kHz
()(
)
mm
mm
mm
s mm 05.075.805.052.0203.02
21010±=∆±==∆=∆+=
∆=∆λλλλλλ仪
仪
s
m v f Hz
s m f v f v f /0.21.3500057
.010/1.3501075.810009.402
2
33±==⎪⎭⎫ ⎝
⎛∆+⎪⎪⎭⎫ ⎝⎛∆=∆=∆=⨯⨯⨯==-λλλ
理论计算:
t 1=25.0℃ t 2=25.4℃ t=25.2℃ r 1=55% r 2=58% r=56.5% p s =0.0321
01039
.0%1005
.3465.3461.350/5.34631.0115.3310=⨯-=∆=⎪⎪⎭⎫ ⎝⎛
+⎪⎪⎭⎫ ⎝⎛+=v s s m p rp T t v。