math 函数大全
Mathematica的常用函数

Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入 , 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num->a表达式/.{x->a, y->b,…}如何用mathematica进行复数运算a+b*I表示复数a+bIConjugate[z]求复数z的共轭复数Exp[z]复数的指数函数,表示e^zRe[z]求复数z的实部Im[z]求复数z的虚部Abs[z]求复数z的模Arg[z]求复数z的辐角,如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:{a, b, c,…}表示由a, b, c,…组成的集合(注意:必须用大括号)下列命令可以生成特殊的集合:Table[f,{n}]生成包含n个元素f的集合Table[f[n],{n,nmax}]n从1到nmax,间隔为1,生成集合{f[1], f[2], f[3],…, f[nmax]} Table[f[n],{n,nmin, nmax}]n从nmin到nmax,间隔为1,生成集合{f[nmin], f[nmin+1], f[nmin+2],…, f[nmax]}Table[f[n],{n,nmin, nmax, dn}]n从nmin到nmax,间隔为dn,生成集合{f[nmin],f[nmin+dn], f[nmin+2*dn],…, f[nmax]}Range[n]生成集合{1, 2, 3 ,…, n}Range[imin, imax]生成集合{imin,imin+1,imin+2,…,imax}Range[imin, imax, di]生成集合{imin,imin+di,imin+2*di,… } (最大不超过imax)如何用Mathematica求集合的交集、并集、差集和补集Union[A,B,C,…] 求集合A,B,C,…的并集A~Union~B~U nion~C~Union~… 求集合A,B,C,…的并集A∪B∪C∪… 求集合A,B,C,…的并集Intersection[A,B,C,…] 求集合A,B,C,…的交集A~ Intersection ~B~ Intersection ~C~ Intersection ~… 求集合A,B,C,…的交集A∩B∩C∩… 求集合A,B,C,…的交集Complement [A,B,C,…] 求差集A~ Complement ~B~ Complement ~C~ Complement ~… 求差集Complement [全集I,A] 求集合A关于全集I的补集全集I ~ Complement ~A 求集合A关于全集I的补集如何mathematica用排序Sort[v]将数组或向量v的元素从小到大排列(升序排列)Reverse[v]将数组或向量v的元素按照与原来相反的顺序重新排列(续排列)RotateLeft[v]将数组或向量v中的每一个元素向左移一个位置RotateRight[v]将数组或向量v中的每一个元素向右移一个位置RotateLeft[v,n]将数组或向量v中的每一个元素向左移n个位置RotateRight[v,n]将数组或向量v中的每一个元素向右移n个位置如何在Mathematica中解方程Solve[方程,变元]注:方程的等号必须用: = =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用: = =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[不等式,变元]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]如何用mathematica表示分段函数lhs:=rhs/;condition当condition成立时,lhs才会被定义成rhsIf[test,then,else]如果test为True,则执行then,否则执行 elseIf[test,then,else,unknown]如果test为True,则执行then,为False时,则执行else,无法判断test是True或False时则执行unknownWhich[test1,value1,test2,value2,...]如果test1为True,则执行value1,test2为True,则执行value2,依次类推。
C语言math.h中常用函数

C语⾔math.h中常⽤函数1.绝对值2.取整和取余3.三⾓函数4.反三⾓函数5.双曲三⾓函数6.指数和对数7.标准化浮点数8.多项式9.数学错误计算处理1.绝对值函数原型: int abs(int x);函数功能: 求整数x的绝对值int number=-1234;abs(number);函数原型:double fabs(double x);函数功能:求浮点数x的绝对值.float number=-1234.0;fabs(number);函数原型:double cabs(struct complex znum)函数功能:求复数的绝对值参数说明:zuum为⽤结构struct complex表⽰的复数,定义如下:struct complex{double m;double n;}#include <stdio.h>#include <math.h>int main(){struct complex z;double val;z.x=2.0;z.y=1.0;val=cabs(z);printf("The absolute value of %.2lfi %.2lfj is %.2lf",z.x,z.y,val);return 0;}2.取整和取余函数原型: double ceil(double num)函数功能: 得到不⼩于num的最⼩整数函数返回: ⽤双精度表⽰的最⼩整数函数原型: double floor(double x);函数功能: 求出不⼤于x的最⼤整数.函数返回: 该整数的双精度实数函数原型:double fmod (double x, double y); 返回两参数相除x/y的余数,符号与x相同。
如果y为0,则结果与具体的额实现有关int main(){double number=123.54;double down,up;down=floor(number);up=ceil(number);printf("original number %10.2lf",number);//123.54printf("number rounded down %10.2lf",down); //123printf("number rounded up %10.2lf",up); //124return 0;}函数名称: modf函数原型: double modf(double val,double *iptr);函数功能: 把双精度数val分解为整数部分和⼩数部分,把整数部分存到iptr指向的单元.函数返回: val的⼩数部分参数说明: val 待分解的数所属⽂件: <math.h>使⽤范例:#include <math.h>#include <stdio.h>int main(){double fraction,integer;double number=100000.567;fraction=modf(number,&integer);printf("The whole and fractional parts of %lf are %lf and %lf",number,integer,fraction); return 0;}3.三⾓函数函数原型: double sin(double x);函数功能: 计算sinx的值.正弦函数函数原型: double cos(double x);函数功能: 计算cos(x)的值.余弦函数.函数原型: double tan(double x);函数功能: 计算tan(x)的值,即计算⾓度x的正切数值@函数名称: hypot函数原型: double hypot(double x,double y)函数功能: 已知直⾓三⾓形两个直⾓边长度,求斜边长度函数返回: 斜边长度参数说明: x,y-直⾓边长度所属⽂件: <math.h>#include <stdio.h>#include <math.h>int main(){double result;double x=3.0;double y=4.0;result=hypot(x,y);printf("The hypotenuse is: %lf",result);return 0;}4.反三⾓函数函数原型: double asin(double x);函数功能: 计算sin^-1(x)的值.反正弦值函数函数原型: double acos(double x);函数功能: 计算cos^-1(x)的值,反余弦函数函数原型: double atan(double x);函数功能: 计算tan^-1(x)的值.函数原型: double atan2(double x,double y);函数功能: 计算tan^-1/(x/y)的值.求x/y的反正切值.5.双曲三⾓函数函数原型: double sinh(double x);函数功能: 计算x的双曲正弦函数sinh(x)的值.函数原型: double cosh(double x);函数功能: 计算x的双曲余弦cosh(x)的值.函数原型: double tanh(double x);函数功能: 计算x的双曲正切函数tanh(x)的值.#include <stdio.h>#include <math.h>int main(){double result,x=0.5;result=sin(x);printf("The sin() of %lf is %lf",x,result);return 0;}#include <stdio.h>#include <math.h>int main(){double result;double x=0.5;result=cosh(x);printf("The hyperboic cosine of %lf is %lf",x,result);return 0;}6.指数和对数函数原型: double exp(double x);函数功能: 求e的x次幂函数原型: double fmod(double x,double y);函数功能: 求整数x/y的余数函数原型: double frexp(double val,int *eptr);函数功能: 把双精度数val分解为数字部分(尾数)x和以2为底的指数n,即val=x*2^n,n存放在eptr指向的变量中.函数名称: pow函数原型: double pow(double x,double y);函数功能: 计算以x为底数的y次幂,即计算x^y的值.函数返回: 计算结果参数说明: x-底数,y-幂数所属⽂件: <math.h>使⽤范例:#include <math.h>#include <stdio.h>int main(){double x=2.0,y=3.0;printf("%lf raised to %lf is %lf",x,y,pow(x,y));return 0;}函数原型: double sqrt(double x);函数功能: 计算x的开平⽅.函数返回: 计算结果参数说明: x>=0所属⽂件: <math.h>使⽤范例:#include <math.h>#include <stdio.h>int main(){double x=4.0,result;result=sqrt(x);printf("The square root of %lf is %lf",x,result);return 0;}//log(10) 以 e 为底的 10 的对数;log10(100) 以 10 为底的 100 的对数;如果要算别的对数 log(8) / log(2) 以 2 为底的 8 的对数;如果要计算⾃然常数 e exp(1);//函数原型: double log(double x);函数功能: 求logeX(e指的是以e为底),即计算x的⾃然对数(ln X)函数返回: 计算结果参数说明:所属⽂件: <math.h>使⽤范例:#include <math.h>#include <stdio.h>int main(){double result;double x=8.6872;result=log(x);printf("The natural log of %lf is %lf",x,result);return 0;}函数名称: log10函数原型: double log10(double x);函数功能: 求log10x(10指的是以10为底).计算x的常⽤对数函数返回: 计算结果参数说明:所属⽂件: <math.h>使⽤范例:#include <math.h>#include <stdio.h>int main(){double result;double x=800.6872;result=log10(x);printf("The common log of %lf is %lf",x,result);return 0;}#include <stdio.h>#include <math.h>int main(){double result;double x=4.0;result=exp(x);printf("'e' raised to the power of %lf(e^%lf)=%lf",x,x,result);return 0;}#include <math.h>#include <stdio.h>int main(){double mantissa,number;int exponent;number=8.0;mantissa=frexp(number,&exponent);printf("The number %lf is",number);printf("%lf times two to the",mantissa);printf("power of %d",exponent);return 0;}7.标准化浮点数函数原型:double modf (double x, double *ip);函数功能:将参数的整数部分通过指针回传, 返回⼩数部分,整数部分保存在*ip中函数原型: double ldexp(double x,int exponent)函数功能: 计算x*2的exponent次幂,即2*pow(2,exponent)的数值#include <stdio.h>#include <math.h>int main(){double value;double x=2;value=ldexp(x,3);printf("The ldexp value is: %lf",value);return 0;}8.多项式函数名称: poly函数原型: double poly(double x,int degree,double coeffs[])函数功能: 计算多项式函数返回: 多项式的计算结果参数说明: 计算c[n]*x^n+c[n-1]x^n-1+.....+c[1]*x+c[0]所属⽂件: <math.h>#include <stdio.h>#include <math.h>int main(){double array[]={-1.0,5.0,-2.0,1.0};double result;result=poly(2.0,3,array);printf("The polynomial: x**3 - 2.0x**2 + 5x - 1 at 2.0 is %lf",result);return 0;}9.数学错误计算处理@函数名称: matherr函数原型: int matherr(struct exception *e)函数功能: 数学错误计算处理程序函数返回:参数说明: 该函数不能被直接调⽤,⽽是被库函数_matherr()调⽤所属⽂件: <math.h>#include<math.h>int matherr(struct exception *a){return 1;}原⽂:https:///weibo1230123/article/details/81352581。
math对象的常用方法

math对象的常用方法Math是JavaScript中的一个内置对象,通过它可以轻松地进行数学计算。
Math对象有很多常用的方法,这些方法可以用于计算和操作数字。
下面介绍几个Math对象的常用方法。
1. Math.abs(): 求绝对值Math.abs()方法用于求一个数字的绝对值。
例如:Math.abs(-10); // 返回值为102. Math.ceil(): 向上取整Math.ceil()方法返回一个大于或等于传入参数的整数。
例如:Math.ceil(10.2); // 返回值为113. Math.floor(): 向下取整Math.floor()方法返回一个小于或等于传入参数的整数。
例如:Math.floor(10.8); // 返回值为104. Math.max(): 返回最大值Math.max()方法用于返回传入参数中的最大值。
例如:Math.max(10, 20, 30); // 返回值为305. Math.min(): 返回最小值Math.min()方法用于返回传入参数中的最小值。
例如:Math.min(10, 20, 30); // 返回值为106. Math.pow(): 求幂Math.pow()方法用于求一个数的幂。
例如:Math.pow(2, 3); // 返回值为87. Math.random(): 生成随机数Math.random()方法用于生成一个介于0到1之间的随机数,包括0但不包括1。
例如:Math.random(); // 可能返回0.65734731894588658. Math.round(): 四舍五入Math.round()方法用于对一个数字进行四舍五入。
例如:Math.round(10.49); // 返回值为10Math.round(10.5); // 返回值为11以上是Math对象的几个常用方法,通过它们可以轻松地进行各种数学计算。
在实际开发中,我们可以结合具体业务需求灵活运用这些方法。
Mathematica函数大全--运算符及特殊符号

Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果name 关于系统变量name的信息name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容<Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个列表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}] '或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii 为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独立变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...} FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排排? Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产生伪随机数如果采用了<在2.0版本为<<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m" Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}] NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲? Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel} 边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color}color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)>选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度十四、绘图函数(续)图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpi小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blocki Switch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒的提示Pause[n] 运行暂停n秒十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了*) (*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程*) (*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达达式?Function[x, body] 单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n 纯函数的第一、第n个自变量## 纯函数的所有自变量的序列examp: #1^#2& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[exprr]]..} FixedPoint[f, expr] 将f复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]br> Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型十七、替换规则lhs->rhs 建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True或False*)(*可以在Mathematica中用“?*Q”查询到*)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ十九、字符串函数"text" 一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的子串,参数同Take[] StringDrop["string", n] 参见Drop,串也就是一个表StringInsert["string","snew",n] 插入,参见Insert[]StringPosition["string", "sub"] 返回子串sub在string中起止字母位置StringReplace["string",{"s1"->"p1",..}] 子串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snew把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作一个输入流赋予一个变量Characters["string"] 把串"string"分解为每一个字符的表ToCharacterCode["string"] 把串"string"分解为每一个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的大写形式ToLowerCase[string] 把串的小写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把一个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表。
Mathematica 函数大全

Mathematica 函数大全--运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果?name 关于系统变量name 的信息??name 关于系统变量name 的全部信息!command 执行Dos 命令n! N 的阶乘!!filename 显示文件内容<Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个表在c 语言中使用math 的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule 作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var 的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方base^^num 以base 为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C 语言>,=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule 应用于exprexpr//.rule 将规则rule 不断应用于expr 知道不变为止param_ 名为param 的一个任意表达式(形式变量)param__ 名为param 的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180 角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr 中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var 的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x 无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi 无关的数字因子Coefficient[expr, form] 多项式expr 中form 的系数Coefficient[expr, form, n] 多项式expr 中form^n 的系数Exponent[expr, form] 表达式expr 中form 的最高指数Numerator[expr] 表达式expr 的分子Denominator[expr] 表达式expr 的分母ExpandNumerator[expr] 展开expr 的分子部分ExpandDenominator[expr] 展开expr 的分母部分ExpandDenominator[expr] 展开expr 的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars] 从方程组eqns 中解出varsSolve[eqns, vars, elims] 从方程组eqns 中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y 是x 的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x] 解微分方程组,其中yi 是x 的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns 中变量vars 约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f 的逆函数Root[f, k] 求多项式函数的第k 个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n 阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n 阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x 在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x 在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax},{y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0 时expr 的极限Residue[expr, {x,x0}] expr 在x0 处的留数Series[f, {x, x0, n}] 给出f[x]在x0 处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}] 先对y幂级数展开,再对x Normal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n 次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...] [f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den] 表示一个在x0 处x 的幂级数,其中aii 为系数O[x]^n n 阶小量x^nO[x, x0]^n n 阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n 阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x 在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x 在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax},{y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0 时expr 的极限Residue[expr, {x,x0}] expr 在x0 处的留数Series[f, {x, x0, n}] 给出f[x]在x0 处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}] 先对y幂级数展开,再对x Normal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n 次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den] 表示一个在x0 处x 的幂级数,其中aiO[x]^n n 阶小量x^nO[x, x0]^n n 阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly 中独立变量的列表CoefficientList[poly, var] 给出多项式poly 中变量var 的系数CoefficientList[poly, {var1,var2...}] 给出多项式poly 中变量var(i)的系数列? PolynomialMod[poly, m] poly 中各系数mod m 同余后得到的多项式,m 可为整式PolynomialQuotient[p, q, x] 以x 为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x 为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly,{poly1,poly2,...},{x1,x2...}] 得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=poly Resultant[poly1,poly2,var] 约去poly1,poly2 中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly 中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly 中与xi 无关项的数字公因子FactorList[poly] 给出poly 各个因子及其指数{{poly1,exp1},{...}...} FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是xi 无关的因式,其后是与xi 有关的因式按升幂的排排?Cyclotomic[n, x] n 阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..} 可以指定数据点上的n 阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]Random[type,range] 产生type类型且在range 范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange 为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n 为seed 产生伪随机数如果采用了<在2.0版本为<<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m"Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution,ExtremeValueDistribution,NoncentralFRatioDistribution,GammaDistribution,HalfNormalDistribution,LaplaceDistribution,LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution,UniformDistribution, WeibullDistributionN[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n 为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n 位NDSolve[eqns, y, {x, xmin, xmax}] 微分方程数值解NDSolve[eqns, {y1,y2,...},{x, xmin, xmax}] 微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0 为初值,寻找方程数值解FindRoot[lhs==rhs,{x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di 为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}] 函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0 为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f 为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0 约束下的最小值,x,b,c为向量,m 为矩阵LatticeReduce[{v1,v2...}] 向量组vi 的极小无关组数据处理:Fit[data,funs,vars] 用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9},{1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data 同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder 默认为3 次,可修改ListInterpolation[array] 对离散数据插值,array 可为n 维ListInterpolation[array,{{xmin,xmax},{ymin,yma x},..}]FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..] 以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}] 得到每个表中的最小值变换Min[{x1,x2...},{y1,y2,...}] 得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}] 得到每个表中的最大值Select[list, crit] 将表中使得crit 为True 的元素选择出来Count[list, pattern] 将表中匹配模式pattern 的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True 的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi 的并集并排序Intersection[list1,list2..] 表listi 的交集并排序Complement[listall,list1,list2...] 从全集listall 中对listi 的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*)IntegerDigits[n,b,len] 数字n 以b 近制的前len 个码元RealDigits[x,b,len] 类FromDigits[list] IntegerDigits 的反函数Rationalize[x,dx] 把实数x 有理化成有理数,误差小于dxChop[expr, delta] 将expr 中小于delta 的部分去掉,dx默认为10^-10 Accuracy[x] 给出x 小数部分位数,对于Pi,E 等为无限大Precision[x] 给出x 有效数字位数,对于Pi,E 等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{- 2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1 内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}] 将矩阵list 第k 行与第nk 列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m 的零空间,即m.NullSpace[m]==零向量RowReduce[m] m 化简为阶梯矩阵Minors[m, k] m 的所有k*k 阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat 自乘n 次Outer[f,list1,list2..] listi 中各个元之间相互组合,并作为f 的参数的到的矩矩? Outer[Times,list1,list2] 给出矩阵的外积SingularValues[m] m 的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m 的广义逆QRDecomposition[m] QR 分解SchurDecomposition[m] Schur 分解LUDecomposition[m] LU 分解十三、表函数(*“表”,我认为是Mathematica 中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr*)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di 为步长的数表Array[f, n] 一维表,元素为f[i] (i 从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]] 第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr 的元素值Take[list, n] 取出表list 前n 个元组成的表Take[list,{m,n}] 取出表list从m 到n 的元素组成的表Drop[list, n] 去掉表list 前n 个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list 的元上,为True 的所有元组成的表表的属性Length[expr] expr 第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2... 的阵TensorRank[expr] 秩Depth[expr] expr 最大深度Level[expr,n] 给出expr 中第n 层子表达式的列表Count[list, pattern] 满足模式的list 中元的个数MemberQ[list, form] list 中是否有匹配form 的元FreeQ[expr, form] MemberQ 的反函数Position[expr, pattern] 表中匹配模式pattern 的元素的位置列表Cases[{e1,e2...},pattern] 匹配模式pattern 的所有元素ei 的表表的操作Append[expr, elem] 返回在表expr 的最后追加elem元后的表Prepend[expr, elem] 返回在表expr 的最前添加elem元后的表Insert[list, elem, n] 在第n 元前插入elemInsert[expr,elem,{i,j,..}] 在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern] 删除匹配pattern 的所有元后剩下的表ReplacePart[expr,new,n] 将expr 的第n 元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n 次RotateRight[expr, n] 把表expr循环右移n 次Partition[list, n] 把list按每n 各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n 层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list 的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1 在expr2之后返回-1,如果expr1 与expr2全等返回0Signature[list] 把list 通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲线Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio 生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y 轴AxesLabel->{xlabel,ylabel}x,y 轴上的说明文字Ticks->None,Automatic,fun 用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}} 设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks 同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle} 设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..} 曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax},{y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array 的立体高度图ListPlot3D[array,shades] 同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmi n,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si 为某一个光源si={{dx,dy,dz},color}color 为灯色,向dx,dy,dz方向照射AmbientLight-> 颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y 轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}} 网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}] 二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array 数值画等高线选项:Contours->n 画n 条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}] 二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}] 在一个图上分块显示一组图形对象SelectionAnimate[notebook,t] 把选中的notebook 中的图画循环放映选项:(此处选项适用于全部图形函数)>选项:(此处选项适用于全部图形函数)Background-> 颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue 等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度图元函数Graphics[prim, options] prim 为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options] prim 为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades] 表示一个由array 和shade决定的曲面对象ContourGraphics[array] 表示一个由array 决定的等高线图对象DensityGraphics[array] 表示一个由array 决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z} 在指定位置画点Line[{p1,p2,..}] 经由pi 点连线Rectangle[{xmin, ymin},{xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}] 由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry 为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2 的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript 图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0 小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1 间的实数RGBColor[red, green, blue] RGB 颜色,均为0~1 间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1 间的实数CMYKColor[cyan, magenta, yellow, black] CMYK 颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位) ImageResolution->r 图形解析度r 个dpi 小(像素为单位) ImageResolution->r 图形解析度r 个dpi ImageMargins->{{left,right},{bottom,top}} 四边的空白ImageRotated->False 是否旋转90度显示十五、流程控制分支If[condition, t, f] 如果condition 为True, 执行t段,否则f段If[condition, t, f, u] 同上,即非True 又非False,则执行u 段Which[test1,block1,test2,block2..] 执行第一为True 的testi对应的blockiSwitch[expr,form1,block1,form2,block2..] 执行第一个expr所匹配的formi所对应的blocki 段循环Do[expr,{imax}] 重复执行expr imax 次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body 直到test 为FalseFor[start,test,incr,body] 类似于C 语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2异常控制Throw[value] 停止计算,把value 返回给最近一个Catch 处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw 返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag 匹配form 时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr 的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexprCheckAbort[expr,failexpr] 当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b] 计算expr,当耗用内存超过b 字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri 的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt 为对话框的提示Pause[n] 运行暂停n 秒的提示Pause[n] 运行暂停n 秒十六、函数编程(*函数编程是Mathematica 中很有特色也是最灵活的一部分,它充分体现了*)(*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程*)(*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达式Function[x, body] 单自变量纯函数Function[{x1,x2,...},body] 多自变量纯函数#,#n 纯函数的第一、第n 个自变量## 纯函数的所有自变量的序列examp: #1^#2& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level 层的每一个元上Apply[f,expr]或f@@expr 将expr 的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr 把f作用到expr 的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr 的第n 个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f 作用于expr 的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n 重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0 重到n 重复合函数的列表{expr,f[expr],f[f[exprr]]..}FixedPoint[f, expr] 将f 复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n 次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x] 返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f 对加法的分配率Distribute[expr, g] 对g 的分配率Identity[expr] expr 的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]br> Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr] 编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型十七、替换规则lhs->rhs 建立了一个规则,把lhs 换为rhs,并求rhs 的值lhs:>rhs 同上,只是不立即求rhs 的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules 不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}] 综合各个规则,产生一组优化的规则组十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True 或False*) (*可以在Mathematica 中用“?*Q”查询到*)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ十九、字符串函数"text" 一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n 个字符的子串,参数同Take[] StringDrop["string", n] 参见Drop,串也就是一个表StringInsert["string","snew",n] 插入,参见Insert[]StringPosition["string", "sub"] 返回子串sub在string 中起止字母位置StringReplace["string",{"s1"->"p1",..}] 子串替换StringReplacePart["string", "snew", {m, n}]把string第m~n 个字母之间的替换为snew StringToStream["string"] 把串当作一个输入流赋予一个变量Characters["string"] 把串"string"分解为每一个字符的表ToCharacterCode["string"] 把串"string"分解为每一个字符ASCII 值的表FromCharacterCode[n]ToCharacterCode 逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode 逆函数ToUpperCase[string] 把串的大写形式ToLowerCase[string] 把串的小写形式CharacterRange["c1","c2"] 给出ASCII 吗在c1 到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把一个串变为表达式Names["string"] 与?string 同,返回与string 同名的变量列表最后编辑BY 凹凸曼的马甲。
python中的math函数

python中的math函数python库常⽤函数及举例:1. 注意:使⽤math库前,⽤import导⼊该库>>> import math2. 取⼤于等于x的最⼩的整数值,如果x是⼀个整数,则返回x>>> math.ceil(4.12)53. 把y的正负号加到x前⾯,可以使⽤0>>> math.copysign(2,-3)-2.04. 求x的余弦,x必须是弧度>>> math.cos(math.pi/4)0.70710678118654765. 把x从弧度转换成⾓度>>> math.degrees(math.pi/4)45.06. e表⽰⼀个常量>>> math.e2.7182818284590457. exp()返回math.e(其值为2.71828)的x次⽅>>> math.exp(2)7.389056098930658. expm1()返回math.e的x(其值为2.71828)次⽅的值减1>>> math.expm1(2)6.389056098930659. fabs()返回x的绝对值>>> math.fabs(-0.03)0.0310. factorial()取x的阶乘的值>>> math.factorial(3)611. floor()取⼩于等于x的最⼤的整数值,如果x是⼀个整数,则返回⾃⾝>>> math.floor(4.999)412. fmod()得到x/y的余数,其值是⼀个浮点数>>> math.fmod(20,3)2.013. frexp()返回⼀个元组(m,e),其计算⽅式为:x分别除0.5和1,得到⼀个值的范围,2e的值在这个范围内,e取符合要求的最⼤整数值,然后x/(2e),得到m的值。
Mathematica常用语句

Mathematica常用语句一、常用常量PiπE eDegree 度(π/180)GoldenRatio 黄金分割比(0.618)Infinity 无穷大∞I 虚数单位ix=. 取消赋值xClear[x] 取消赋值x二、初等函数Log[x] ln xLog[a,x] log a xExp[x] x eSqrt[x] xSin[x] sin(x)Cos[x] cos(x)Tan[x] tan(x)Cot[x] cot(x)ArcSin[x] arcsin(x)ArcCos[x] arccos(x)三、函数的定义f[x_]:= 定义一元函数f[x_,y_]:= 定义二元函数四、常用函数:Plus[n1,n2,] 求和N[x,n] 取x的n位有效数字Abs[x] 取x的绝对值(x为复数时为取x的模) Sign[x] 符号函数Round[x] 最接近x的整数(可比x大也可比x小) Floor[x] 不大于x的最大整数Ceiling[x] 不小于x的最大整数Max[x1,x2,] 取变量x1,x2,的最大值Min[x1,x2,] 取变量x1,x2,的最小值Re[z] 取复数z的实部In[z] 取复数z的虚部Conjugate[z] 取复数z的共轭Arg[z] z的辐角Quotient[m,n] 取商函数(m被n除的整数部分)Mod[m,n] 取余函数(m被n除的余数部分)n!n的阶乘n!!n的双阶乘Binomial[n,m] 二项式系数mCn% 最近一次输出结果%% 倒数第二次输出%n 第n个输出结果Solve[方程] 解方程Fit[] 曲线拟合函数Simplify[] 用于化简的函数If语句If[条件,t,f]满足条件:执行t否则执行fIf[条件,t,f,u] 满足条件:执行t否则执行f无法判别执行u Which语句Which[条件1,t1,条件2,t2] 满足条件i执行ti五、表1、表的建立表名={元素1,元素2,}{循环变量n,循环初值n0,循环终值ni,步长增量d}(d为1时可省)Range[循环初值n0,循环终值ni,步长增量d](d为1时可省;n0为1时也可省)Table[通项公式f(m,n,),{m,m0,mi,d1},{ n,n0,ni,d1}]Array[f,n] 生成长为n,元素是f[i]的表Array[f,n,n0] 生成长为n,元素是f[i]且从f[n0]开始的表Array[f,{m,n}] 生成长为{m,n},元素是f[i,j]的二维数表Array[f,{n1,n2,}] 把f作用到n1,n2,构成的表2、表的调整Length[t] 求表中元素个数(即表长)T[[n]] 表t中第n个元素T[[-n]] 表t中倒数第n个元素First[t] 表t中第一个元素Last[t] 表t中最后一个元素T[[i,j]] 表t中第i个子表中的第j个元素T[[{n1,n2,}]]或Part[t,{n1,n2,}] 由表t中n1,n2,等元素组成的数表Position[t,x] 元素x在表t中的位置Take[t,{m,n}] 从表t中取出m~n的元素Rest[t] 去掉表t中第一个元素Drop[t,{m,n}] 从表t中去掉m~n的元素Prepend[t,a] 将a加到表t的第一位Append[t,a] 将a加到表t的最后一位Insert[t,a,k] 将a加到表t的第k位Raplace[t,a,k] 用a替换表t的第k位Apply[f,t] 将函数f作用到表t的每一位Sort[t] 将元素依标准排列(数字按大小,字母按abc) Reverse[t] 将元素按顺序倒排RatateLeft[t,k] 将元素向左轮换k位RatateRight[t,k] 将元素向右轮换k位Partition[t,n] 将表t分成n个元素的块Partition[t,n,d]Transpose[t] 将表t转置Join[t1,t2] 将t1和t2合并,但是不去掉重复元素Union[t1,t2,] 并集运算Intersection[t1,t2,] 交集运算Complement[t1,t2] 从t1中去掉t2中的元素六、绘图1、绘图函数Plot[f[x],{x,a,b}] 画f[x]在区间[a,b]上的函数图象ParametricPlot[{x[t],y[t]},{t,a,b }] 画参数图ListPlot[{x1,y2},{x2,y2},] 绘制点图Plot3D[f[x,y],{x,x0,x1},{y,y0,y1}] 三维图像ParametricPlot3D[{x[t],y[t],z[t]},{t,t0,t1}]参数三维图2、绘图函数修饰项①二维绘图所用的修饰项PlotRange->{a,b} 确定函数值得范围(a~b)PlotStyle->{RGBColor[a,b,c]}确定曲线颜色P lotStyle->{AbsoluteThickness[n]}确定曲线粗细(n=1、2、)②三维绘图所用的修饰项PlotPoints->{a,b} 网格数a×b个PlotRange->{a,b} 确定函数值得范围(a~b)Axes->True/False 是否显示坐标轴Boxed->True/False 是否加立体框Mesh->True/False 是否加网格Shading ->True/False 是否在曲面着色HiddenSurface-> True/False 被挡部分是否隐藏ViewPoint->{a,b,c} 调整观察角度七、极限与导数Limit[f[x],x->a] alim ()x f x → (a 可以是∞) Limit[f[x],x->a,Direction->1]求右极限 Limit[f[x],x->a,Direction->1]求左极限 D[f[x],x]df dx 或f x ∂∂ D[f[x],{x,k}]k 阶导数或k 阶偏导 D[f,x1,x2, ,xk] 1k f x x ∂∂∂D[f[x],x,NonConstants->{v1,v2,}] 求导时vi 是关于x 的函数 Dt[f,x]复合函数f 关于x 的导数 Dt[f,{x,k}]复合函数f 关于x 的k 阶导数 Dt[f,{x,k},Constants->{c1,c2,}] 求导的时候ci 看为常数Dt[f]全微分 f `[x]一阶导数( ` 是1前面的那个) f ``[x]二阶导数 Simplify[] 用于化简的函数FindMinimum[f,{x,x0}] 在x0附近求极值点(求极大值用-f)FindMinimum[f,{x,{x0,x1}}] 以x0,x1为初始值搜索极值 (用于无导数)FindMinimum[f,{x, {x,x0,a,b}] 求以x0为初始值搜索[a,b]区间的极值FindMinimum[f,{x, {x,a,b}] 求在[a,b]间的极值FindMinimum[f,{x, {x,x0},{y,y0}]多元函数极值 八、积分Integrate[f,x] 不定积分(f:被积函数,x:积分变量)Integrate[f,{x,a,b}] 定积分(f:被积函数,x:积分变量,a:上限,b:下限) Integrate[f,{x,x0,x1},{y,y0,y1},] 多重积分NIntegrate[f,{x,a,b}] 定积分近似值九、微分方程DSolve[方程组,函数f[x],变量x] 解微分方程(方程组可含有初边值条件) NDSolve[方程组,函数符号,变量符号及范围] 解微分方程数值解十、线性代数Array[a,{m,n}] 建一个m行n列的矩阵,元素为a[i,j]IndenityMatrix[n] 建一个n阶单位阵DiagonalMatrix[t] 建一个对角线上为表中元素的方阵MatrixForm[A] 将矩阵A按矩阵形式输出Det[A] 求方阵A的行列式Transpose[A] 矩阵A的转置Inverse[A ] 方阵A的逆矩阵A*B A与B对应元素相乘Dot[a,b]或a.b 数量积(.右下角)Cross[a,b]或a⨯b 向量积(⨯在输入模块上)Minors[M,k] 矩阵M的所有可能的k阶子式组成的矩阵RowReduce[A] 求A的行约化矩阵LinearSolve[A,B] 求满足Ax=B的一个解NullSpace[A] 求Ax=0的基础解析Eigenvalues[M]求方阵M 的特征值 Eigenvectors[M]求方阵M 的特征向量 Eiginsystem[M] 求方阵M 的特征值和特征向量 十一、级数Series[f,{x,x0,n}] 将函数f 做泰勒展开到0()n x x SeriesCoefficient[s,n] 求级数s 中第n 阶的系数Normal[s] 舍去级数s 的余项部分 FourierTrigSeries[f[x],x,k, FourierParameters->{a,1T }]f[x]的k 阶傅里叶展开(T:周期,a:基本周期区间中心) 十二、概率Mean[d]求均值 Median[d]求中位数 Quartiles[d]求0.25分位数,中位数,0.75分位数 Quantile [d,k]求k 分位数 Variance[d]求方差(无偏估计是的方差) StandardDeviation[d] 求标准差(无偏估计是的标准差) VarianceMLE[d] 求方差(总体方差的极大似然估计) StandardDeviationMLE[d]求标准差SampleRange[d] 极差CentralMoment[d,k] k 阶中心距(k=2、3、4)Skewness[d]偏度 Kurtosis[d] 峰度BinCounts[d,{a,b,k}] 将a~b 按长度k 等分小区间,求出在每个小区间的数据个数Max[x1,x2,] 取变量x1,x2,的最大值Min[x1,x2,] 取变量x1,x2,的最小值Length[t] 求表中元素个数(即表长) BarChart[bc] 画直方图(bc为数据对)。
math.h常用函数 -回复

math.h常用函数-回复在C语言中,math.h是一个常用的头文件,它包含了许多数学函数的声明和定义。
这些函数可以用于执行各种数学操作,例如计算平方根、三角函数、幂运算等等。
在本篇文章中,我们将逐步回答关于math.h常用函数的问题,以帮助读者更好地理解和使用这些函数。
一、math.h的引入与数学函数的声明首先,我们需要在C程序中引入math.h头文件,以便使用其中的数学函数。
在头文件中,这些函数通常是通过函数原型的形式进行声明的。
这些声明告诉编译器函数的名称、参数和返回值的类型,使其能够正确地处理函数调用。
二、常用的数学函数及其功能1. abs() 函数:用于计算一个整数的绝对值。
该函数的原型为int abs(int x)。
2. fabs() 函数:用于计算一个浮点数的绝对值。
该函数的原型为double fabs(double x)。
3. sqrt() 函数:用于计算一个数的平方根。
该函数的原型为double sqrt(double x)。
4. pow() 函数:用于计算一个数的幂次方。
该函数的原型为double pow(double x, double y)。
5. sin()、cos() 和tan() 函数:分别用于计算一个角度的正弦、余弦和正切值。
这些函数的原型分别为double sin(double x)、double cos(double x)和double tan(double x)。
6. asin()、acos() 和atan() 函数:分别用于计算一个数的反正弦、反余弦和反正切值。
这些函数的原型分别为double asin(double x)、double acos(double x)和double atan(double x)。
7. log() 和log10() 函数:分别用于计算一个数的自然对数和以10为底的对数。
这些函数的原型分别为double log(double x)和doublelog10(double x)。
java常用数学函数

java常用数学函数常用数学函数是在Java编程中经常使用的一些函数,它们可以帮助我们进行各种数学计算和操作。
下面我将介绍一些常用的数学函数及其用法。
1. Math.abs()函数:用于计算一个数的绝对值。
例如,Math.abs(-5)的结果为5。
2. Math.sqrt()函数:用于计算一个数的平方根。
例如,Math.sqrt(16)的结果为4。
3. Math.pow()函数:用于计算一个数的指定次幂。
例如,Math.pow(2, 3)的结果为8,表示2的3次方。
4. Math.ceil()函数:用于向上取整,返回大于或等于指定表达式的最小整数。
例如,Math.ceil(3.14)的结果为4。
5. Math.floor()函数:用于向下取整,返回小于或等于指定表达式的最大整数。
例如,Math.floor(3.14)的结果为3。
6. Math.round()函数:用于四舍五入,返回最接近指定表达式的整数。
例如,Math.round(3.14)的结果为3,Math.round(3.56)的结果为4。
7. Math.max()函数:用于返回多个数中的最大值。
例如,Math.max(5, 8, 3)的结果为8。
8. Math.min()函数:用于返回多个数中的最小值。
例如,Math.min(5, 8, 3)的结果为3。
9. Math.random()函数:用于生成一个0到1之间的随机数。
例如,Math.random()的结果可能为0.678。
10. Math.sin()函数:用于计算一个角度的正弦值。
例如,Math.sin(Math.PI/2)的结果为1,表示90度的正弦值为1。
11. Math.cos()函数:用于计算一个角度的余弦值。
例如,Math.cos(Math.PI/3)的结果为0.5,表示60度的余弦值为0.5。
12. Math.tan()函数:用于计算一个角度的正切值。
例如,Math.tan(Math.PI/4)的结果为1,表示45度的正切值为1。
math 函数

math 函数作为程序员,我们经常会用到“math 函数”来实现一些计算操作。
这些函数既包含基本的数学运算,也包含高级的统计和概率计算。
下面,我来分步骤阐述如何使用“math 函数”。
第一步:引入 math 函数在 Python 中,我们需要先引入 math 函数,即使用“import math”语句将该函数引入。
如下所示:import math这样,我们就可以使用 math 函数库中的各种函数了。
第二步:使用 math 函数1. 求平方根使用 math.sqrt() 函数可以计算一个数字的平方根。
如:import mathnum = 16print(math.sqrt(num))以上代码输出了 4.0,即 16 的平方根为 4。
2. 向上取整和向下取整使用 math.ceil() 函数可以将一个小数向上取整,而使用math.floor() 函数可以将一个小数向下取整。
如:import mathx = 3.4y = 3.6print(math.ceil(x)) # 输出 4print(math.floor(y)) # 输出 33. 求幂使用 math.pow() 函数可以计算一个数字的幂。
如:import mathx = 2y = 3print(math.pow(x, y)) # 输出 8.04. 计算三角函数使用 math.sin()、 math.cos() 和 math.tan() 函数可以分别计算一个角的正弦、余弦和正切值。
如:import mathangle = math.pi/4print(math.sin(angle)) # 输出 0.7071067811865475print(math.cos(angle)) # 输出 0.7071067811865476print(math.tan(angle)) # 输出 0.99999999999999995. 求对数使用 math.log() 函数可以计算一个数字的自然对数。
[整理]math studio函数.
![[整理]math studio函数.](https://img.taocdn.com/s3/m/3d676e5d5a8102d276a22f6a.png)
Apart(部分分式,做积分时常用的那个,与Together相反), Coefficient(系数),Degree(返回多项式的系数),Denominator(得到一个表达式的分母),Divisors(得到给定整数的所有因数,与nFactors相同), DivisorSigma(给定整数的所有因数的和),Eval(evaluate,求值),Expand(展开),Factor(实数范围内因式分解),GCD(最大公约数),LCM(least common multiple最小公倍数),PolyDivide(多项式除法),PolyFit(多项式拟合),PolyGCD(多项式的最大公因式),PolyLCM(多项式的最小公倍式),PowerExpand(展开所有的幂次形式),Quotient(多项式相除的商式),Remainder(多项式相除的余式),Sequence(计算数列的取定项),SimplifyPoly(简化多项式,某些时候就是因式分解), Solve, SolveSystem(解非线性方程组),Together与Apart相反,将分式通分)Abs(绝对值),Arg(幅角),Conj(求共轭复数),Hyperbolic Functions(双曲函数),Im(复数的虚部),Imag(复数表达式的虚部),Ln,Log,D(求对指定变量的指定阶导数),Diff(求对指定变量的一阶导数),DSolve(求解微分方程,可带初始条件),fDiff(求多元函数的全微分),FourierCos(傅里叶余弦变换),FourierSeries(函数展开成傅里叶级数),FourierSin(傅里叶正弦变换),iDiff(隐函数求导),iLaplace(拉普拉斯逆变换), Integrate(对指定变量进行定积分或不定积分),Laplace(拉普拉斯变换),Limit(求极限),NIntegrate(数值积分,定积分),pDiff(多元复合函数求导),Product(数列连续项的连乘积),Series(将给定函数展开到指定阶的迈克劳林级数),Sum(数列连续项的和Append(数组加长,字符串连接),Call(求函数在指定点的值)Caps(测试字符串在指定位置字母的大小写或更改指定位置字母的大小写), Char(求字母的ASCII值或求某ASCII值对应的字母),Choose(创建分段函数),Clear(将已赋给符号变量的值清除),Command,Date(返回系统时间的时、分或秒),Delete(删除数组或字符串的指定项),Extract(提取数组或字符串的指定项),Insert(在数组或字符串的指定位置插入项),IsList(测试符号变量是否为数组),IsMatrix(测试符号变量是否为矩阵),IsNumber(测试符号变量是否为复数(包括实数)),IsPoly(测试符号变量是否为多项式),Left(返回等式的左边部分),Length(返回字符串或数组的长度),List(按指定规则生成指定长度的数组),Matrix(创建指定行数和列数的矩阵),Part(表达式在指定位置的成分),Replace(替换表达式的一部分),Reshape(保持总元素个数不变,修改矩阵的行数和列数),Reverse(将数组按升序或降序排列),Right(返回等式的右边部分),Size(返回矩阵的行数和列数),Sort(将数组排序),String(将一维数组按顺序连接成字符串或者连接两个字符串),Value(将字符串转化成相应的变量值),Variables(找出一个表达式中的全部变量)Constant(返回物理学常数的具体数值),Finance(金融,当前价值、未来价值、利率、时长,贷款或投资什么的), HRStoHMS(将用小数表示的时间转化成用时分秒表示的时间,也相当于将小数表示的角度转化为用度分秒表示的角度(DEGtoDMS)),LoadList(读取文本中的数据生成数组),LoadMatrix(读取文本中的数据生成矩阵),Table(给某函数赋一系列自变量的值然后得出对应的系列函数值)Binomial(二项式系数,就是组合数nCr),Ceil(不小于给定值的最小整数,就是取整函数再加1),Eulerian(1到n连续n个自然数中有k个数大于前一个数的排列数), Factorial(n的阶乘,n!), Floor(取整函数,高斯函数),fPart(以分数或小数形式给出非整数的小数部分),iPart(一个数的整数部分,注意这不是取整函数),Mod(模,余数),Multinomial(多项式系数),nCr(组合数),nPr(排列数),nRoot(n次方根),Pochhammer(求n*(n+1)*(n+2)…*(n+k-1)的值),Round(将小数精确到指定位), Sign(判定所给数字的正负或者是否为0), Sqrt(开平方)clip(给定范围[a,b],削去小于a和大于b的部分,即绘出函数在a和b之间的部分),FullRectSineWave(经全波整理后的正弦波,即|sin(x)|), HalfRectSineWave(经半波整流后的正弦波,即(sin(x)+|sin(x)|)/2), SawToothWave(锯齿波),SquareWave(方波),StaircaseWave(阶梯波),TriangleWave(三角波)Code Files(代码文件),Commands(角度弧度互化、重置时间零点),Creating Scripts(脚本),Entering Expressions,Graphing Equations,Include Folder,Lists, Matrices(矩阵),Strings(字符串),Symbols(符号,Time Graphing(参数动画)Cholesky(乔里斯基,返回正定矩阵的奇异值,与Cholesky分解无关), coFactor(计算aij的余子式),Det(计算矩阵的行列式值),Eigenvalues(矩阵的特征值),Eigenvectors(计算矩阵的特征向量),Identity(n阶单位矩阵),Inverse(求逆矩阵),LUDecomposition(返回由三个元素组成的一个列表. 第一个元素是上三角和下三角矩阵的组合,第二个元素是一个指定用于绕轴旋转的行向量,并且对近似数值矩阵 m,第三个元素是m的L∞条件数的一个估计.),QR(QR分解法,把矩阵分解成一个正交矩阵与一个上三角矩阵的积),RowReduce(给出矩阵的行约化形式.),SVD(给出一个数值矩阵的奇异值分解),Transpose(矩阵转置)AlternatingSeries(用交错级数的部分和近似表达给定数),Catalan,该函数返回第n个Catalan数,(2n!)/(n+1)!),cFrac(用连分数表示给定数),Convergents(单词意为收敛,,给出无理数的近似分数表示),IsPrime(检测给定整数是否为质数,是就返回1,否就返回0),LegendreP(n次Legendre(勒让德)多项式,数学物理方程中常见),nFactors(求给定整数的所有因数,等同于Divisors),nPrimes(得到整数的所有质因数及每个质因数的指数),Pi-Digits(显示π的前n位小数),Random(在指定范围内生成随机数)ContourPlot(等高线,等值线),CylindricalPlot3D(柱坐标3D图像),FractalPlot(分形图形,绘出的东西很漂亮,ImagePlot(不懂啊),ImplicitPlot(隐函数图象),JuliaPlot(绘制分形图形,不知道与FractalPlot有什么区别),ListPlot(离散数据的散点图、柱状图、箱型图、折线图),ListPlot3D(3D散点图……),MultiPlot(在同一个坐标系中同时绘制多个函数图像),MultiPlot3D(在同一个坐标系中同时绘制多个3D函数图像), ParametricPlot(参数动画),ParametricPlot3D(3D参数动画),Plot(绘图),Plot3D(3D绘图),PolarPlot(极坐标绘图),SphericalPlot3D(球坐标绘图),VectorPlot(绘制向量场),VectorPlot3D(绘制3D向量场)Animate(动画???),CheckBox(复选框),Draw(?),DrawColor(绘图的颜色),DrawWindow(绘图的窗口),Else If,Error, If, Include, Loop, Message, Return, WhileScroll(创建滚动条,先设置参数的起始值、终止值和增加的步长,拖动滚动条参数便按步长变化),Trace(在二维图像中单击此项后,点击曲线上的点便可以显示横纵坐标,在脚本调试时有别的作用和含义), AiryAi(第一Airy(艾里)函数,Ai(z) 是微分方程 y”-xy=0的解),AiryBi(第二Airy(艾里)函数,Bi(z) 是微分方程y”-xy=0的另一个解), BesselI(第一类修正贝塞尔函数),BesselJ(第一类贝塞尔函数),BesselK(第二类修正贝塞尔函数),BesselY(第二类贝塞尔函数),−1(−1)−1),Beta(贝塔函数B(a,b)= 01Chi(双曲余弦积分函数,与双曲正弦积分函数的定义不对称,很复杂),Ci(余弦积分函数,对cos(t)/t在[x,+∞]上积分再加再加负号),Dawson(Dawson积分函数),DiGamma(双伽马函数,即0阶多伽马函数,对gamma函数取自然对数后求导), DiLog(二重对数函数),Dirichlet_Eta (),Dirichlet_Lambda,Ei (指数积分函数,),Erf(误差函数),Erfc(余误差函数),FresnelCos(菲涅尔余弦积分函数,对cos(t^2)在[0,x]上积分), FresnelSin(菲涅尔正弦积分函数,对sin(t^2)在[0,x]上积分),Gamma(伽马函数),Gudermannian(古德曼函数(gd(x)=arcsin(tanhx)=arctan(sinhx)=2arctan[tanh(x/2)]=2arctan(e^x)-π/2),HankelH1(第一类Hankel(汉克尔)函数,也称第三类贝塞尔函数),HankelH2(第二类Hankel(汉克尔)函数,也称第三类贝塞尔函数), Harmonic(输入值为正整数时得到调和级数前n项和,非正整数时很复杂), Hypergeom_2F1(超几何函数),invGudermannian(反古德曼函数,对[cos(t)]^(-1)在[0,x]上积分,inv是inverse(反的、逆的)的缩写),KelvinBei(开尔文函数),KelvinBer(开尔文函数),KelvinKei(开尔文函数),KelvinKer(开尔文函数),LambertW(朗伯W函数,是xe^x的反函数),Li(对数积分函数,对(lnx)^(-1)在[0,x]上积分),LnGamma(对伽马函数取自然对数),PolyGamma(n阶多伽马函数,对伽马函数取自然对数再求n+1阶导数), PolyLog(多重对数函数,前面的DiLog是二重对数函数),Psi(就是双伽马函数),RK4(Runge–Kutta methods,龙格-库塔方法,常微分方程数值解法中的迭代法), RK45(Runge–Kutta methods,不知道与前一个有什么区别),Shi(双曲正弦积分函数,对sinh(t)/t在[0,x]上积分),Si(正弦积分函数,对sin(t)/t在[x,+∞]上积分),Zeta(Zeta(s)等于无穷级数{k^(-s)}的和)Bernoulli(伯努利多项式,其生成函数为te^(xt)/(e^t-1)),ChebyshevT(第一类切比雪夫多项式,是微分方程(1-x^2)y”-xy’+n^2*y=0的解),ChebyshevU(第二类切比雪夫多项式,是微分方程(1-x^2)y”-3xy’+n(n+2)y=0的解),Euler(欧拉多项式,其生成函数为 2e^(xt)/(e^t+1)),Fibonacci(斐波那契额多项式,若只输入整数n,便返回第n+1个斐波那契数,0、1、1、2、3、5、8、13……),GegenbauerC(盖根鲍尔多项式,生成函数为(1-2xt+t^2)^(-α)),HermiteH(厄米多项式),LaguerreL(拉盖尔多项式,是微分方程xy”+(1-x)y’+ny=0的标准解),LegendreQ(第二类勒让德函数),Lucas(卢卡斯多项式,若只输入整数n,便返回第n个卢卡斯数,卢卡斯数列的递推规则与斐波那契数列相同,但将斐波那契数列的前两项0、1换成2、1) BinomialCDF(CDF即Cumulative distribution function,累积分布函数,BinomialCDF为累计二项分布函数),BinomialPDF(PDF即Probability Density Function,概率密度函数,BinomialPDF就是二项分布概率密度函数),ChiSquareCDF(卡方分布函数),ChiSquarePDF(卡方分布概率密度函数),Fcdf(累计F分布函数),Fpdf(F分布概率密度函数),GeoCDF(累计几何分布函数),GeoPDF(几何分布概率密度函数),InverseNormal(逆累积正态分布函数),Max(一组数据的最大值),Mean(一组数据的平均值),Min(一组数据的最小值),NormalCDF(正态分布函数),NormalPDF(正态分布概率密度函数),PoissonCDF(累计泊松分布函数),PoissonPDF(泊松分布概率密度函数),StandardDeviation(计算一组数据的标准偏差),StudentTCDF(student-t分布函数),StudentTPDF(student-t分布函数概率密度函数)Variance(计算一组数据的方差)DEGtoDMS(将小数表示的角度转化为用度分秒表示的角度,与HRStoHMS类似), ExpConvert(用双曲函数表示e^[f(x)]), sin, TrigCollect(用尽可能少的sin和cos表示给定的含三角函数的式子,就是对复杂的式子进行简化和整理,等同于TrigReduce),TrigConvert(借助欧拉公式将三角函数用指数表达),TrigExpand(将含和角、差角、倍角的式子全部展开成单角),TrigReduce(化简和整理,等同于TrigCollect)Angle(计算两个向量的夹角),Cross(计算两个向量的叉积),Curl(计算向量场的旋度,Curl(F)=∇×F),Divergence(向量场的散度,Divergence(F) = ∇·F),Dot(计算两个向量的点积),Duf(计算给定函数在指定点和指定方向的方向导数),Gradient(计算函数的梯度),Hessian(计算给定函数的Hessian矩阵或Hessian行列式),Jacobian(计算给定函数的Jacobi矩阵或Jacobi行列式), Laplacian(拉普拉斯算子),Norm(计算n维向量的范数,也就是模),SurfaceNormal(计算曲面在给定点的单位法向量)。
C++之cmath常用库函数一览

C++之cmath常⽤库函数⼀览C++之cmath常⽤库函数⼀览cmath是c++语⾔中的库函数,其中的c表⽰函数是来⾃c标准库的函数,math为数学常⽤库函数。
头⽂件为math.h,使⽤前需要在程序开头加上 #include<math.h> 或 #include<cmath>cmath中常⽤库函数:int abs(int i);//返回整型参数i的绝对值double fabs(double x);//返回双精度参数x的绝对值long labs(long n);//返回长整型参数n的绝对值double exp(double x);//返回指数函数e^x的值double log(double x);//返回logex的值double log10(double x) 返回log10x的值double pow(double x,double y) 返回x^y的值double pow10(int p) 返回10^p的值double sqrt(double x) 返回+√x的值double acos(double x) 返回x的反余弦arccos(x)值,x为弧度double asin(double x) 返回x的反正弦arcsin(x)值,x为弧度double atan(double x) 返回x的反正切arctan(x)值,x为弧度double cos(double x) 返回x的余弦cos(x)值,x为弧度double sin(double x) 返回x的正弦sin(x)值,x为弧度double tan(double x) 返回x的正切tan(x)值,x为弧度double hypot(double x,double y) 返回直⾓三⾓形斜边的长度(z),x和y为直⾓边的长度,z^2=x^2+y^2double ceil(double x) 返回不⼩于x的最⼩整数double floor(double x) 返回不⼤于x的最⼤整数int rand() 产⽣⼀个随机数并返回这个数srand(time(NULL));//srand 设置随机种⼦double atof(char *nptr) 将字符串nptr转换成浮点数并返回这个浮点数double atol(char *nptr) 将字符串nptr转换成长整数并返回这个整数double atof(char *nptr) 将字符串nptr转换成双精度数,并返回这个数,错误返回0int atoi(char *nptr) 将字符串nptr转换成整型数, 并返回这个数,错误返回0。
math.h常用函数

math.h常用函数什么是math.h?在C语言中,math.h是一个常用的库文件,它包含了很多数学函数的定义和声明。
通过引入math.h文件,我们可以使用这些函数来进行各种数学运算。
为什么要使用math.h?在编程过程中,我们经常需要进行各种数学运算,比如求平方根、取绝对值、进行三角函数运算等等。
这些运算不仅可以在通常的数学计算中使用,也可以用于解决实际问题和算法的设计。
而math.h库文件提供了这些数学函数的实现,使得我们能够更方便地进行数学运算。
常用的math.h函数有哪些?1. abs函数:用于求取一个整数的绝对值。
其定义如下:int abs(int x);其中x为待求取绝对值的整数。
返回值为x的绝对值。
2. sqrt函数:用于求取一个数的平方根。
其定义如下:double sqrt(double x);其中x为待求取平方根的数。
返回值为x的平方根。
3. pow函数:用于求取某个数的幂。
其定义如下:double pow(double x, double y);其中x为底数,y为指数。
返回值为x的y次幂。
4. sin函数:用于求取一个角的正弦值。
其定义如下:double sin(double x);其中x为角度值(以弧度为单位)。
返回值为x的正弦值。
5. cos函数:用于求取一个角的余弦值。
其定义如下:double cos(double x);其中x为角度值(以弧度为单位)。
返回值为x的余弦值。
6. tan函数:用于求取一个角的正切值。
其定义如下:double tan(double x);其中x为角度值(以弧度为单位)。
返回值为x的正切值。
这些只是math.h库文件中的部分函数,在实际使用时,根据需要可能会使用到更多的数学函数。
这些函数涵盖了基本的数学运算,可以帮助我们完成一些常见的数学计算任务。
现在,让我们逐步来解释每个函数的用途并举例说明。
首先是abs函数,它用于取一个整数的绝对值。
例如,如果我们要求取-5的绝对值,可以这样写:c#include <stdio.h>#include <math.h>int main() {int result = abs(-5);printf("绝对值为:d\n", result);return 0;}上述代码中,我们引入了stdio.h和math.h头文件,并使用了abs函数求取-5的绝对值。
math库中的数学函数

math库中的数学函数Math库是Python中内置的数学函数库,提供了一系列用于执行数学运算的函数和常量。
以下是Math库中的一些常用的数学函数:1.数值函数:- ceil(x): 返回大于或等于x的最小整数。
- floor(x): 返回小于或等于x的最大整数。
- round(x, n): 返回x的四舍五入值,n是可选的小数位数,如果省略则默认为0。
- trunc(x): 返回x的整数部分。
- fabs(x): 返回x的绝对值。
- sqrt(x): 返回x的平方根。
- pow(x, y): 返回x的y次方。
- exp(x): 返回e的x次方。
- log(x): 返回x的自然对数。
- log10(x): 返回x的以10为底的对数。
2.三角函数:- sin(x): 返回x的正弦值,x的单位是弧度。
- cos(x): 返回x的余弦值,x的单位是弧度。
- tan(x): 返回x的正切值,x的单位是弧度。
- asin(x): 返回x的反正弦值,返回值在 -pi/2 到 pi/2 之间。
- acos(x): 返回x的反余弦值,返回值在 0 到 pi 之间。
- atan(x): 返回x的反正切值,返回值在 -pi/2 到 pi/2 之间。
- atan2(y, x): 返回y / x的反正切值,返回值在 -pi 到 pi 之间。
3.超越函数:- sinh(x): 返回x的双曲正弦值。
- cosh(x): 返回x的双曲余弦值。
- tanh(x): 返回x的双曲正切值。
- asinh(x): 返回x的反双曲正弦值。
- acosh(x): 返回x的反双曲余弦值。
- atanh(x): 返回x的反双曲正切值。
4.统计函数:- sum(iterable): 返回可迭代对象中的所有元素之和。
- max(iterable): 返回可迭代对象中的最大值。
- min(iterable): 返回可迭代对象中的最小值。
- mean(iterable): 返回可迭代对象中所有元素的算术平均值。
Mathematica的常用函数

Mathematica 的内部常数Pi , 或π(从基本输入工具栏输入, 或“ Esc” +“ p”)+“圆Esc周率”πE (从基本输入工具栏输入, 或“ Esc” +“ ee”)+“自Esc然对”数的底数 e I (从基本输入工具栏输入, 或“ Esc” +“ ii ”)+虚“数Esc单位” iInfinity,或∞(从基本输入工具栏输入, 或“ Esc” +“ inf ”)+无“穷Esc大”∞Degree 或°(从基本输入工具栏输入,或“ Esc” +“ deg”)+“度Esc”Mathematica 的常用内部数学函数指数函数 Exp[x]以 e 为底数对数函数 Log[x]自然对数,即以 e 为底数的对数Log[a, x]以 a 为底数的 x 的对数开方函数 Sqrt[x] 表示 x 的算术平方根绝对值函数Abs[x]表示 x 的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x] 反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数 Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x] 反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x] 反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数 ArcTan[x,y]以坐标原点为极点, x 轴正半轴为始边,从原点到点( x, y)的射线为终边的角,其单位为弧度数论函数 GCD[a,b,c,... ]最大条约数函数LCM[a,b,c,... ] 最小公倍数函数Mod[m,n] 求余函数 (表示 m 除以 n 的余数 )Quotient[m ,n]求商函数(表示m 除以 n 的商)Divisors[n] 求全部能够整除n 的整数FactorInteger[n] 因数分解,即把整数分解成质数的乘积Prime[n] 求第 n 个质数PrimeQ[n] 判断整数n 能否数,假如,果True,否果False Random[Integer ,{m, n}]随机生m 到 n 之的整数摆列合函数Factorial[n] 或 n!乘函数,表示n 的乘复数函数 Re[z]部函数Im[z]虚部函数Arg(z)角函数Abs[z]求复数的模Conjugate[z]求复数的共复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x] 表示大于或等于数x 的最小整数Floor[x] 表示小于或等于数x 的最大整数Round[x]表示最靠近x 的整数IntegerPart[x] 表示数 x 的整数部分FractionalPart[x] 表示数 x 的小数部分分数与浮点数运算函数N[num] 或 num->a表达式 /.{x->a, y- >b, ⋯}怎样用 mathematica 行复数运算a+b*I 表示复数a+bIConjugate[z]求复数 z 的共复数Exp[z]复数的指数函数,表示e^zRe[z]求复数 z 的部Im[z]求复数 z 的虚部Abs[z]求复数 z 的模Arg[z]求复数 z 的角,怎样在 mathematica 中表示会合与数学中表示会合的方法同样,格式以下:{a, b, c,表⋯}示由a, b, c,⋯成的会合(注意:必用大括号)以下命令能够生成特别的会合:Table[f,{n}] 生成包括 n 个元素 f 的会合Table[f[n],{n ,nmax}]n 从 1 到 nmax,隔 1,生成会合 {f[1], f[2], f[3],⋯, f[nmax]} Table[f[n],{n ,nmin, nmax}]n 从 nmin 到 nmax,隔1,生成会合 {f[nmin], f[nmin+1],f[nmin+2], ⋯ , f[nmax]}Table[f[n],{n ,nmin, nmax, dn}]n 从 nmin 到 nmax,隔dn,生成会合 {f[nmin],f[nmin+dn], f[nmin+2*dn],⋯, f[nmax]}Range[n]生成会合 {1, 2, 3 ,⋯, n}Range[imin, imax]生成会合 {imin,imin+1,imin+2,⋯,imax}Range[imin, imax, di] 生成会合 {imin,imin+di,imin+2*di,最⋯大不}(超imax)怎样用 Mathematica 求会合的交集、并集、差集和集Union[A,B,C, ⋯求]会合 A,B,C, 的⋯并集A~Union~B~Union~C~Union~ ⋯求会合 A,B,C, ⋯的并集A∪ B∪ C∪⋯求会合 A,B,C, 的⋯并集Intersection[A,B,C,求⋯集]合 A,B,C, ⋯的交集A~ Intersection ~B~ Intersection ~C~ Intersection ~求会合A,B,C,⋯的⋯交集A∩ B∩ C∩⋯求会合 A,B,C, 的⋯交集Complement [A,B,C,⋯求]差集A~ Complement ~B~ Complement ~C~ Complement ~求⋯差集Complement [ 全集 I, A] 求会合 A 对于全集I 的补集全集 I ~ Complement ~A 求会合 A 对于全集I 的补集怎样 mathematica 用排序Sort[v] 将数组或向量v 的元素从小到大摆列(升序摆列)Reverse[v]将数组或向量v 的元素依据与本来相反的次序从头摆列(续摆列)RotateLeft[v] 将数组或向量v 中的每一个元素向左移一个地点RotateRight[v] 将数组或向量v 中的每一个元素向右移一个地点RotateLeft[v ,n]将数组或向量v 中的每一个元素向左移n 个地点RotateRight[v ,n]将数组或向量v 中的每一个元素向右移n 个地点怎样在 Mathematica 中解方程Solve[方程,变元 ]注:方程的等号一定用:= =怎样在 Mathematica 中解方程组Solve[{方程组 },{ 变元组 }]注:方程的等号一定用:= =怎样在 Mathematica 中解不等式先加载: Algebra`InequalitySolve`,加载方法为:<<Algebra`InequalitySolve` 而后履行解不等式的命令InequalitySolve ,此命令的使用格式以下:<--mstheme--><--mstheme-->InequalitySolve[ 不等式,变元 ]<--mstheme-->怎样在 Mathematica 中解不等式组先加: Algebra`InequalitySolve`,加方法:<<Algebra`InequalitySolve`而后行解不等式的命令InequalitySolve ,此命令的使用格式以下:<--mstheme--><--mstheme-->InequalitySolve[{ 不等式 }, {元}] ( 我的研究成就 )InequalitySolve[And[ 不等式 ], {元}]InequalitySolve[ 不等式 1&& 不等式 2&&⋯ && 不等式 n, {元}]<--mstheme-->怎样在 Mathematica 中解不等式先加: Algebra`InequalitySolve`,加方法:<<Algebra`InequalitySolve`而后行解不等式的命令InequalitySolve ,此命令的使用格式以下:<--mstheme--><--mstheme-->InequalitySolve[{ 不等式 }, {元}] ( 我的研究成就 )InequalitySolve[And[ 不等式 ], {元}]InequalitySolve[ 不等式 1&& 不等式 2&&⋯ && 不等式 n, {元}]怎样用 mathematica 表示分段函数lhs:=rhs/;condition当condition成立,lhs才会被定成rhsIf[test , then,else]假如 test True,行then,否行elseIf[test , then,else, unknown] 假如 test True,行then , False ,行else,没法判断test 是 True 或 False 行unknownWhich[test1 ,value1,test2 ,value2,...]假如 test1True,行 value1,test2True,行 value2 ,挨次推。
Mathematica函数大全--运算符及特殊符号

Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果name 关于系统变量name的信息name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容<Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个列表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}] '或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii 为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独立变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...} FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排排? Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产生伪随机数如果采用了<在2.0版本为<<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m" Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}] NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲? Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel} 边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color}color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)>选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度十四、绘图函数(续)图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpi小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blocki Switch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒的提示Pause[n] 运行暂停n秒十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了*) (*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程*) (*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达达式?Function[x, body] 单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n 纯函数的第一、第n个自变量## 纯函数的所有自变量的序列examp: #1^#2& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[exprr]]..} FixedPoint[f, expr] 将f复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]br> Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型十七、替换规则lhs->rhs 建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True或False*)(*可以在Mathematica中用“?*Q”查询到*)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ十九、字符串函数"text" 一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的子串,参数同Take[] StringDrop["string", n] 参见Drop,串也就是一个表StringInsert["string","snew",n] 插入,参见Insert[]StringPosition["string", "sub"] 返回子串sub在string中起止字母位置StringReplace["string",{"s1"->"p1",..}] 子串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snew把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作一个输入流赋予一个变量Characters["string"] 把串"string"分解为每一个字符的表ToCharacterCode["string"] 把串"string"分解为每一个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的大写形式ToLowerCase[string] 把串的小写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把一个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表。
Mathematica常用函数

Mathematica常用函数基本运算a+b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最后一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弧度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小于或等于x的最大整数Ceiling[x] 大于或等于x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值数值设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序四个处理指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子多项式/分式转换ExpandAll[expr] 把算式全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去分母/分子运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子多项式转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[e xpr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出函数和指数运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将项次、系数最高次方Coefficient[expr,form] 于expr中form的系数Exponent[expr,form] 于expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短输出指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询物件Command 查询Command的语法及说明Command 查询Command的语法和属性及选择项Aaaa* 查询所有开头为Aaaa的物件定义之查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]泰勒展开式Series[expr,{x,x0,n}] 对expr于x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等于a>b 大于a>=b 大于等于a<b 小于a<=b 小于等于a!=b 不等于逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot几种指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。
math.h 常见函数用法

math.h中一些常用函数abs(计算整型数的绝对值)相关函数: abs, fabs表头文件: #include<stdlib.h>定义函数: int abs (int j)函数说明: abs()用来计算参数j的绝对值,然后将结果返回。
返回值: 返回参数j的绝对值结果。
范例:#ingclude <stdlib.h>main(){int ansert;answer = abs(-12);printf("|-12| = %d/n", answer);}执行:|-12| = 12ceil(取不小于参数的最小整型数)相关函数: fabs表头文件: #include <math.h>定义函数: double ceil (double x);函数说明: ceil()会返回不小于参数x的最小整数值,结果以double 形态返回。
返回值: 返回不小于参数x的最小整数值。
附加说明: 使用GCC编译时请加入-lm。
范例:#include<math.h>main(){double value[ ]={4.8,1.12,-2.2,0};int i;for (i=0;value[i]!=0;i++)printf("%f=>%f/n",value[i],ceil(value[i]));}执行:4.800000=>5.0000001.120000=>2.000000-2.200000=>-2.000000sin(取正弦函数值)相关函数: acos,asin,atan,atan2,cos,tan表头文件: #include<math.h>定义函数: double sin(double x);函数说明: sin()用来计算参数x的正弦值,然后将结果返回。
返回值: 返回-1 至1之间的计算结果。
附加说明: 使用GCC编译时请加入-lm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果?name 关于系统变量name的信息??name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容< Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)—————————————————————————————————————二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式—————————————————————————————————————三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]—————————————————————————————————————四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根—————————————————————————————————————五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n—————————————————————————————————————八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}]FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集—————————————————————————————————————九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭—————————————————————————————————————十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数—————————————————————————————————————十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3x+2==Interval[{-2,5}],x]*)IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交—————————————————————————————————————十二、矩阵操作a.b.c 或 Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩阵Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解—————————————————————————————————————十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型 *)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示 *)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni) IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];--—————————————————————————————————————十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲线Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color} color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度绘图函数(续)图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、椭圆、圆弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示—————————————————————————————————————十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blockiSwitch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒—————————————————————————————————————十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了 *)(*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程*)(*序快于高级语言,建议你把本部分搞通*, , )纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达式上Function[x, body] 单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n 纯函数的第一、第n个自变量## 纯函数的所有自变量的序列examp: ^& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[expr]]..}FixedPoint[f, expr] 将f复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型—————————————————————————————————————十七、替换规则lhs->rhs 建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组>******************************************************************* *****<Mathematica的常见问题>******************************************************************* *****<===================================1).Mathematica 可以定义变量为实数么?1. 在Simplify/FullSimplify可以使用\[Element],如Simplify[Re[a+b*I],a\[Element]Reals]2. 可以使用ComplexExpand[]来展开表达式,默认:符号均为实数:Unprotect[Abs];Abs[x_] := Sqrt[Re[x]^2 + Im[x]^2];ComplexExpand[Abs[a + b*I], a]3. 使用/:,对符号关联相应的转换规则x /: Im[x] = 0;x /: Re[x] = x;y /: Im[y] = 0;y /: Re[y] = y;Re[x+y*I]===================================2).Mathematica中如何中断运算?Alt+. 直接终止当前执行的运算Alt+, 询问是否终止或者继续如果不能终止,用菜单Kernel\Quit Kernal\Local来退出当前运算===================================3).请高手推荐Mathematica参考书我迄今为止看到的最好的一本就是Mathematica自己带的帮助里面的The Mathematica Book,内容全面,循序渐近,非常容易学习使用。