拉普拉斯变换及反变换表
拉普拉斯变换表
序 号 拉氏变换 E(s)
时间函数 e(t)
1
1
2
1 1 − e−Ts
3
1
s
δ(t)
∞
δT (t) = ∑δ (t − nT ) n=0 1(t )
4
1
t
s2
Z 变换 E(z)
1
z z −1
z z −1
Tz (z − 1) 2
5
1
t2
s3
2
T 2 z(z + 1) 2(z − 1)3
6
1 s n+1
7
1
s+a
8
1 (s + a)2
9
a s(s + a)
10
b−a (s + a)(s + b)
11
ω
s2 +ω2
12
s
s2 +ω2
13
ω (s + a)2 + ω 2
14
s +a (s + a)2 + ω 2
tn n! e −at te −at 1 − e −at e −at − e −bt
sin ωt cos ωt
6 终值定理 7 初值定理
lim f (t) = lim sF (s)
t→∞
s→0
lim f (t) = lim sF (s)
t→0
s→∞
419
8 卷积定理
∫ ∫ L[
t 0
f1(t
−τ )
f2(τ )dτ ]
=
L[
t 0
f1 (t )
f2 (t
−τ )dτ ] =
F1(s)F2 (s)
拉普拉斯变换及反变换.
拉普拉斯变换及反变换1.拉氏变换的基本性质表-1 拉氏变换的基本性质1()([n n k f t dt s s-+=+∑⎰个2.常用函数的拉氏变换和z 变换表表-2 常用函数的拉氏变换和z 变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式,即1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (1)式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()ii i s s c s s F s →=- (2)或iss i s A s B c ='=)()( (3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数为[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=1in s ti i c e =∑ (4)(2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r r s s s s s s s B s F ---=+=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算:)()(lim 11s F s s c r s s r -=→11lim[()()]ir r s s dc s s F s ds-→=-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (6)。
(完整版)拉普拉斯变换及其逆变换表
拉普拉斯变换及其反变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式11n 1n nn11m 1m mmas a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >)式中系数n1n 1a ,a ,...,a ,a-,m1m 1b ,b ,b ,b - 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=n1i iinnii2211ss cs s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c is s i-=→或is s i)s (A )s (B c='=式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]t s n 1i i n 1i i i 11i e c s s cL )s (F L )t (f -==--∑∑=⎥⎦⎤⎢⎣⎡-==② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())s s ()s s ()s s ()s (B s F n1r r 1---=+=nnii1r 1r 111r 11r r 1rss cs s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)s (F )s s (lim c r1s s r-=→)]s (F )s s ([dsdlim c -=)s (F )s s (dsd lim !j 1c -=)s (F )s s (dsdlim )!1r (1c --=原函数)(t f 为 [])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=s s cs s c s s c )s s (c )s s (c )s s (c L e c e c t c t )!2r (c t )!1r (c ∑+⎥⎦⎤⎢⎣⎡+++-+-= (F-6)。
拉普拉斯变换的基本性质、变换及反变换
拉普拉斯变换的基本性质、变换及反变换t t8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设F(s)是s 的有理真分式A(s)二0有重根设A(s) = 0有r 重根s ,F(s)可写为F s-(s-s ,)r(s-s ri ) (s-s n )B(s)b m 「4 g b0A(s)n ,n 」a n S - a n 」s 山…“y s - a 。
式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。
分以下两种情况讨论。
m,n 是正整数。
按代数定理可①A(s) = 0无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
i C 2C jC nF(s) 121— s — s i s — S 2s — ss_s nC i(F-1)式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。
C i 为待定常数,称为 可按下式计算:F(s)在S i 处的留数,式中,C =lim (s _sJF (s)S Tic _ B(s) iA(s)s zs iA (s)为A(s)对s 的一阶导数。
根据拉氏变换的性质,从式(4 I l j n C i =L !F (S )】=L 巨一—S — Sj 一 f(t)C in -s it=' Ci e ii =1(F-2)(F-3)F-1 )可求得原函数(F-4)B(s)式中, 其中,& r -(S —S i) (s—s)C if ,s〜) CriS —■S r iG •…©S - s S—S nS i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:f(t)为厂c r =lim (s — sj r F(s)T id rC ri =lim [(s -sj F(s)] dss :siC i原函数f (t)二L°〔F(s) I冷冗加(DEi d(7C i _____ . C r i ....(F-5)(s -S i)r 1(s—s i) S —S r*G *…+C nS — S j S —S nt r^ +…+c2t +G e Sit(r-2)! 2 5S i t°e iF-6)欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
拉氏变换及反变换
2. f (t) eatu(t) (指数函数)
f
(t)
0
(t 0)
et (t 0)
F(s)= ℒ [eat ] eatestdt 0 ℒ [ejt ] 1 s j
1
e(sa)t
sa
0
1 sa
机械工程控制基础
拉普拉斯变换及反变换
3. f (t) (t) (单位脉冲函数)
(t)
t
s0
机械工程控制基础
拉普拉斯变换及反变换
例1
u(t) t0
lim s 1 s s
1
例2 I(s) 5 2 s1 s2
i(0 ) lim s( 5 2 ) lim( 5 2 ) 3 s s 1 s 2 s 1 1/ s 1 2 / s
例3
I (s) ℒ [1 e-t ] 1 1 s s1
Ui(s) H(s) I(s)
I(s)=Ui(s)H(s)= ℒ[ui(t)] H(s)
=ℒ eat (t)
(5)作Laplace反变换得
1 R Ls
s
1
a
1 L
s
1 R
L
零状态响应电流
i(t)= ℒ-1[I(s)]
1
(e a t
Rt
e L )
(t)
L ( R a)
L
机械工程控制基础
拉普拉斯变换及反变换
的
拉
t
1/s2
普 拉
n!
tn
sn+1
1
斯
e-at
s+a
变 换
1
te-at
(s+a)2
表
tne-at
n!
(s+a)n+1
Laplace拉氏变换公式表
Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。
2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。
3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。
4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。
5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。
6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。
7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。
8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。
9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。
10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。
12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
拉氏变换表
附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质__________________________________________________2.表A-2 常用函数的拉氏变换和z变换表____________________________________________________________________________________________________3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+__________________________________________________=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。
拉普拉斯变换及其逆变换表
n
F ( s)
L[ f (t )dt ]
一般形式 3 积分定理
L[ f (t )(dt ) 2 ]
共n个
2 F ( s ) [ f (t )dt ]t 0 [ f (t )(dt ) ]t 0 s2 s2 s
共n个 F ( s) n 1 n L[ f (t )(dt ) ] n n k 1 [ f (t )(dt ) n ]t 0 s k 1 s
B( s ) b s b s b s b F (s ) A(s ) a s a s a s a
m m 1 m m 1 1 n n 1 n n 1 1 0
0
(n m)
式中系数 a
0
, a ,..., a , a , b , b ,b , b 都是实常数; m, n 是正整数。按
1(t )
z z 1
1 s2
1 s3
t
t2 2
Tz ( z 1) 2
T 2 z ( z 1) 2( z 1) 3
1 s n 1
1 sa
tn n!
lim
( 1) n n z ( ) n a 0 n! a z e aT
z z e aT
e at te
at
拉普拉斯变换及其反变换表表a1拉氏变换的基本性质1线性定理齐次性叠加性2微分定理一般形式初始条件为0时3积分定理一般形式初始条件为0时4延迟定理或称域平移定理5衰减定理或称域平移定理6终值定理7初值定理8卷积定理2
拉普拉斯变换及其反变换表
1.表 A-1 拉氏变换的基本性质
1 线性定理 齐次性 叠加性
c c t t c t c e c e (r 2)! (r 1)!
(完整版)拉普拉斯变换表
拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质12.表A-2 常用函数的拉氏变换和z变换表233. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >)式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni iin n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ (F-1)式中,n s s s ,,,21Λ是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→ (F-2) 或is s i s A s B c ='=)()((F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts ni i i e c -=∑1(F-4)4② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r r s s s s s s s B s F ---=+Λ=n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()(式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r ss r -=→ )]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r i e c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。
常用拉普拉斯变换及反变换
常用拉普拉斯变换及反变换在数学和工程领域中,拉普拉斯变换是一种非常有用的工具,它能够将时域中的函数转换到复频域中,从而使许多问题的分析和求解变得更加简单。
接下来,让我们一起深入了解一下常用的拉普拉斯变换及反变换。
拉普拉斯变换的定义是对于一个实变量 t 的函数 f(t),其拉普拉斯变换 F(s) 定义为:\F(s) =\int_{0}^{\infty} f(t) e^{st} dt\其中,s 是一个复变量,通常表示为 s =σ +jω,σ 是实部,ω 是虚部,j 是虚数单位。
常用的函数拉普拉斯变换有很多,下面列举一些常见的例子。
单位阶跃函数 u(t),其定义为 t < 0 时,u(t) = 0;t ≥ 0 时,u(t) =1。
它的拉普拉斯变换为 1 / s 。
指数函数 e^at (a 为常数),其拉普拉斯变换为 1 /(s a) 。
正弦函数sin(ωt) 的拉普拉斯变换为ω /(s^2 +ω^2) 。
余弦函数cos(ωt) 的拉普拉斯变换为 s /(s^2 +ω^2) 。
单位脉冲函数δ(t),其拉普拉斯变换为 1 。
这些常见函数的拉普拉斯变换在解决各种问题时经常会用到。
那么,为什么要进行拉普拉斯变换呢?这是因为在时域中分析一些问题可能会比较复杂,而通过拉普拉斯变换将其转换到复频域后,可以利用复频域中的一些特性和方法来简化问题的处理。
例如,在求解线性常系数微分方程时,通过对方程两边进行拉普拉斯变换,可以将微分方程转化为代数方程,从而更容易求解。
接下来,我们再看看拉普拉斯反变换。
拉普拉斯反变换是将复频域中的函数 F(s) 转换回时域中的函数 f(t) 。
拉普拉斯反变换的计算方法通常有部分分式展开法和留数法等。
部分分式展开法是将 F(s) 分解为几个简单分式的和,然后根据已知的常见函数的拉普拉斯变换,直接写出对应的时域函数。
例如,如果 F(s) =(s + 1) /((s + 2)(s + 3) ),可以通过部分分式展开为 A /(s + 2) + B /(s + 3) 的形式,然后求出 A 和 B 的值,再根据常见函数的拉普拉斯变换反求出时域函数。
拉普拉斯变换表
拉普拉斯变换表
拉普拉斯变换表
拉普拉斯变换是进行信号分析的重要工具之一,通过将时间域上的函数进行变换,可以将其转化为在复平面上展开的函数。
下面是拉普拉斯变换中一些最基本的函数及其变换结果的表格。
1. 常数函数:f(t)=a
拉普拉斯变换结果:F(s)=a/s
2. 单位冲击函数:f(t)=δ(t)
拉普拉斯变换结果:F(s)=1
3. 单位阶跃函数:f(t)=u(t)
拉普拉斯变换结果:F(s)=1/s
4. 指数函数:f(t)=e^-αt
拉普拉斯变换结果:F(s)=1/(s+α)
5. 正弦函数:f(t)=sin(ωt)
拉普拉斯变换结果:F(s)=ω/(s^2+ω^2)
6. 余弦函数:f(t)=cos(ωt)
拉普拉斯变换结果:F(s)=s/(s^2+ω^2)
7. 时域上的微分:f(t)=df(t)/dt
拉普拉斯变换结果:F(s)=sF(s)-f(0)
8. 时域上的积分:f(t)=∫f(τ)dτ
拉普拉斯变换结果:F(s)=1/sF(s)+f(0)
9. 常见分布函数:f(t)=t^n/n!, n为正整数
拉普拉斯变换结果:F(s)=1/s^(n+1)
10. 指数衰减信号:f(t)=e^-αt u(t)
拉普拉斯变换结果:F(s)=1/(s+α)
总结
通过以上的表格可以看出,拉普拉斯变换可以将时域上的函数转换为在复平面上的函数,这种函数在进行信号分析时特别有用。
我们可以通过这种方法来推导出系统的传递函数,从而进一步进行系统稳定性的分析。
完整版拉普拉斯变换表
完整版拉普拉斯变换表拉普拉斯变换是一种重要的数学工具,它能将时间域上的函数转换为频率域上的函数,为信号处理、电路分析等领域的数学建模和分析提供了极大的便利。
下面是完整版的拉普拉斯变换表,列出了常用的函数及其对应的拉普拉斯变换公式。
1. 常数函数:f(t) = 1,其拉普拉斯变换为:F(s) = 1/s2. 单位阶跃函数:f(t) = u(t),其拉普拉斯变换为:F(s) = 1/s3. 指数函数:f(t) = e^-at,其拉普拉斯变换为:F(s) = 1/(s + a)4. 正弦函数:f(t) = sin(ωt),其拉普拉斯变换为:F(s) = ω/(s^2 + ω^2)5. 余弦函数:f(t) = cos(ωt),其拉普拉斯变换为:F(s) = s/(s^2 + ω^2)6. 指数衰减正弦函数:f(t) = e^-at sin(ωt),其拉普拉斯变换为:F(s) = ω/( (s+a)^2 + ω^2 )7. 指数衰减余弦函数:f(t) = e^-at cos(ωt),其拉普拉斯变换为:F(s) = (s+a)/( (s+a)^2 + ω^2 )8. 阻尼正弦函数:f(t) = e^-αt sin(ωt),其拉普拉斯变换为:F(s) = ω/( (s+α)^2 + ω^2 )9. 阻尼余弦函数:f(t) = e^-αt cos(ωt),其拉普拉斯变换为:F(s) = (s+α)/( (s+α)^2 + ω^2 )10. 给定函数f(t)的导数Laplace变换:f'(t) 的Laplace 变换 F(s) 为:F(s)= s*F(s) - f(0)11. 给定函数f(t)的不定积分Laplace变换:∫f(t)dt 的 Laplace 变换 F(s) 为:F(s)= 1/s*F(s)12. Laplace变换与乘法定理:L{f(t) g(t)} = F(s)G(s)13. Laplace变换与移位定理:L{f(t-a) u(t-a)} = e^-as F(s)14. Laplace变换与初值定理:f(0+) = lims→∞ sF(s)f'(0+) = lims→∞ s^2F(s) - sf(0+)f''(0+) = lims→∞ s^3F(s) - s^2f(0+) - sf'(0+)15. Laplace变换与终值定理:limt→∞ f(t) = lims→0 sF(s)limt→∞ f'(t) = lims→0 s^2F(s) - sf(0+)limt→∞ f''(t) = lims→0 s^3F(s) - s^2f(0+) -sf'(0+)这是完整版的拉普拉斯变换表,其中列出了常用的函数及其对应的拉普拉斯变换公式,以及常见的拉普拉斯变换定理和公式。
拉普拉斯变换及反变换
则
拉普拉斯变换及反变换
ℒ [ 0
t
f ( )d ]
1 s
F ( s)
例
机械工程控制基础
四、时域平移
设 ℒ [ f ( t )] F ( s )
拉普拉斯变换及反变换
f(t)
平移
f(t-t0)
机械工程控制基础
五、 复频域平移
设 ℒ [ f ( t )] F ( s )
(s+a)n+1
1
s+jw
机械工程控制基础
拉普拉斯变换及反变换
机械工程控制基础
例题 f1(t) 1 e-t t 1 0 f2(t) e-t t
拉普拉斯变换及反变换
求图示两个函数的拉氏变换式
0
解 由于定义的拉氏变换积分上限是0-,两个函数的 1 拉氏变换式相同 F ( s)
s
当取上式的反变换时,只能表示出 0 区间的函数式 t
( n 1)
(0 )
例1
ℒ [co s t ] ℒ [
1
1 d
[s
s
2 2
dt
(sin t )]
sin t
0
]
s s
2 2
机械工程控制基础
•例3 某动态电路的输入—输出方程为
d
2 2
拉普拉斯变换及反变换
d dt
dt
r (t ) a1
d dt
本讲小结: 拉普拉斯变换定义 常用函数的拉普拉斯变换 拉普拉斯变换的基本性质
拉普拉斯变换及反变换
机械工程控制基础
常用函数Laplace变换表
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行
反变换。设 F (s) 是 s 的有理真分式
F (s)
B(s) A(s)
bm s m an s n
bm1s m1 b1s b0 an1s n1 a1s a0
(n m)
cn
n
ci
s s1 s s2
s si
s sn i1 s si
(F-1)
式中, s1, s2 ,, sn 是特征方程 A(s)=0 的根。 ci 为待定常数,称为 F(s)在 si 处的留数,可
按下式计算:
ci
lim(s
ssi
si
)
F
(
s
)
或
(F-2)
B( s) ci A(s)
s si
附录 A 拉普拉斯变换及反变换
1.表 A-1 拉氏变换的基本性质 1 齐次性 线性定理 叠加性
2 微分定理 一般形式
L[af (t)] aF (s) L[ f1 (t) f 2 (t)] F1 (s) F2 (s)
L[ df (t)] sF (s) f (0) dt
d2 L[
f
(t)]
式中系数 a0 , a1,...,an1, an , b0 ,b1,bm1,bm 都是实常数; m, n 是正整数。按代数定理可 将 F (s) 展开为部分分式。分以下两种情况讨论。
① A(s) 0 无重根
这时,F(s)可展开为 n 个简单的部分分式之和的形式。
F (s) c1 c2 ci
(F-3)
式中, A(s) 为 A(s) 对 s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数
拉普拉斯变换及反变换
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
• 作业
1 写出拉普拉斯变换定义式 、 2 、
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
__
1
(s-1)2
路漫漫其修远兮, 吾将上下而求索
F(s)= ℒ ℒ
路漫漫其修远兮, 吾将上下而求索
(单位脉冲函数) δ(t)
0
t
ℒ
=1
路漫漫其修远兮, 吾将上下而求索
(单位斜坡函数) f(t) t
0
F(s)=L[f(t)]=
路漫漫其修远兮, 吾将上下而求索
(幂函数)
ℒ
ℒ
路漫漫其修远兮, 吾将上下而求索
ℒ
ℒ
ℒ ℒ
ℒ
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
三、积分定理
ℒ
ℒ
例
路漫漫其修远兮, 吾将上下而求索
四、时域平移
ℒ
平移
f(t)
f(t-t0)
路漫漫其修远兮, 吾将上下而求索
五、 复频域平移
ℒ ℒ 例1 ℒ
例2 ℒ 例3 ℒ
路漫漫其修远兮, 吾将上下而求索
六、初值定理和终值定理 初值定理 若ℒ [f(t)]=F(s),且 f(t)在t = 0处无冲激,
f1(t)
f2(t)
1 e-t
1 e-t
0
t 0
t
解 由于定义的拉氏变换积分上限是0-,两个函数的 拉氏变换式相同
当取上式的反变换时,只能表示出 区间的函数式
ℒ -1
拉普拉斯变换及反变换
初值定理 若ℒ [f(t)]=F(s),且 f(t)在t = 0处无冲激,
则 f (0 ) lim f (t) lim sF (s)
t 0
s
终值定理 f(t)及其导数f (t)可进行拉氏变换,且
lim f (t)存在时
t
f () lim f (t) lim sF(s)
t
s0
例1
u(t)t0
k2(2 ss1)52(s1)2S13 k1dds(2s5)S12
f(t)L1[F(s])2et3tet t0
例2
F(s)
s2 2s2 (s2)3
k1 (s2)
(s k22)2(s k32)3
等式两边乘 (s 2)3
F(s)(s 2)3 k1(s 2)2 k2 (s 2) k3
k3s2(s22 s)32(s2)3S22
lims11 s s
例2 I(s) 5 2 s1 s2
i( 0 ) lis ( m 52) li(m 52) 3 s s 1s 2s 1 1 /s1 2 /s
例3
I(s)ℒ [1e-t]1 1 s s1
11 i(t)t ls i0m s(ss1)1
例4:已知F(s)= 1 ,求f(0)和f(∞) sa
拉普拉斯变换的基本性质表
本讲小结: 拉普拉斯变换定义 常用函数的拉普拉斯变换
拉普拉斯变换的基本性质
(1)
利用 ℒ
• 作业
1、 写出拉普拉斯变换定义式 2、
__
1
(s-1)2
二、拉普拉斯反变换
1、由象函数求原函数 f(t)=L-1[F(s)]
(1)利用公式
f(t) 1 2πj
(S2+a1S+a0)R(S)-(S+a1)r(0-)-r/(0-)=(Sb1+b0)E(s)-b1×0
[新版]laplace拉氏变换公式表
附录A拉普拉斯变换及反变换3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >)式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(l i m s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts ni i i ec -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()(式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为[])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。
拉氏变换表
① 无重根
这时,F(s)可展开为n个简单的部分分式之和的形式。
(F-1)
式中,是特征方程A(s)=0的根。为待定常数,称为F(s)在处的留数,可
按下式计数。根据拉氏变换的性质,从式(F-1)可求得原
函数
=
(F-4)
2 有重根
设有r重根,F(s)可写为
=
式中,为F(s)的r重根,,…, 为F(s)的n-r个单根;
A 拉普拉斯变换及反变换
1.表A-1 拉氏变换的基本性质
1
齐次性
线性定
理
叠加性
2 微分定 一般形式
理 初始条件为0
时
一般形式
3 积分定
理
初始条件为0
时
4 延迟定理(或称域平移 定理)
5 衰减定理(或称域平移 定理)
6 终值定理
7 初值定理
8 卷积定理
2.表A-2 常用函数的拉氏变换和z变换表
序 拉氏变换
其中,,…, 仍按式(F-2)或(F-3)计算,,,…, 则按下式计算:
(F-5)
原函数为
(F-6)
号
E(s)
时间函数e(t)
1
1
δ(t)
2
3
4
t
5
6
7
8
9
10
11
12
13
14
15
Z变换E(z) 1
3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,
然后逐项查表进行反变换。设是的有理真分式 ()
式中系数,都是实常数;是正整数。按代数定理可将展开为部分分式。 分以下两种情况讨论。