北师大数值分析作业
数值分析大作业
数值分析上机作业(一)一、算法的设计方案1、幂法求解λ1、λ501幂法主要用于计算矩阵的按模最大的特征值和相应的特征向量,即对于|λ1|≥|λ2|≥.....≥|λn|可以采用幂法直接求出λ1,但在本题中λ1≤λ2≤……≤λ501,我们无法判断按模最大的特征值。
但是由矩阵A的特征值条件可知|λ1|和|λ501|之间必然有一个是最大的,通过对矩阵A使用幂法迭代一定次数后得到满足精度ε=10−12的特征值λ0,然后在对矩阵A做如下的平移:B=A-λ0I由线性代数(A-PI)x=(λ-p)x可得矩阵B的特征值为:λ1-λ0、λ2-λ0…….λ501-λ0。
对B矩阵采用幂法求出B矩阵按模最大的特征值为λ∗=λ501-λ0,所以λ501=λ∗+λ0,比较λ0与λ501的大小,若λ0>λ501则λ1=λ501,λ501=λ0;若λ0<λ501,则令t=λ501,λ1=λ0,λ501=t。
求矩阵M按模最大的特征值λ的具体算法如下:任取非零向量u0∈R nηk−1=u T(k−1)∗u k−1y k−1=u k−1ηk−1u k=Ay k−1βk=y Tk−1u k(k=1,2,3……)当|βk−βk−1||βk|≤ε=10−12时,迭终终止,并且令λ1=βk2、反幂法计算λs和λik由已知条件可知λs是矩阵A 按模最小的特征值,可以应用反幂法直接求解出λs。
使用带偏移量的反幂法求解λik,其中偏移量为μk=λ1+kλ501−λ140(k=1,2,3…39),构造矩阵C=A-μk I,矩阵C的特征值为λik−μk,对矩阵C使用反幂法求得按模最小特征值λ0,则有λik=1λ0+μk。
求解矩阵M按模最小特征值的具体算法如下:任取非零向量u 0∈R n ηk−1= u T (k−1)∗u k−1y k−1=u k−1ηk−1 Au k =y k−1βk =y T k−1u k (k=1,2,3……)在反幂法中每一次迭代都要求解线性方程组Au k =y k−1,当K 足够大时,取λn =1βk 。
数值分析作业(完整版)
的逆阵 A ,用左除命令 A \ E 检验你的结果。
clc clear close all A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; fprintf('对上述矩阵进行列主元素分解:\n') for i=1:1:r-1 [mx,ro]=max(abs(A(i:r,i))); % 寻找a阵第i列的最大值 [A(i,:),A(ro+i-1,:)]=exchange(A(i,:),A(ro+i-1,:)); % 进行行与行交换 for j=i+1:1:r A(j,:)=A(j,:)-A(j,i)/A(i,i)*A(i,:); end A End %--矩阵A的逆阵 A1=inv(A) %--左除验证 E=eye(5); A2=A\E % 5x5单位阵 % A阵的逆矩阵 % 输出每次交换后的A
第一章
1、计算积分 I n
Code: clc clear close all n=9; %--梯形积分法 x=0:0.01:1; y=(x.^n).*exp(x-1); In = trapz(x,y); In2=vpa(In,6) % 6位有效数字 %--高精度积分法 F = @(x1)(x1.^n).*exp(x1-1); s = quad(F,0,1); s1=vpa(s,6)
0
0, 0, 0, 0, 0 。
T
if abs(er(:,i-1))<=e fprintf('在迭代 %d 次之后,满足精度要求,x向量的值如下:\n',i); fprintf('x1=%.5f, x2=%.5f, x3=%.5f, x4=%.5f, x5=%.5f\n',x(1,i),x(2,i),x(3,i),x(4,i),x(5,i)); break end end %--绘图 figure(1) plot(1:1:i,x(1,:),'b',1:1:i,x(2,:),'k',1:1:i,x(3,:),'g',1:1:i,x(4,:), 'r',1:1:i,x(5,:),'c') legend('x1','x2','x3','x4','x5') grid on title('Jacobi迭代法——x值随迭代次数变化曲线') figure(2) plot(1:1:i-1,er(1,:),'b',1:1:i-1,er(2,:),'k',1:1:i-1,er(3,:),'g',1:1: i-1,er(4,:),'r',1:1:i-1,er(5,:),'c') legend('△x1','△x2','△x3','△x4','△x5') grid on title('Jacobi迭代法——△x值随迭代次数变化曲线') %% fprintf('\n-------------Gauss-Seidel迭代法---------------------\n'); U=-(A1-D); L=-(A2-D); DL_1=inv(D-L); M1=DL_1*U; b2=DL_1*b; x1(:,1)=M1*x0+b2; for j=2:1:100 x1(:,j)=M1*x1(:,j-1)+b2; er1(:,j-1)=x1(:,j)-x1(:,j-1); if abs(er1(:,j-1))<=e fprintf('在迭代 %d 次之后,满足精度要求,x向量的值如下:\n',j); fprintf('x1=%.5f, x2=%.5f, x3=%.5f, x4=%.5f, x5=%.5f\n',x1(1,j),x1(2,j),x1(3,j),x1(4,j),x1(5,j)); break end end %--绘图 figure(3) plot(1:1:j,x1(1,:),'b',1:1:j,x1(2,:),'k',1:1:j,x1(3,:),'g',1:1:j,x1(4 ,:),'r',1:1:j,x1(5,:),'c') legend('x1','x2','x3','x4','x5')
数学八年级上册第6章数据的分析 作业课件 北师大版
原价(元)
10 10 15 20 25
现价(元)
5 5 15 25 30
平均日人数(千人) 1 1 2 3 2
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平,风景 区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上 增加了约9.4%,问游客是怎样计算的?
第将一组数据按照由小到大(或由大到小)的顺序排列.如果数据的个数是奇数, 则 处 于 _______ 位 置中的间数 就 是 这 组 数 据 的 中 位 数 ; 如 果 数 据 的 个 数 是 偶 数 , 则
____________中__间__两__个__数__据就的是平这均组数据的中位数.
数是6,则这组数据的中位数是( )
C
A.5 B.5.5 C.6 D.7
12.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为
____.
22
13.某校九(1)班40名同学中,14岁的有1人,15岁的有211人5 ,16岁的有16人,17 岁的有2人,则这个班同学年龄的中位数是____岁.
第六章 数据的分析
6.1 平均数
1.一般地,对于 n 个数 x1,x2,…xn,我们把n1(x1+x2+…+xn) 叫做这 n 个数的_算__术_平__均__数_____,记作__x____.
练习 1:(2016·桂林)数据 7,8,10,12,13 的平均数是(C )
A.7
B.9
C.10
D.12
3.一组数据2,4,x,-1的平均数为3,则x的值是____. 7
4.(2016·深圳)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,
数值分析练习题加答案(一)
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
数值分析试题
数值分析考试题一、 填空题(每小题3分,共15分) 1.已知x =62.1341是由准确数a 经四舍五入得到的a 的近似值,试给出x 的绝对 误差界_______________.2. 已知矩阵1221A ⎡⎤=⎢⎥⎣⎦,则A 的奇异值为 _________. 3. 设x 和y 的相对误差均为0.001,则xy 的相对误差约为____________. 4. 424()53,,()_____.i i f x xx x i f x =+-∆=若=则5. 下面Matlab 程序所描述的数学表达式为________________________.a =[10,3,4,6];t=1/(x -1);n=length(a )();1:1:1*();y a n for k n y t y a k end==--=+二、(10分)设32()()f x x a =-。
(1)写出解()0f x =的Newton 迭代格式;(2)证明此迭代格式是线性收敛的。
三、 (15分)已知矛盾方程组Ax=b ,其中21110,1101211A b ⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦,(1)用Householder 方法求矩阵A 的正交分解,即A=QR 。
(2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。
四、(15分) 给出数据点:012343961215i i x y =⎧⎨=⎩(1)用1234,,,x x x x 构造三次Newton 插值多项式3()N x ,并计算 1.5x =的近似值3(1.5)N 。
(2)用事后误差估计方法估计3(1.5)N 的误差。
五、(15分)(1)设012{(),(),()}ϕϕϕx x x 是定义于[-1,1]上关于权函数2()x x ρ=的首项系数为1的正交多项式组,若已知01()1,()x x x ϕϕ==,试求出2()x ϕ。
(2)利用正交多项式组012{(),(),()}ϕϕϕx x x ,求()f x x =在11[,]22-上的二次最佳平方逼近多项式。
数值分析大作业四
《数值分析》大作业四一、算法设计方案:复化梯形积分法,选取步长为1/500=0.002,迭代误差控制在E ≤1.0e-10①复化梯形积分法:11()[()()2()]2n bak hf x dx f a f b f a kh -=⎰≈+++∑,截断误差为:322()''()''(),[,]1212T b a b a R f h f a b n ηηη--=-=-∈其中。
复化Simpson 积分法,选取步长为1/50=0.02,迭代误差控制在E ≤1.0e-10②Simpson 积分法:121211()[()()4()2()]3m m bi i a i i hf x dx f a f b f x f x --==≈+++∑∑⎰, 截断误差为:4(4)(),[,]180s b a R h f a b ηη-=-∈。
③Guass积分法选用Gauss-Legendre 求积公式:111()()ni i i f x dx A f x -=≈∑⎰截断误差为:R= ()()n 2n 422n!2×(2[2!]2n 1f n n ⨯(2)η())+ η∈(1,1)。
选择9个节点:-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,0.3242534234,0.6133714327,0.8360311073,0.9681602395, 对应的求积系数依次为:0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,0.3123470770,0.2606106964,0.1806481607,0.0812743884。
二、程序源代码:#include<stdio.h>#include<math.h>#include<stdlib.h>#define E 1.0e-10/****定义函数g和K*****/double g(double a){double b;b=exp(4*a)+(exp(a+4)-exp(-a-4))/(a+4);return b;}double K(double a,double b){double c;c=exp(a*b);return c;}/******复化梯形法******/void Tixing( ){double u[1001],x[1001],h,c[1001],e;int i,j,k;FILE *fp;fp=fopen("f:/result0. xls ","w");h=1.0/1500;for(i=0;i<3001;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<100;k++){e=0;for(i=0;i<1001;i++){for(j=1,c[i]=0;j<N-1;j++)c[i]+=K(x[i],x[j])*u[j];u[i]=g(x[i])-h*c[i]-h/2*(K(x[i],x[0])*u[0]+K(x[i],x[N-1])*u[N-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<1001;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******复化Simpson法******/void simpson( ){double u[101],x[101],h,c[101],d[101],e;int i,j,k;FILE *fp;fp=fopen("f:/result1.xls","w");h=1.0/50;for(i=0;i<101;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<50;k++){e=0;for(i=0;i<101;i++){for(j=1,c[i]=0,d[i]=0;j<51;j++){c[i]+=K(x[i],x[2*j-1])*u[2*j-1];if(j<50)d[i]+=K(x[i],x[2*j])*u[2*j];}u[i]=g(x[i])-4*h/3*c[i]-2*h/3*d[i]-h/3*(K(x[i],x[0])*u[0]+K(x[i],x[M-1])*u[M-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<101;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******Gauss积分法******/void gauss( ){double x[9]={-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,\0.3242534234,0.6133714327,0.8360311073,0.9681602395},A[9]={0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,\0.3123470770,0.2606106964,0.1806481607,0.0812743884},u[9],c[9],e;int i,j,k;FILE *fp;fp=fopen("f:/result2. xls ","w");for(i=0;i<9;i++)u[i]=g(x[i]);for(k=0;k<50;k++){e=0;for(i=0;i<9;i++){for(j=0,c[i]=0;j<9;j++)c[i]+=A[j]*K(x[i],x[j])*u[j];u[i]=g(x[i])-c[i];e+=A[i]*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<9;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******主函数******/main(){Tixing ( );Simpson( );Gauss( );return 0;}三、运算结果复化梯形数据-10.018323-0.920.02523-0.9980.018471-0.9180.025433-0.9960.018619-0.9160.025637-0.9940.018768-0.9140.025843-0.9920.018919-0.9120.026051-0.990.019071-0.910.02626-0.9880.019224-0.9080.026471-0.9860.019378-0.9060.026683-0.9840.019534-0.9040.026897-0.9820.019691-0.9020.027113-0.980.019849-0.90.027331-0.9780.020008-0.8980.02755-0.9760.020169-0.8960.027772-0.9740.020331-0.8940.027995-0.9720.020494-0.8920.028219-0.970.020658-0.890.028446-0.9680.020824-0.8880.028674-0.9660.020992-0.8860.028905-0.9640.02116-0.8840.029137-0.9620.02133-0.8820.029371-0.960.021501-0.880.029607-0.9580.021674-0.8780.029844-0.9560.021848-0.8760.030084-0.9540.022023-0.8740.030326-0.9520.0222-0.8720.030569-0.950.022378-0.870.030815-0.9480.022558-0.8680.031062-0.9460.022739-0.8660.031311-0.9440.022922-0.8640.031563-0.9420.023106-0.8620.031816-0.940.023291-0.860.032072-0.9380.023478-0.8580.032329-0.9360.023667-0.8560.032589-0.9340.023857-0.8540.032851-0.9320.024048-0.8520.033114-0.930.024241-0.850.03338-0.9280.024436-0.8480.033648-0.9260.024632-0.8460.033918-0.9240.02483-0.8440.034191-0.9220.025029-0.8420.034465-0.840.034742-0.760.047841-0.8380.035021-0.7580.048225-0.8360.035302-0.7560.048613 -0.8340.035586-0.7540.049003 -0.8320.035872-0.7520.049396 -0.830.03616-0.750.049793 -0.8280.03645-0.7480.050193 -0.8260.036743-0.7460.050596 -0.8240.037038-0.7440.051002 -0.8220.037335-0.7420.051412 -0.820.037635-0.740.051825 -0.8180.037937-0.7380.052241 -0.8160.038242-0.7360.052661 -0.8140.038549-0.7340.053084 -0.8120.038858-0.7320.05351 -0.810.039171-0.730.05394 -0.8080.039485-0.7280.054373 -0.8060.039802-0.7260.054809 -0.8040.040122-0.7240.05525 -0.8020.040444-0.7220.055693 -0.80.040769-0.720.056141 -0.7980.041096-0.7180.056591 -0.7960.041426-0.7160.057046 -0.7940.041759-0.7140.057504 -0.7920.042094-0.7120.057966 -0.790.042432-0.710.058431 -0.7880.042773-0.7080.058901 -0.7860.043116-0.7060.059374 -0.7840.043463-0.7040.05985 -0.7820.043812-0.7020.060331 -0.780.044164-0.70.060816 -0.7780.044518-0.6980.061304 -0.7760.044876-0.6960.061796 -0.7740.045236-0.6940.062293 -0.7720.045599-0.6920.062793 -0.770.045966-0.690.063297 -0.7680.046335-0.6880.063805 -0.7660.046707-0.6860.064318 -0.7640.047082-0.6840.064834 -0.7620.04746-0.6820.065355-0.680.06588-0.60.090722 -0.6780.066409-0.5980.091451-0.6760.066942-0.5960.092185 -0.6740.06748-0.5940.092926 -0.6720.068022-0.5920.093672 -0.670.068568-0.590.094424 -0.6680.069119-0.5880.095183 -0.6660.069674-0.5860.095947 -0.6640.070234-0.5840.096718 -0.6620.070798-0.5820.097494 -0.660.071366-0.580.098277 -0.6580.071939-0.5780.099067 -0.6560.072517-0.5760.099862 -0.6540.0731-0.5740.100664 -0.6520.073687-0.5720.101473 -0.650.074278-0.570.102288 -0.6480.074875-0.5680.103109 -0.6460.075476-0.5660.103937 -0.6440.076082-0.5640.104772 -0.6420.076694-0.5620.105614 -0.640.077309-0.560.106462 -0.6380.07793-0.5580.107317 -0.6360.078556-0.5560.108179 -0.6340.079187-0.5540.109048 -0.6320.079823-0.5520.109924 -0.630.080464-0.550.110806 -0.6280.08111-0.5480.111696 -0.6260.081762-0.5460.112593 -0.6240.082418-0.5440.113498 -0.6220.08308-0.5420.114409 -0.620.083748-0.540.115328 -0.6180.08442-0.5380.116254 -0.6160.085098-0.5360.117188 -0.6140.085782-0.5340.118129 -0.6120.086471-0.5320.119078 -0.610.087165-0.530.120035 -0.6080.087865-0.5280.120999 -0.6060.088571-0.5260.12197 -0.6040.089282-0.5240.12295 -0.6020.089999-0.5220.123938-0.550.110806-0.470.152592 -0.5480.111696-0.4680.153817-0.5460.112593-0.4660.155053-0.5440.113498-0.4640.156298-0.5420.114409-0.4620.157553-0.540.115328-0.460.158819-0.5380.116254-0.4580.160095-0.5360.117188-0.4560.16138-0.5340.118129-0.4540.162677-0.5320.119078-0.4520.163983-0.530.120035-0.450.1653-0.5280.120999-0.4480.166628-0.5260.12197-0.4460.167966-0.5240.12295-0.4440.169315-0.5220.123938-0.4420.170675-0.520.124933-0.440.172046-0.5180.125936-0.4380.173428-0.5160.126948-0.4360.174821-0.5140.127967-0.4340.176225-0.5120.128995-0.4320.17764-0.510.130031-0.430.179067-0.5080.131076-0.4280.180505-0.5060.132128-0.4260.181955-0.5040.13319-0.4240.183416-0.5020.134259-0.4220.18489-0.50.135338-0.420.186375-0.4980.136425-0.4180.187871-0.4960.13752-0.4160.18938-0.4940.138625-0.4140.190901-0.4920.139738-0.4120.192435-0.490.140861-0.410.19398-0.4880.141992-0.4080.195538-0.4860.143132-0.4060.197109-0.4840.144282-0.4040.198692-0.4820.145441-0.4020.200288-0.480.146609-0.40.201897-0.4780.147786-0.3980.203518-0.4760.148973-0.3960.205153-0.4740.15017-0.3940.206801-0.4720.151376-0.3920.208462-0.390.210136-0.310.289382 -0.3880.211824-0.3080.291706-0.3860.213525-0.3060.294049 -0.3840.21524-0.3040.296411 -0.3820.216969-0.3020.298792 -0.380.218711-0.30.301192 -0.3780.220468-0.2980.303611 -0.3760.222239-0.2960.306049 -0.3740.224024-0.2940.308508 -0.3720.225823-0.2920.310985 -0.370.227637-0.290.313483 -0.3680.229465-0.2880.316001 -0.3660.231308-0.2860.318539 -0.3640.233166-0.2840.321098 -0.3620.235039-0.2820.323677 -0.360.236927-0.280.326277 -0.3580.23883-0.2780.328897 -0.3560.240748-0.2760.331539 -0.3540.242682-0.2740.334202 -0.3520.244631-0.2720.336886 -0.350.246596-0.270.339592 -0.3480.248576-0.2680.34232 -0.3460.250573-0.2660.345069 -0.3440.252586-0.2640.347841 -0.3420.254614-0.2620.350635 -0.340.256659-0.260.353451 -0.3380.258721-0.2580.35629 -0.3360.260799-0.2560.359151 -0.3340.262894-0.2540.362036 -0.3320.265005-0.2520.364944 -0.330.267134-0.250.367875 -0.3280.269279-0.2480.37083 -0.3260.271442-0.2460.373809 -0.3240.273622-0.2440.376811 -0.3220.27582-0.2420.379838 -0.320.278035-0.240.382888 -0.3180.280268-0.2380.385964 -0.3160.28252-0.2360.389064 -0.3140.284789-0.2340.392189 -0.3120.287076-0.2320.395339-0.230.398514-0.150.548804-0.2280.401715-0.1480.553212-0.2260.404942-0.1460.557655 -0.2240.408194-0.1440.562134 -0.2220.411473-0.1420.56665 -0.220.414778-0.140.571201 -0.2180.418109-0.1380.575789 -0.2160.421467-0.1360.580414 -0.2140.424853-0.1340.585076 -0.2120.428265-0.1320.589775 -0.210.431705-0.130.594512 -0.2080.435172-0.1280.599287 -0.2060.438668-0.1260.604101 -0.2040.442191-0.1240.608953 -0.2020.445743-0.1220.613844 -0.20.449323-0.120.618774 -0.1980.452932-0.1180.623744 -0.1960.45657-0.1160.628754 -0.1940.460237-0.1140.633805 -0.1920.463934-0.1120.638895 -0.190.46766-0.110.644027 -0.1880.471416-0.1080.6492 -0.1860.475203-0.1060.654414 -0.1840.47902-0.1040.659671 -0.1820.482867-0.1020.664969 -0.180.486746-0.10.67031 -0.1780.490655-0.0980.675694 -0.1760.494596-0.0960.681121 -0.1740.498569-0.0940.686592 -0.1720.502573-0.0920.692107 -0.170.50661-0.090.697666 -0.1680.510679-0.0880.70327 -0.1660.514781-0.0860.708919 -0.1640.518916-0.0840.714613 -0.1620.523084-0.0820.720352 -0.160.527285-0.080.726138 -0.1580.53152-0.0780.731971 -0.1560.535789-0.0760.73785 -0.1540.540093-0.0740.743776 -0.1520.544431-0.0720.749751-0.070.7557730.01 1.040796 -0.0680.7618430.012 1.049156-0.0660.7679620.014 1.057583 -0.0640.7741310.016 1.066077 -0.0620.7803480.018 1.07464 -0.060.7866160.02 1.083272 -0.0580.7929340.022 1.091973 -0.0560.7993030.024 1.100743 -0.0540.8057230.026 1.109585 -0.0520.8121950.028 1.118497 -0.050.8187190.03 1.127481 -0.0480.8252950.032 1.136537 -0.0460.8319240.034 1.145666 -0.0440.8386060.036 1.154868 -0.0420.8453410.038 1.164144 -0.040.8521310.04 1.173494 -0.0380.8589760.042 1.18292 -0.0360.8658750.044 1.192421 -0.0340.872830.046 1.201999 -0.0320.879840.048 1.211654 -0.030.8869070.05 1.221386 -0.0280.8940310.052 1.231196 -0.0260.9012120.054 1.241085 -0.0240.9084510.056 1.251054 -0.0220.9157480.058 1.261102 -0.020.9231030.06 1.271232 -0.0180.9305170.062 1.281442 -0.0160.9379910.064 1.291735 -0.0140.9455250.066 1.30211 -0.0120.953120.068 1.312569 -0.010.9607750.07 1.323112 -0.0080.9684930.072 1.333739 -0.0060.9762720.074 1.344452 -0.0040.9841130.076 1.355251 -0.0020.9920180.078 1.366136 00.9999860.08 1.377109 0.002 1.0080180.082 1.38817 0.004 1.0161140.084 1.39932 0.006 1.0242760.086 1.41056 0.008 1.0325030.088 1.4218890.09 1.433310.17 1.973853 0.092 1.4448230.172 1.9897080.094 1.4564280.174 2.005689 0.096 1.4681260.176 2.021799 0.098 1.4799180.178 2.038039 0.1 1.4918050.18 2.054408 0.102 1.5037870.182 2.07091 0.104 1.5158660.184 2.087543 0.106 1.5280410.186 2.104311 0.108 1.5403150.188 2.121213 0.11 1.5526870.19 2.138251 0.112 1.5651580.192 2.155425 0.114 1.577730.194 2.172738 0.116 1.5904020.196 2.19019 0.118 1.6031760.198 2.207781 0.12 1.6160530.2 2.225515 0.122 1.6290340.202 2.24339 0.124 1.6421180.204 2.261409 0.126 1.6553080.206 2.279573 0.128 1.6686040.208 2.297883 0.13 1.6820060.21 2.31634 0.132 1.6955160.212 2.334945 0.134 1.7091350.214 2.3537 0.136 1.7228630.216 2.372605 0.138 1.7367010.218 2.391662 0.14 1.750650.22 2.410872 0.142 1.7647120.222 2.430236 0.144 1.7788860.224 2.449756 0.146 1.7931740.226 2.469433 0.148 1.8075770.228 2.489268 0.15 1.8220960.23 2.509262 0.152 1.8367310.232 2.529417 0.154 1.8514840.234 2.549733 0.156 1.8663550.236 2.570213 0.158 1.8813460.238 2.590857 0.16 1.8964570.24 2.611667 0.162 1.911690.242 2.632645 0.164 1.9270450.244 2.65379 0.166 1.9425230.246 2.675106 0.168 1.9581260.248 2.6965930.25 2.7182520.33 3.743385 0.252 2.7400850.332 3.7734530.254 2.7620940.334 3.803761 0.256 2.7842790.336 3.834314 0.258 2.8066430.338 3.865111 0.26 2.8291860.34 3.896156 0.262 2.8519110.342 3.927451 0.264 2.8748180.344 3.958996 0.266 2.8979090.346 3.990796 0.268 2.9211850.348 4.02285 0.27 2.9446480.35 4.055162 0.272 2.96830.352 4.087734 0.274 2.9921420.354 4.120567 0.276 3.0161750.356 4.153664 0.278 3.0404010.358 4.187026 0.28 3.0648220.36 4.220657 0.282 3.0894390.362 4.254558 0.284 3.1142540.364 4.288731 0.286 3.1392680.366 4.323179 0.288 3.1644830.368 4.357903 0.29 3.18990.37 4.392906 0.292 3.2155220.372 4.42819 0.294 3.2413490.374 4.463758 0.296 3.2673840.376 4.499612 0.298 3.2936280.378 4.535753 0.3 3.3200830.38 4.572185 0.302 3.346750.382 4.608909 0.304 3.3736320.384 4.645928 0.306 3.4007290.386 4.683245 0.308 3.4280440.388 4.720861 0.31 3.4555790.39 4.75878 0.312 3.4833350.392 4.797003 0.314 3.5113130.394 4.835533 0.316 3.5395160.396 4.874373 0.318 3.5679460.398 4.913524 0.32 3.5966040.4 4.95299 0.322 3.6254930.402 4.992773 0.324 3.6546130.404 5.032876 0.326 3.6839670.406 5.0733 0.328 3.7135570.408 5.114050.41 5.1551260.497.099276 0.412 5.1965330.4927.1562980.414 5.2382720.4947.213778 0.416 5.2803460.4967.27172 0.418 5.3227590.4987.330127 0.42 5.3655120.57.389004 0.422 5.4086080.5027.448353 0.424 5.4520510.5047.508179 0.426 5.4958420.5067.568486 0.428 5.5399850.5087.629277 0.43 5.5844830.517.690556 0.432 5.6293380.5127.752327 0.434 5.6745540.5147.814595 0.436 5.7201330.5167.877362 0.438 5.7660770.5187.940634 0.44 5.8123910.528.004414 0.442 5.8590770.5228.068707 0.444 5.9061380.5248.133516 0.446 5.9535770.5268.198845 0.448 6.0013960.5288.264699 0.45 6.04960.538.331082 0.452 6.0981910.5328.397998 0.454 6.1471730.5348.465452 0.456 6.1965480.5368.533447 0.458 6.2463190.5388.601989 0.46 6.296490.548.671081 0.462 6.3470640.5428.740728 0.464 6.3980450.5448.810935 0.466 6.4494340.5468.881705 0.468 6.5012370.5488.953044 0.47 6.5534560.559.024956 0.472 6.6060940.5529.097445 0.474 6.6591550.5549.170517 0.476 6.7126420.5569.244175 0.478 6.7665580.5589.318426 0.48 6.8209080.569.393272 0.482 6.8756950.5629.46872 0.484 6.9309210.5649.544774 0.486 6.9865910.5669.621439 0.4887.0427080.5689.6987190.579.776620.6513.46367 0.5729.8551470.65213.571810.5749.9343050.65413.68082 0.57610.01410.65613.79071 0.57810.094530.65813.90147 0.5810.175610.6614.01313 0.58210.257340.66214.12569 0.58410.339730.66414.23915 0.58610.422780.66614.35352 0.58810.50650.66814.46881 0.5910.590890.6714.58502 0.59210.675960.67214.70217 0.59410.761710.67414.82026 0.59610.848150.67614.9393 0.59810.935280.67815.05929 0.611.023110.6815.18025 0.60211.111650.68215.30218 0.60411.20090.68415.42509 0.60611.290870.68615.54898 0.60811.381560.68815.67387 0.6111.472980.6915.79977 0.61211.565130.69215.92667 0.61411.658020.69416.0546 0.61611.751660.69616.18355 0.61811.846050.69816.31354 0.6211.94120.716.44457 0.62212.037110.70216.57665 0.62412.133790.70416.7098 0.62612.231250.70616.84401 0.62812.32950.70816.97931 0.6312.428530.7117.11569 0.63212.528360.71217.25316 0.63412.628990.71417.39174 0.63612.730420.71617.53143 0.63812.832680.71817.67225 0.6412.935750.7217.81419 0.64213.039650.72217.95728 0.64413.144390.72418.10151 0.64613.249960.72618.24691 0.64813.356390.72818.393470.7318.541210.8125.53363 0.73218.690130.81225.738720.73418.840250.81425.94545 0.73618.991580.81626.15385 0.73819.144120.81826.36392 0.7419.297890.8226.57568 0.74219.452890.82226.78914 0.74419.609140.82427.00431 0.74619.766640.82627.22121 0.74819.925410.82827.43985 0.7520.085450.8327.66025 0.75220.246780.83227.88242 0.75420.409410.83428.10638 0.75620.573340.83628.33213 0.75820.738580.83828.5597 0.7620.905160.8428.78909 0.76221.073070.84229.02033 0.76421.242330.84429.25342 0.76621.412950.84629.48839 0.76821.584940.84829.72524 0.7721.758310.8529.964 0.77221.933080.85230.20467 0.77422.109250.85430.44728 0.77622.286830.85630.69184 0.77822.465840.85830.93836 0.7822.646290.8631.18686 0.78222.828190.86231.43735 0.78423.011550.86431.68986 0.78623.196380.86631.9444 0.78823.382690.86832.20098 0.7923.570510.8732.45962 0.79223.759830.87232.72034 0.79423.950670.87432.98315 0.79624.143040.87633.24807 0.79824.336960.87833.51513 0.824.532440.8833.78432 0.80224.729490.88234.05568 0.80424.928110.88434.32922 0.80625.128340.88634.60496 0.80825.330170.88834.882910.8935.163090.94643.99154 0.89235.445520.94844.344880.89435.730220.9544.701070.89636.017210.95245.060110.89836.306510.95445.422040.936.598120.95645.786870.90236.892080.95846.154630.90437.188410.9646.525350.90637.487110.96246.899050.90837.788210.96447.275750.9138.091730.96647.655470.91238.397680.96848.038240.91438.70610.9748.424090.91639.016990.97248.813040.91839.330380.97449.205110.9239.646280.97649.600330.92239.964720.97849.998720.92440.285720.9850.400320.92640.60930.98250.805140.92840.935480.98451.213210.9341.264280.98651.624560.93241.595720.98852.039210.93441.929820.9952.45720.93642.26660.99252.878540.93842.606090.99453.303270.9442.948310.99653.73140.94243.293270.99854.162980.94443.64101154.59802复化Simpson数据:-1 0.018319929 -0.34 0.256658088 0.32 3.596641805 -0.98 0.0198445 -0.32 0.278035042 0.34 3.896195298-0.96 0.021494322 -0.3 0.301192133 0.36 4.220697765-0.94 0.023283225 -0.28 0.326278124 0.38 4.572227037-0.92 0.025220379 -0.26 0.353453177 0.4 4.95303418-0.9 0.027320224 -0.24 0.382891765 0.42 5.365557596-0.88 0.029594431 -0.22 0.41478194 0.44 5.812438891-0.86 0.032059069 -0.16 0.527292277 0.54 8.671138204-0.84 0.034728638 -0.14 0.571209036 0.56 9.39333156-0.82 0.037621263 -0.12 0.61878367 0.58 10.17567433-0.8 0.040754615 -0.1 0.670320427 0.6 11.02317608-0.78 0.044149394 -0.08 0.726149698 0.62 11.94126383-0.76 0.047826844 -0.06 0.78662861 0.64 12.93581634-0.74 0.051810827 -0.04 0.85214479 0.66 14.01320231-0.72 0.056126648 -0.02 0.92311742 0.68 15.1803205-0.7 0.060802006 0 1.0000013 0.7 16.44464467 -0.68 0.065866854 0.02 1.083288424 0.72 17.81427057 -0.66 0.071353499 0.04 1.173512427 0.74 19.29796874 -0.64 0.077297255 0.06 1.271250748 0.76 20.90523965 -0.62 0.083735917 0.08 1.377129533 0.78 22.64637562 -0.6 0.090711017 0.1 1.491826493 0.8 24.53252554 -0.58 0.098266855 0.12 1.616076341 0.82 26.57576756 -0.56 0.106452202 0.14 1.750674449 0.84 28.78918506 -0.54 0.11531904 0.16 1.896482943 0.86 31.18695183 -0.52 0.12492459 0.18 2.054435268 0.88 33.78442141 -0.5 0.135329888 0.2 2.225543071 0.9 36.59822683 -0.48 0.14660204 0.22 2.410901825 0.92 39.64638571 -0.46 0.158812728 0.24 2.611698647 0.94 42.94841704 -0.44 0.17204064 0.26 2.829219145 0.96 46.52546475 -0.42 0.18636997 0.28 3.064856356 0.98 50.40043451 -0.4 0.201892977 0.3 3.320119013 1 54.59813904 -0.38 0.218708553 0.46 6.296539601-0.36 0.236924875 0.48 6.820959636-0.2 0.449328351 0.5 7.389057081-0.18 0.486751777 0.52 8.0044696750102030405060四、讨论①在满足相同精度要求的情况下复化梯形积分法比复化Simpson 积分法计算所需节点数多,计算量大。
数值分析大作业之2
数值分析大作业二一、算法设计方案(一)算法流程1.将要求解的矩阵进行Householder变换,进行拟上三角化,并输出拟上三角化的结果;2.将拟上三角化后的矩阵进行带双步位移的QR分解(最大迭代次数1000次),逐个求出特征值,输出QR法结束后得到的Q、R、RQ阵,输出求出的特征值(用实部和虚部表示)3.对于求出来的实特征值,使用带原点平移的反幂法求出对应的特征向量,输出这些特征向量。
(二)程序设计流程1. 定义精度和最大迭代次数;2. 使用容器vector进行编程(方便增减元素),使用传引用调用(提高执行效率);3. 将各个步骤用到的数学算法封装成函数,方便调用。
具体需要的函数如下:double VectMod(vector< double > &p):求向量的模vector< double > NumbMultiVect(vector< double > &vect, double a):数乘向量double VectMultiVect(vector< double > &y, vector< double > &u):求两个向量的积vector< double > ConveArraMultiVect(vector< vector< double > > &B, vector<double > &u):矩阵的转置乘向量vector< double > ArraMultiVect(vector< vector< double > > &B, vector< double > &u):矩阵乘向量vector< vector< double > > VectMultiCovVect(vector< double > &a, vector< double >&b):向量乘向量转置得到矩阵void ArraSubs(vector< vector< double > > &C, vector< vector < double > > D) :两个矩阵相减Vector< double > VectSubs(vector< double > &a, vector< double > &b):两个向量相减vector<vector<double>> GetM(vector<vector<double>> &A):求解矩阵M (用于双部位移QR迭代用)double GetMode(vector < vector < double > > &B, const int r):求解矩阵B的r列向量的模double GetModeH(vector < vector < double > > &B, const int r):求解矩阵B的第r列向量的模,用于拟对角化vector< vector< double > > NumbMultiArra(vector< vector< double > > &D, double a):一个实数乘矩阵bool IsBirZeroH(vector< vector< double > > &B, const int r):判断B[i][r]对角线下是否为零void GausElim(vector< vector< double > > a):列主元高斯消元法求齐次方程解向量void Stop(vector< vector< double > > &Ar):停止,结束程序void SolutS1S2(complex< double > &s1, complex< double > &s2, vector< vector<double > > &A):求解二阶子阵的特征值s1,s2;void Save2(complex< double > &s1, complex< double > &s2):保存两个特征值void Save1(complex< double > &s):保存一个特征值void JudgemBelow2(vector< vector< double > > &A, vector< vector< double > > Abk):对于m == 1 及m == 0 的处理void Hessenberg(vector< vector< double > > &A):矩阵拟上三角化void QRMethod(vector< vector< double > > A):矩阵QR分解void CalculatAk(vector< vector < double > > &Ak):带双步位移QR迭代法二、源程序#include "stdafx.h"#include <vector>#include <iostream>#include <math.h>#include <complex>#include <fstream>using namespace std;const double epsion = 1e-12;const int L = 1000;int m,n;int k = 1;vector< vector< double > > I;vector< complex< double > > Lambda;///////////////////////////以下为自定义的算法流程中用到的函数double VectMod(vector< double > &p) //求向量的模{double value = 0.0;vector< double >::size_type i,j;j = p.size();for (i=1; i<j; i++){value += p[i] * p[i];}value = sqrt(value);return value;}vector< double > NumbMultiVect(vector< double > &vect, double a) //数乘向量{int j = vect.size();vector< double > b(j, 0);for (int i=1; i<j; i++){b[i] = a * vect[i];}return b;}double VectMultiVect(vector< double > &y, vector< double > &u)//两个向量相乘{vector< double >::size_type a = y.size();double value = 0;for (vector< double >::size_type i=1; i<a; i++){value += y[i] * u[i];}return value;}vector< double > ConveArraMultiVect(vector< vector< double > > &B, vector< double > &u)//矩阵的转置乘向量{int a = B.size();int b = u.size();vector< double > vec(a, 0);if (a != b){cerr << "Array and Vector not match in size!";}else{for (int i=1; i<a; i++){for (int j=1; j<a; j++){vec[i] += B[j][i] * u[j];}}return vec;}}vector< double > ArraMultiVect(vector< vector< double > > &B,vector< double > &u) //矩阵乘向量{int a = B.size();int b = u.size();vector< double > vec(a, 0);if (a != b){cerr << "Array and Vector not match in size!";}else{for (int i=1; i<a; i++){for (int j=1; j<a; j++){vec[i] += B[i][j] * u[j];}}return vec;}}vector< vector<double> > GetM(vector< vector <double> > &A){int a = A.size();double s = A[a-2][a-2] + A[a-1][a-1];double t = A[a-2][a-2] * A[a-1][a-1] - A[a-1][a-2] * A[a-2][a-1];vector<vector<double>> D(a, vector< double >(a, 0));for (int i=1; i<a; i++){{double sum = 0;for (int k=1; k<a; k++){sum += A[i][k] * A[k][j];}D[i][j] = sum - s * A[i][j] + t *(i==j ? 1.0 : 0);}}return D;}double GetMode(vector < vector < double > > &B, const int r){double value = 0;int a = B.size();for (int k=r; k<a; k++){value += B[k][r] * B[k][r];}value = sqrt(value);return value;}double GetModeH(vector < vector < double > > &B, const int r){double value = 0;int a = B.size();for (int k=r+1; k<a; k++){value += B[k][r] * B[k][r];}value = sqrt(value);return value;}vector< vector< double > > NumbMultiArra(vector< vector< double > > &D, double a)//数乘//向量{int b = D.size();vector< vector< double > > U(b, vector< double >(b, 0));for (int i=1; i<b; i++){{U[i][j] = a *D[i][j];}}return U;}bool IsBirZero(vector< vector< double > > &B, const int r){bool b = true;int a = B.size();for (int i=r+1; i<a; i++){if(abs(B[i][r]) > epsion){b = false;}}return b;}bool IsBirZeroH(vector< vector< double > > &B, const int r){bool b = true;int a = B.size();for (int i=r+2; i<a; i++){if(abs(B[i][r]) > epsion){b = false;}}return b;}vector< vector< double > > VectMultiCovVect(vector< double > &a,vector< double > &b)//向量乘向量的转置得到矩阵{int s1 = a.size();int s2 = b.size();if (s1 != s2){cerr << "Vectors not match in size ! ";}else{vector< vector< double > > U(s1, vector< double >(s1, 0));for (int i=1; i<s1; i++){for (int j=1; j<s1; j++){U[i][j] = a[i] * b[j];}}return U;}}void ArraSubs(vector< vector< double > > &C,vector< vector < double > > D){int a = C.size();int b = D.size();int c = C[0].size();int d = D[0].size();if (a!=b || c!=d){cerr << "Vectors not match in size !";}else{for (int i=1; i<a; i++){for (int j=1; j<a; j++){C[i][j] -= D[i][j];}}}}vector< double > VectSubs(vector< double > &a,vector< double > &b){int s1 = a.size();int s2 = b.size();if(s1 != s2){cerr << "Vectors not match in size !";}else{vector< double > value(s1,0);for (int i=1;i<s1;i++){value[i] = a[i] - b[i];}return value;}}void GausElim(vector< vector< double > > a) //高斯消元{int sz = a.size();vector< int > fx, ufx,ufxp, record;vector< double > x(sz, 0);vector< vector< double > > ret;//*****消元过程********for (int k = 1; k < sz-1; k++){double max = a[k][k];int p=0;for (int i=k+1; i<sz; i++){if (abs(a[i][k]) > abs(max)){p =i;max = a[i][k];}}//选出主元行if (abs(max) >= epsion){if (p != 0){for (int j=k; j<sz; j++){double temp = a[k][j];a[k][j] = a[p][j];a[p][j] = temp;}//交换主元行}for (int i=k+1; i<sz; i++){double tt = a[i][k] / a[k][k];for (int j=k+1; j<sz; j++){a[i][j] = a[i][j] - tt * a[k][j];}}}// end of if (abs(max) >= epsion)}// end of for (int k = 1; k < sz; k++)for (int i=1; i<sz; i++){int p=0;for (int j=1; j<=i;j++){if(abs(a[j][i]) >= 10*epsion)//不为零{p=j;}}record.push_back(p);}for (int i=1; i<sz; i++){int p=0;for (int j=sz-2; j>=0; j--){if (record[j] == i){p=j + 1;}}if (p != 0){ufxp.push_back(p);ufx.push_back(i);}}for (int i=1; i<sz; i++){int p = 0;for (int j=0; j < ufxp.size(); j++){if (ufxp[j] == i){p = 1;}}if (p == 0){fx.push_back(i);}}//end of for (int i=1; i<sz; i++)int c = fx.size();//***************************************************** for (int i=0; i<c; i++){for (int j=0; j<c; j++){if (i == j){x[fx.at(j)] = 1.0 + epsion;}else{x[fx.at(j)] = 0;}}int b = ufxp.size();for (int s=b-1; s>=0; s--){double temp=0;for(int t=ufxp.at(s)+1; t<sz; t++){temp += x[t] * a[ufx.at(s)][t];}x[ufxp.at(s)] = (0 - temp) / a[ufx.at(s)][ufxp.at(s)];}ret.push_back(x);}//end of for (int i=0; i<c; i++)//******************************************************* int sz1 = ret.size();int sz2 = ret[0].size();ofstream result2("CharactVector .txt", ios::app);result2.precision(12);for (int i=0; i<sz1; i++){for (int j=1;j<sz2; j++){result2 << scientific << ret[i][j] << endl;}result2 << endl << endl;}result2 << "下一个特征值的特征向量!" << endl;}void Stop(vector< vector< double > > &Ar){int a = Lambda.size();for (int i=0; i<a; i++){if (abs(Lambda[i].imag())<=epsion){vector< vector< double > > An=Ar;ArraSubs(An,NumbMultiArra(I,Lambda[i].real()));GausElim(An);}}ofstream result("result.txt");result.precision(12);vector<complex< double > >::iterator i,j;j = Lambda.end();for (i = Lambda.begin(); i<j; i++){result << scientific <<(*i) << endl;}exit(0);}void SolutS1S2(complex< double > &s1, complex< double > &s2,vector< vector< double > > &A){double s = A[m-1][m-1] + A[m][m];double t = A[m-1][m-1] * A[m][m] - A[m][m-1] * A[m-1][m];double det = s *s - 4.0 * t;if (det > 0){s1.imag(0);s1.real ((s + sqrt(det)) / 2);s2.imag (0);s2.real((s - sqrt(det)) / 2);}else{s1.imag(sqrt(0 - det) / 2);s1.real(s / 2);s2.imag(0 - sqrt(0 - det) / 2);s2.real(s / 2);}}void Save2(complex< double > &s1, complex< double > &s2)//存储特征值s1,s2 {Lambda.push_back(s1);Lambda.push_back(s2);}void Save1(complex< double > &s){Lambda.push_back(s);}void JudgemBelow2(vector< vector< double > > &A,vector< vector< double > > Abk){if (m == 1){complex< double > lbd;lbd.imag(0);lbd.real(A[1][1]);Save1(lbd);Stop(Abk);}else if (m == 0){Stop(Abk);}}//拟上三角化void Hessenberg(vector< vector< double > > &A){int a = A.size();vector< double > u(a,0);vector< double > p(a,0);vector< double > q(a,0);vector< double > w(a,0);double d, c, h, t;for (int r=1; r<a-2; r++){if (!IsBirZeroH(A, r)){d = GetModeH(A,r);c = (A[r+1][r] > 0) ?(0-d) : d;h = c * c - c * A[r+1][r];for (int j=1; j<a; j++){if (j < r+1){u[j] = 0;}else if (j == r+1){u[j] = A[j][r] - c;}else{u[j] = A[j][r];}}// end of for (int j=1; j<=m; j++)p = NumbMultiVect(ConveArraMultiVect(A, u), 1 / h);q = NumbMultiVect(ArraMultiVect(A, u), 1 / h);t = VectMultiVect(p, u) / h;w = VectSubs(q, NumbMultiVect(u, t));ArraSubs(A, VectMultiCovVect(w, u));ArraSubs(A, VectMultiCovVect(u, p));}// end of if (!IsBirZero(B, r))}// end of for (int r=1; r<m; r++)ofstream result("NISHANGDANJIAO.txt");result.precision(12);for (int i=1; i<a; i++){for (int j=1; j<a; j++){result << scientific << A[i][j] << " ";}result << endl;}}void QRMethod(vector< vector< double > > A){int a = A.size();vector< vector< double > > Q(a,vector < double > (a,0));for (int i=1; i<a; i++){Q[i][i] = 1.0;}vector< vector< double > > RQ(A);//vector< double > u(a,0);vector< double > v(a,0);vector< double > p(a,0);vector< double > q(a,0);vector< double > w(a,0);vector< double > l(a,0);double d, c, h, t;for (int r=1; r<a-1; r++){if (!IsBirZero(A, r)){d = GetMode(A,r);c = (A[r][r] > 0) ?(0-d) : d;h = c * c - c * A[r][r];for (int j=1; j<a; j++){if (j < r){u[j] = 0;}else if (j == r){u[j] = A[j][j] - c;}else{u[j] = A[j][r];}}// end of for (int j=1; j<=m; j++)l = ArraMultiVect(Q, u);ArraSubs(Q, VectMultiCovVect(l,NumbMultiVect(u, 1/h)));v = NumbMultiVect(ConveArraMultiVect(A, u), 1 / h);ArraSubs(A, VectMultiCovVect(u, v));p = NumbMultiVect(ConveArraMultiVect(RQ, u), 1 / h);q = NumbMultiVect(ArraMultiVect(RQ, u), 1 / h);t = VectMultiVect(p, u) / h;w = VectSubs(q, NumbMultiVect(u, t));ArraSubs(RQ, VectMultiCovVect(w, u));ArraSubs(RQ, VectMultiCovVect(u, p));}// end of if (!IsBirZero(B, r))}// end of for (int r=1; r<m; r++)ofstream result("QR.txt");result.precision(12);for (int i=1; i<a; i++){for (int j=1; j<a; j++){result << scientific << Q[i][j] << " ";}result << endl;}result << endl << endl;for (int i=1; i<a; i++){for (int j=1; j<a; j++){result << scientific << A[i][j] << " ";}result << endl;}result << endl << endl;for (int i=1; i<a; i++){for (int j=1; j<a; j++){result << scientific << RQ[i][j] << " ";}result << endl;}}void CalculatAk(vector< vector < double > > &Ak){int a = Ak.size();vector< vector < double > > B(a,vector < double > (a,0));vector< double > u(a,0);vector< double > v(a,0);vector< double > p(a,0);vector< double > q(a,0);vector< double > w(a,0);double d, c, h, t;B = GetM(Ak);for (int r=1; r<a-1; r++){if (!IsBirZero(B, r)){d = GetMode(B,r);c = (B[r][r] > 0) ?(0-d) : d;h = c * c - c * B[r][r];for (int j=1; j<a; j++){if (j < r){u[j] = 0;}else if (j == r){u[j] = B[j][j] - c;}else{u[j] = B[j][r];}}// end of for (int j=1; j<=m; j++)v = NumbMultiVect(ConveArraMultiVect(B, u), 1 / h);ArraSubs(B, VectMultiCovVect(u, v));p = NumbMultiVect(ConveArraMultiVect(Ak, u), 1 / h);q = NumbMultiVect(ArraMultiVect(Ak, u), 1 / h);t = VectMultiVect(p, u) / h;w = VectSubs(q, NumbMultiVect(u, t));ArraSubs(Ak, VectMultiCovVect(w, u));ArraSubs(Ak, VectMultiCovVect(u, p));}// end of if (!IsBirZero(B, r))}// end of for (int r=1; r<m; r++)}int _tmain(int argc, _TCHAR* argv[]){vector< vector< double > > A(11, vector< double >(11,0));vector< vector< double > > Abk;I=A;for (int i=1; i<11; i++){vector< double > temp;for (int j=1; j<11; j++){if(i != j){A[i][j] = sin(0.5 * i + 0.2 * j);I[i][j] = 0;}else{A[i][j] = 1.5 * cos(i + 1.2 *j);I[i][j] = 1.0;}}}Abk = A;n = A.size() - 1;m = n;//初始化问题Hessenberg(A);QRMethod(A);while (1){if (abs(A[m][m-1]) <= epsion){complex< double > lbdm;lbdm.imag(0);lbdm.real(A[m][m]);Save1(lbdm);m -= 1;//对A进行降维处理!!!!A.pop_back();int a = A.size();for (int i=0; i<a; i++){A[i].pop_back();}JudgemBelow2(A, Abk);}else{complex< double > va1, va2;SolutS1S2(va1, va2, A);if (m == 2){Save2(va1,va2);Stop(Abk);}//end of if (m == 2)if ( abs(A[m-1][m-2]) <= epsion){Save2(va1,va2);m = m - 2;//矩阵降维A.pop_back();A.pop_back();int a = A.size();for (int i=0; i<a; i++){A[i].pop_back();A[i].pop_back();}JudgemBelow2(A, Abk);}else{if (k == L){cerr << "Stop without solution";exit(-1);}else{CalculatAk(A);k += 1;}}}// end of if (abs(A[m][m-1]) >= epsion)}}三、实验结果(1)A经过拟上三角化后得到的矩阵-8.827516758830e-001 -9.933136491826e-002 -1.103349285994e+000-7.600443585637e-001 1.549101079914e-001 -1.946591862872e+000-8.782436382928e-002 -9.255889387184e-001 6.032599440534e-0011.518860956469e-001-2.347878362416e+000 2.372370104937e+000 1.819290822208e+0003.237804101546e-001 2.205798440320e-001 2.102692662546e+0001.816138086098e-001 1.278839089990e+000 -6.380578124405e-001-4.154075603804e-0011.0556********e-016 1.728274599968e+000 -1.171467642785e+000-1.243839262699e+000 -6.399758341743e-001 -2.002833079037e+0002.924947206124e-001 -6.412830068395e-001 9.783997621285e-0022.557763574160e-001-5.393383812774e-017 -3.165873865181e-017 -1.291669534130e+000-1.111603513396e+000 1.171346824096e+000 -1.307356030021e+0001.803699177750e-001 -4.246385358369e-001 7.988955239304e-0021.608819928069e-0011.533464996622e-017 5.963321406181e-017 0.000000000000e+0001.560126298527e+000 8.125049397515e-001 4.421756832923e-001-3.588616128137e-002 4.691742313671e-001 -2.736595050092e-001 -7.359334657750e-0021.300562737229e-016 -3.097060010889e-017 0.000000000000e+0000.000000000000e+000 -7.707773755194e-001 -1.583051425742e+000-3.042843176799e-001 2.528712446035e-001 -6.709925401449e-0012.544619929082e-0011.610216724767e-016 -2.211571837369e-016 0.000000000000e+0000.000000000000e+000 6.483933100712e-017 -7.463453456938e-001-2.708365157019e-002 -9.486521893682e-001 1.195871081495e-0011.929265617952e-0021.368550186199e-016 7.151513190805e-017 0.000000000000e+0000.000000000000e+000 -2.522454384246e-017 1.072074718358e-016-7.701801374364e-001 -4.697623990618e-001 4.988259468008e-0011.137691603776e-001-2.780851300718e-017 -6.708630788363e-017 0.000000000000e+0000.000000000000e+000 -3.282796821065e-017 4.879774287475e-0171.854829286220e-016 7.013167092107e-001 1.582180688475e-0013.862594614233e-001-2.124604440055e-017 -1.707979758930e-016 0.000000000000e+0000.000000000000e+000 1.013496750890e-016 -4.153758325241e-0171.222621691887e-016 -5.551115123126e-017 4.843807602783e-0013.992777995177e-001(2)Q-3.519262579534e-001 4.427591982245e-001 -6.955982513607e-0016.486200753651e-002 3.709718861896e-001 1.855847143605e-001-1.628942319628e-002 -1.181053169648e-001 -5.255375383724e-002 -5.486582943568e-002-9.360277287361e-001 -1.664679186545e-001 2.615299548560e-001 -2.438671728934e-002 -1.394774360893e-001 -6.977585391241e-0026.124472142963e-003 4.440505443139e-002 1.975907909728e-0022.062836970533e-002-4.208697095111e-017 -8.810520554692e-001 -3.989762796959e-0013.720308728479e-002 2.127794064090e-001 1.064463557221e-001-9.343171079758e-003 -6.774200464527e-002 -3.014340698675e-002 -3.146955080444e-002-2.150178169911e-017 4.009681353156e-017 -5.371806806439e-001 -1.234945854205e-001 -7.063151608719e-001 -3.533456368496e-0013.101438948264e-002 2.248676491598e-001 1.000601783527e-0011.044622748702e-0016.113458775639e-018 -3.721194648197e-0177.068175586628e-0189.892235468621e-001 -1.239411731211e-001 -6.200358589825e-0025.442272839461e-003 3.945881637235e-002 1.755813350011e-0021.833059462907e-0025.184948268593e-017 -4.198303559531e-017 3.255071298412e-017-1.527665297025e-017 5.323610690264e-001 -6.733900344896e-0015.910581205868e-002 4.285425323867e-001 1.906901343193e-0011.990794495295e-0016.419444583601e-017 4.121668945107e-017 3.096964582901e-017-5.050360323651e-017 -7.078737686239e-017 -6.0597********e-001 -9.165783032818e-002 -6.645586508974e-001 -2.957110877580e-001 -3.0872********e-0015.455993559780e-017 -9.724896332186e-017 3.956603694870e-0171.913857001710e-018 -4.316583456405e-0172.797376665557e-0179.933396625117e-001 -9.690440311939e-002 -4.311990584470e-002-4.501694411183e-002-1.108640877071e-017 4.655237056115e-017 -1.0722********e-017 -9.470236121745e-018 4.277993227986e-017 8.866601870176e-017 -2.516725033065e-016 5.410088006061e-001 -5.817540838226e-001 -6.0734********e-001-8.470152033092e-018 9.650816729410e-017 -1.429362211392e-017 -2.789222052040e-017 -3.690793770141e-017 -8.090765462521e-017 -1.964050295697e-016 -6.772274683437e-017 -7.221591336735e-0016.917269588876e-001(3)R2.508342744917e+000 -2.185646885493e+000 -1.314609070786e+000-3.558787493836e-002 -2.609857850388e-001 -1.283121847090e+000 -1.390878610606e-001 -8.712897972161e-001 3.849367902971e-0013.353802899665e-0012.100627753398e-016 -1.961603277854e+000 2.407523727633e-0017.054714572823e-001 5.957204318279e-001 5.526978774676e-001-3.268209924413e-001 -5.769498668364e-002 2.871129330189e-001 -8.895128754189e-002-3.300197935770e-016 -1.872873410421e-016 2.404534601993e+0001.706758096328e+000 -4.239566704091e-001 3.405332305815e+000-1.050017655852e-001 1.462257102734e+000 -6.684487469283e-001 -4.027*********e-0013.0773********e-017 1.746386351950e-017 0.000000000000e+0001.577122080722e+000 6.399535133956e-001 3.468127872427e-001-5.701786649768e-002 4.014788054433e-001 -2.222476176311e-001 -6.317059236442e-0021.760039865880e-016 9.988285339980e-017 0.000000000000e+0000.000000000000e+000 -1.447846997770e+000 -1.415724007744e+000-2.806139044665e-001 -2.817910521892e-001 -4.611434881851e-0021.996629079956e-0018.804885435596e-017 4.996802050991e-017 0.000000000000e+0000.000000000000e+000 8.831633340975e-017 1.231641451542e+0001.619701003419e-001 1.962638275504e-001 5.350035621760e-001-1.509273424767e-001-7.728357669400e-018 -4.385868928757e-018 0.000000000000e+0000.000000000000e+000 -7.751835246841e-018 -1.279231078565e-017-7.753441914209e-001 -3.464514508821e-001 4.312226803504e-0011.234643696237e-001-5.603391361152e-017 -3.179943413314e-017 0.000000000000e+0000.000000000000e+000 -5.620413613517e-017 -9.274974944455e-0170.000000000000e+000 1.296312940612e+000 -4.288053318338e-0012.737334158165e-001-2.493361499851e-017 -1.414991023727e-017 0.000000000000e+0000.000000000000e+000 -2.500935953597e-017 -4.127119443934e-0170.000000000000e+000 0.000000000000e+000 -6.707396440648e-001-4.842320121884e-001-2.603055667460e-017 -1.477242832192e-017 0.000000000000e+0000.000000000000e+000 -2.610963355436e-017 -4.308689959101e-0170.000000000000e+000 0.000000000000e+000 -1.110223024625e-0167.168323926323e-002(4)RQ1.163074414164e+0002.632670934508e+000 -1.772796003272e+000-8.668899138521e-002 3.300503471047e-001 1.455162371214e+000 -9.730650448593e-001 -4.873031174655e-001 -7.756411630489e-001 -3.249201979113e-0011.836115060851e+000 1.144286420080e-001 -9.880381403133e-0015.589725694767e-001 4.694190067101e-002 -2.978478237007e-0011.617130577649e-002 6.936977702522e-001 1.367670571405e-0011.419099231519e-0025.598200524418e-016 -2.118520153533e+000 -1.876189745783e+000-5.407071940597e-001 1.171538359721e+000 -2.550323020223e+0001.691577936540e+000 1.229951613262e+000 1.387947777212e+0008.667502917242e-001-3.179059303049e-017 -5.261714527977e-017 -8.471995127808e-0014.382910468318e-001 -1.008632199185e+000 -7.959374261495e-0014.769258865577e-001 4.072683083890e-001 4.096390493527e-0013.363378940862e-001-3.514195999269e-016 3.391949386044e-017 -2.160938214545e-016 -1.432244342447e+000 -5.742284908055e-001 1.213151477723e+000 -3.457508625575e-001 -4.749853573124e-001 -3.176158274191e-001 -4.294507015032e-002-3.704735750656e-017 -1.0998********e-016 -1.953241363386e-0178.269089741494e-017 6.556779598004e-001 -9.275250974463e-0012.529079844053e-001 6.905949216976e-001 -2.374430675823e-002-2.429781119781e-001-6.420051822287e-017 3.865817713597e-017 -3.806718328740e-0172.129734126613e-017 7.853*********e-017 4.698400884876e-001-2.730776009527e-001 7.821296259798e-001 -9.580964936399e-0027.846239841323e-0021.478496020372e-016 -8.383952267131e-017 9.577540382744e-017-7.120338911078e-017 -1.220876056602e-016 -1.854471832043e-0161.287679058937e+000 -3.576058900348e-001 -4.116725408807e-0033.914268216423e-0014.477158378610e-017 -6.204017427568e-017 3.360322998507e-017-1.133882337819e-017 -2.759056827456e-017 -9.217582575819e-0172.214639994444e-016 -3.628760503545e-001 7.398980975354e-0017.241608309576e-0023.408891482791e-017 2.353495494255e-017 1.932283926688e-017-3.456910153081e-017 -2.015177337156e-017 -8.084422691634e-017 -5.839476980893e-017 5.551115123126e-017 -5.176670596524e-0024.958522909877e-002(5)特征值(6.360627875745e-001,0.000000000000e+000)(5.650488993501e-002,0.000000000000e+000)(9.355889078188e-001,0.000000000000e+000)(-9.805309562902e-001,1.139489127430e-001)(-9.805309562902e-001,-1.139489127430e-001)(1.577548557113e+000,0.000000000000e+000)(-1.484039822259e+000,0.000000000000e+000)(-2.323496210212e+000,8.930405177200e-001)(-2.323496210212e+000,-8.930405177200e-001)(3.383039617436e+000,0.000000000000e+000)(6)实特征值的特征向量4.745031936539e+0003.157868541750e+0001.729946912420e+001-1.980049331455e+000-3.187521973524e+0017.794009603201e+000-1.004255685845e+0011.670757770480e+0011.310524273054e+0011.000000000001e+000下一个实特征值对应的特征向量:-5.105003830625e+000-4.886319842360e+0009.505161576151e+000-6.788331788214e-001-9.604334110499e+000-3.0457********e+0001.574873885602e+001-7.395037126277e+000-7.109654943661e+0001.000000000001e+000下一个实特征值对应的特征向量:2.792418944529e+0001.598236841512e+000-5.207507040911e-001-1.667886451702e+000-1.225708535859e+0017.241214790777e+000-5.398214501433e+0002.841008912974e+001-1.216518754416e+0011.000000000001e+000下一个实特征值对应的特征向量:6.217350824581e-001-1.115111815226e-001-2.483773580804e+000-1.306860840421e+000-3.815605442533e+0008.117305509395e+000-1.239170883675e+000-6.800309586197e-0012.691900144840e+0001.000000000001e+000下一个实特征值对应的特征向量:-1.730784582112e+0012.408192534967e+0014.133852365119e-001-8.572044074538e+0009.287334657928e-002-7.832726042776e-002-6.374274025716e-001-3.403204760832e-001。
BUAA数值分析大作业三
北京航空航天大学2020届研究生《数值分析》实验作业第九题院系:xx学院学号:姓名:2020年11月Q9:方程组A.4一、 算法设计方案(一)总体思路1.题目要求∑∑===k i kj s r rsy x cy x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。
),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。
2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。
1. ),(i i y x 与),(i i y x f 的数表的获得对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。
将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。
再将),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。
2.乘积型最小二乘曲面拟合2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下:⎪⎪⎪⎭⎫ ⎝⎛=k i i k x x x x B 0000 , ⎪⎪⎪⎭⎫ ⎝⎛=k j jk y y y y G 0000数表矩阵如下:⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(0000j i i j y x f y x f y x f y x f U记C=[rs c ],则系数rs c 的表达式矩阵为:11-)(-=G G UG B B B C T TT )(通过求解如下线性方程,即可得到系数矩阵C 。
UG B G G C B B T T T =)()(2.2计算),(),,(****j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值),(**j i y x f 的计算与),(j i y x f 相同。
数值分析习题(含答案)
数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析作业
数值分析课后作业:习题一1.在字长为3的十进制计算机上计算f (3.33)和g (3.33),其中f(x)=x 4-x 3+3x 2+x-2,g(x)=(((x-1)x+3)x+1)x-2解: m=3; f=@(x)digit(digit(x^4,m)- digit(x^3,m)+ digit(3*x^2,m)+ digit(x-2,m),m); g=@(x)digit(digit(digit( digit(digit(digit( (x-1)*x,m)+3,m)*x,m)+1,m)*x,m)-2,m); f(3.33) g(3.33) 有ans = 121 ans =121 2.下列各近似值的绝对误差限都是1021⨯-3,试指出它们各有几位有效数字:x=1.00052, y=0.05, z=0.00052.解:当 x=1.00052时, 由丨X*—X 丨 ≤0.5×10-3 得 x=1.00052 有四位有效数字; 同理 y=0052 有两位有效数字 Z=0.00052有零位有效数字 3,计算圆的面积,要使其相对误差限为1%,问测量半径r 允许的相对误差限是多少? 解:设圆的面积为S , 由题意有|e(S)|≤1%。
又S=πr 2 dS=2πr dr 所以 dS/S=(2πrdr)/(πr 2)=2(dr/r)∴|e(r)|≈21|e(S)|≤0.5×1%=0.5% 11.数组与矩阵是Matlab 编程的基础,试学习Matlab 的数组与矩阵的表示方法,并举例介绍数组、矩阵的常见运算. 解:>> syms a b c d; >> a=[1 2 3];>> b=[4 5 6];>> a+bans =5 7 9>> b-aans =3 3 3>> a.*bans =4 10 18 >> a.^2 ans = 1 4 9>> c=[1 2 3;1 2 3;1 2 3];>> d=[4 5 6;4 5 6;4 5 6];>> cc = 1 2 3 1 2 3 1 2 3d = 4 5 6 4 5 6 4 5 6 >> c+dans =5 7 9 5 7 9 5 7 9>> d-cans = 3 3 33 3 33 3 3 12.学习使用Matlab 命令help 和doc 学习自己感兴趣的Matlab 的运算、函数或命令的用法,并对于任意给定的实数a,b,c,编写Matlab 程序求方程ax 2+bx+c=0的根. 解:x 1=a ac b b b 24)sgn(2---, x 2=1ax c1 x>0 其中 sgn = 0 x=0 -1 x<0 disp('Please input the coefficients of');disp('quadratic equation ax^2+bx+c=0, respectively') a=input('a='); b=input('b='); c=input('c=');m=3; if abs(a)<eps & abs(b)<eps error End if abs(a)<eps disp('Since a=0, quadrtic equation degen erates into a linear equation.') disp('The only solution of the linear equtio n is')x=digit(-c/b,m) return Enddelta=b^2-4*a*c; temp=sqrt(delta); x 1=(-b+temp)/(2*a) ; x 2=(-b-temp)/(2*a) ;err1=abs(a*x 1^2+b*x 1+c) ; err2=abs(a*x 2^2+b*x 2+c) ; if b>0x 1=(-b-temp)/(2*a) End if b<0x 1=(-b+temp)/(2*a) End if b=0x 1=temp/(2*a) Endx 2=c/(a*x 1)err1=abs(a*x 1^2+b*x 1+c) err2=abs(a*x 2^2+b*x 2+c) if abs(a)<epsdisp('Since a=0, quadrtic equation degen erates into a linear equation.')disp('The only solution of the linear equtio n is')x=digit(-c/b,m) return Enddelta=digit(digit(b^2,m)-digit(4*digit(a*c,m),m),m);temp=digit(sqrt(delta),m);x 1=digit(digit(-b+temp,m)/digit(2*a,m),m); x 2=digit(digit(-b-temp,m)/digit(2*a,m),m); err1=abs(a*x 1^2+b*x 1+c); err2=abs(a*x 2^2+b*x 2+c); if b>0x 1=digit(digit(-b-temp,m)/digit(2*a,m),m) ; End if b<0x 1=digit(digit(-b+temp,m)/digit(2*a,m),m); End if b=0x 1=digit(temp/digit(2*a,m),m); Endx 2=digit(digit(c/a,m)/x1,m) ; err1=abs(a*x 1^2+b*x 1+c) ; err2=abs(a*x 2^2+b*x 2+c) ; 14分别利用ln (1+x)=11,)1(11≤<--+∞=∑x nx nn n 和ln11...),12...53(2111253<<-++++++=-++x n x x x x x x n ,给出计算ln2的近似方法,编写相应的Matlab 程序,并比较算法运行情况. 解:方法一: x=1; s=0;for k=1:100s=s+(-1)^(k+1)*(x^k)/k; end sq=log(2)err=abs(t-q) ans= t =0.6882 q =0.6931 err = 0.0050方法二x=1/3; s=0;for k=1:2:100 s=s+(x^k)/k; end t=2*s q=log(2)err=abs(t-q) Ans= t =0.6931 q =0.6931 err =2.2204e-16所以方法二较方法一好。
(完整版)数值分析第一次作业
问题1:20.给定数据如下表:试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。
分析:本问题是已知五个点,由这五个点求一三次样条插值函数。
边界条件有两种,(1)是已知一阶倒数,(2)是已知自然边界条件。
对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡432104321034322110d M M M M M 200020000020022d d d d λμμλμλμλ其中μj =j1-j 1-j h h h +,λi=j1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1对于第一种边界条件d 0=0h 6(f[x 0,x 1]-f 0`),d n =1-n h 6(f`n-f `[x n-1,x n ]) 解:由matlab 计算得:由此得矩阵形式的线性方程组为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.00001204286.000004000.026000.0006429.023571.0001243210解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546S(x)=⎪⎪⎩⎪⎪⎨⎧∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384-x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779-]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-33333333),()()()(),()()()),()()()(),()()()(Matlab 程序代码如下:function tgsanci(n,s,t) %n代表元素数,s,t代表端点的一阶导。
数值分析第二章作业答案
第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。
证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。
2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。
解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。
解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。
,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。
1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。
北师大数值分析习题及答案
北师大数值分析习题及答案第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差. 25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+. 27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析期末大作业
一、问题提出设方程f(x)=x 3-3x-1=0有三个实根 x *1=1.8793 , x *2=-0.34727 ,x *3=-1.53209现采用下面六种不同计算格式,求 f(x)=0的根 x *1 或x *2 。
1、 x = 213xx + 2、x = 313-x3、 x = 313+x4、 x = 312-x 5、 x = x13+6、 x = x - ()1133123---x x x二、目的和意义1、通过实验进一步了解方程求根的算法;2、认识选择计算格式的重要性;3、掌握迭代算法和精度控制;4、明确迭代收敛性与初值选取的关系。
三、结构程序设计本程序实在matlab 软件上进行操作的。
首先建立一个空白的M-文件。
在编辑器中输入以下内容,并保存。
function [X1,m,n,q]=shizi1(p) x=zeros(100,1); x=double(x);x(1,1)=p;i=1;deltax=100;while (i<100 & deltax > 0.000001)x(i+1,1)=(3*x(i,1)+1)/x(i,1)^2deltax=abs(x(i+1,1)-x(i,1));i=i+1;endX1=x(1,1);m=i;n=x(i,1);q=deltax;以上是运行函数,下一步在建立一个执行M-文件,输入以下内容,并保存。
其中X1为初始值,m为迭代次数,n为最后得到的值,q为|x k+1-x k|。
clear all;clc;p=1.8;[X1,m,n,q]=shizi1(p)1、对第一个迭代公式,在执行文件中输入p=1.8;[X1,m,n,q]=shizi1(p)。
得到如下结果如下:初值为1.8,迭代100次,精度为10-6。
可见该迭代公式是发散的,将初值改为-1.5,其他均条件不变。
p=-1.5;[X1,m,n,q]=shizi1(p)改变初值后可以得到一个接近真值的结果x*3的结果ans=-1.5321。
北师大数值分析作业
1、设下列各数均为经过四舍五入后得到的近似值,试求各数的绝对误差限和相对误差限。
283580,0.00476,295810,0.143010a b c d --===⨯=⨯2、 已知 1.2031,0.978a b ==是经过四舍五入后得到的近似值,问,a b a b +⨯有几位有效数字?3、 计算球的体积,为使其相对误差限为1%,测量半径R 时,相对误差最大为多少?1、分别用Gauss 消去法、列主元素法和全主元素法解下列方程组,计算过程保留3位小数。
12312312322643116513x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩2、 用三角分解法求解题1中的方程组。
3、 用紧凑格式解下列方程组,并写出L,U 矩阵。
1234123421491610182464441168125690x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦4、 若121011(1,2,,1)001k k k k k nk L l k n l l ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦求证:(1) 112101211001k k k k k k nk L I L l l l -++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)2131321111211231110111n n n n nn ll l L L L l l l l -----⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5、 用三角分解法求下列矩阵的逆矩阵。
111210110-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ 6、 设有方程组Ax=b ,其中12321012(,,),(3,3,1)02T T A a x x x x b a ⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦(1) (1) 求出A 能进行Cholesky 分解,即A=LL T (其中L 为下三角矩阵)的a取值范围。
(2) (2) 取a=1,对矩阵A 进行Cholesky 分解,并用平方根法求解上述方程组,计算过程保留2位小数。
数值分析作业
数值分析作业四刘涌1. 算法的设计方案。
2. 全部源程序(要求注明主程序和每个子程序的功能)。
3. 用各种积分方法求出的数值解错误!未找到引用源。
i u 及节点i x 的值。
4. 在同一坐标系内画出积分方程精确解的曲线和用各种积分方法求出的数值解的曲线。
5. 讨论不同积分法的优劣设 错误!未找到引用源。
在区间[a,b]上有二阶连续导数,取等距节点复化梯形公式其求积系数错误!未找到引用源。
总满足对于问题中所给积分方程中的积分项,分别用复化梯形积分法的数值积分算法公式展开,得到含有未知数u(x)和x 的方程,有如下形式:再将各个方程积分节点带入各个方程,得到错误!未找到引用源。
的(n+1)一、作业要求二、算法设计方案1. 复化梯形积分法:阶方程组。
由于对角元素绝对占优,用Gauss 消去法解该方程组即可。
由于节点数目未知,需要进行迭代确定,每迭代一次,需要判断是否满足精度要求,节点数目增加,然后再进行。
设()f x 在区间[a,b]上有二阶连续导数,取2m+1个等距节点复化Simpson 公式为其求积系数总满足复化simpson 积分法计算量较小,可以直接每次增加2个节点(区间必需取偶数)。
本题中采用下列公式若记)()(x f y u e xy=,1)(=x ρ,积分区间在[a,b],其相应的正交多项式是Ledendre 多项式,其形式为如上求积公式,查表得n=NG 时的积分节点及求积系数⎰∑-==1191)()(i i xx i xy x u e A dy y u e i NG 2,1)()()(91 ==+∑=j x g x u eA x u j k k x x i j k j求解得NG 个差值节点的值。
2. 复化Simpon 积分法:3. Guass 积分法:三、程序源代码:#include<stdio.h>#include<math.h>#include "stdlib.h"#define N 2601#define M 39#define NG 9double a1[N+1][N+1],g1[N+1],x1[N+1],u1[N+1];FILE *fp;//N:复化梯形计算的节点数:N+1//M:复化Simpson算法节点数:2*M+1//NG:gauss算法节点数:NGvoid gsxy(n)//列主元素的gauss消去法求解线性方程组,用于梯形法中方程组的求解int n;{double sum,max,tem;int i,j,r,im;for(r=0;r<n;r++){im=r;max=fabs(a1[r][r]);for(i=r;i<n;i++){if(fabs(a1[(i+1)][r])>=max){max=fabs(a1[(i+1)][r]);im=i+1;}}for(j=r;j<n;j++){tem=a1[im][j];a1[im][j]=a1[r][j];a1[im][j]=tem;}for(i=r+1;i<n;i++){tem=a1[i][r]/a1[r][r];for(j=r+1;j<n;j++)a1[i][j]=a1[i][j]-tem*a1[r][j];g1[i]=g1[i]-tem*g1[r];}}u1[n-1]=g1[n-1]/a1[n-1][n-1];for(i=n-2;i>=0;i--){sum=0.0;for(j=i+1;j<n;j++)sum=sum+a1[i][j]*u1[j];u1[i]=(g1[i]-sum)/a1[i][i];}}double fhtix()//复合梯形法求解,因为计算量大,数组采用全局变量的形式存储,返回误差值,结果存入F:\\rezult4.txt{double h,er;int i,j,n;n=N+1;h=2/(double)N;for(i=0;i<n;i++)x1[i]=-1.0+h*(double)i;for(i=0;i<n;i++)g1[i]=exp(4*x1[i])+(exp(x1[i]+4)-exp(-1.0*(x1[i]+4)))/(x1[i]+4);for(i=0;i<n;i++)for(j=0;j<n;j++){if((j==0)||(j==N))a1[i][j]=h*exp(x1[i]*x1[j])/2;elsea1[i][j]=h*exp(x1[i]*x1[j]);}for(i=0;i<n;i++)a1[i][i]=1.0+a1[i][i];// lu(a1,g1,N+1,u1);gsxy(n);er=0.0;for(i=1;i<N;i++)er=er+(exp(4*x1[i])-u1[i])*(exp(4*x1[i])-u1[i]);er=er*h;er=er+h*(exp(4*x1[0])-u1[0])*(exp(4*x1[0])-u1[0])/2.0;er=er+h*(exp(4*x1[N])-u1[N])*(exp(4*x1[N])-u1[N])/2.0;fprintf(fp,"梯形解法:error is:%.8e\n",er);fputs("差值点,计算值,真实值\n",fp);for(i=0;i<n;i=i+20)fprintf(fp," %f,%f,%f\n",x1[i],u1[i],exp(4*x1[i]));return(er);}void lu(a,b,n,x)double a[],b[],x[];int n;/*Doolittle法解线性方程组,用于simpson和gauss方法中线性方程组的求解*/ {int k,t,j,i;double *l,*u,*y;double sum;l=malloc(n*n*sizeof(double));u=malloc(n*n*sizeof(double));y=malloc(n*sizeof(double));for(k=0;k<n;k++)l[k*n+k]=1.0;for(j=0;j<n;j++){u[j]=a[j];if(j>0)l[j*n]=a[j*n]/u[0];}for(k=1;k<n;k++){for(j=k;j<n;j++){ sum=0.0;for(t=0;t<k;t++){sum=sum+l[k*n+t]*u[t*n+j];}u[k*n+j]=a[k*n+j]-sum;}if(k<(n-1)){for(i=(k+1);i<n;i++){sum=0.0;for(t=0;t<k;t++){sum=sum+l[i*n+t]*u[t*n+k];}l[i*n+k]=(a[i*n+k]-sum)/u[k*n+k];}}}y[0]=b[0];for(i=1;i<n;i++){sum=0.0;for(t=0;t<i;t++)sum=sum+l[i*n+t]*y[t];y[i]=b[i]-sum;}x[n-1]=y[n-1]/u[(n-1)*n+n-1];for(i=n-2;i>=0;i--){ sum=0.0;for(t=i+1;t<n;t++)sum=sum+u[i*n+t]*x[t];x[i]=(y[i]-sum)/u[i*n+i];}free(l);free(u);free(y);return;}double fhSimpson(double u[2*M+1])//复合Simpson求解,返回误差值,结果存入F:\\rezult4.txt {double x[2*M+1],a[2*M+1][2*M+1],g[2*M+1],h,er;int i,j;h=1/(double)M;for(i=0;i<(2*M+1);i++)x[i]=-1.0+h*(double)i;for(i=0;i<(2*M+1);i++)g[i]=exp(4*x[i])+(exp(x[i]+4)-exp(-1.0*(x[i]+4)))/(x[i]+4);for(i=0;i<(2*M+1);i++)for(j=0;j<(2*M+1);j++){if((j==0)||(j==2*M))a[i][j]=h*exp(x[i]*x[j])/3;else if(j%2==0)a[i][j]=2*h*exp(x[i]*x[j])/3;elsea[i][j]=4*h*exp(x[i]*x[j])/3;}for(i=0;i<(2*M+1);i++)a[i][i]=1.0+a[i][i];lu(a,g,2*M+1,u);er=0.0;for(i=2;i<2*M;i=i+2)er=er+(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);er=er*h*2/3;for(i=1;i<2*M;i=i+2)er=er+(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);er=er*h*4/3;er=er+h*(exp(4*x[0])-u[0])*(exp(4*x[0])-u[0])/3;er=er+h*(exp(4*x[2*M])-u[2*M])*(exp(4*x[2*M])-u[2*M])/3;fprintf(fp,"Simpson解法:error is:%.8e\n",er);for(i=0;i<(2*M+1);i++)fprintf(fp,"%f, %f,%f\n",x[i],u[i],exp(4*x[i]));return(er);}double gauss(double u[NG])//Gauss积分法求解,返回误差值,结果存入F:\\rezult4.txt{doublex[NG]={-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,0.32425342 34,0.6133714327,0.8360311073,0.9681602395};doublea1[NG]={0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,0 .3123470770,0.2606106964,0.1806481607,0.0812743884};//NG=9时节点值及系数// doublex[NG]={-0.9602898565,-0.7966664774,-0.5255324099,-0.1834346425,0.1834346425 ,0.5255324099,0.7966664774,0.9602898565};// doublea1[NG]={0.1012285363,0.2223810345,0.3137066459,0.3626837834,0.3626837834,0 .3137066459,0.2223810345,0.1012285363};//NG=8时节点值及系数// doublex[NG]={-0.9324695142,-0.6612093865,-0.2386191861,0.2386191861,0.6612093865,0.9324695142};// doublea1[NG]={0.1713244924,0.3607615730,0.4679139346,0.4679139346,0.3607615730,0 .1713244924};////NG=6时节点值及系数// doublex[NG]={-0.9491079123,-0.7415311856,-0.4058451514,0,0.4058451514,0.741531185 6,0.9491079123};// doublea1[NG]={0.1294849662,0.2797053915,0.3818300505,0.4179591837,0.3818300505,0 .2797053915,0.1294849662};//NG=7时节点值及系数double a[NG][NG],g[NG],er;int i,j;for(i=0;i<NG;i++)g[i]=exp(4*x[i])+(exp(x[i]+4)-exp(-1.0*(x[i]+4)))/(x[i]+4);for(i=0;i<NG;i++)for(j=0;j<NG;j++)a[i][j]=a1[j]*exp(x[i]*x[j]);for(i=0;i<NG;i++)a[i][i]=1.0+a[i][i];lu(a,g,NG,u);er=0;for(i=0;i<NG;i++)er=er+a1[i]*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);fprintf(fp,"Gauss解法:error is:%.8e\n",er);for(i=0;i<NG;i++)fprintf(fp,"%f,%f,%f\n",x[i],u[i],exp(4*x[i]));return(er);}void main()//主函数,调用各子函数求解方程,结果存入F:\\rezult4.txt {double u2[2*M+1],u3[NG];double r1,r2,r3;fp=fopen("F:\\rezult4.txt","w");r1=fhtix(u1);printf("er1 is:%.8e\n",r1);r2=fhSimpson(u2);printf("er2 is:%.8e\n",r2);r3=gauss(u3);printf("er3 is:%.8e\n",r3);fclose(fp);}四、计算结果复化梯形积分法复化Simpon积分法Guass积分法节点值数值解节点值数值解节点值数值解-1 0.018317 -1 0.018317 -0.96816 0.020803 -0.99231 0.018889 -0.97561 0.020194 -0.83603 0.035291 -0.98462 0.019479 -0.95122 0.022263 -0.61337 0.085993 -0.97693 0.020087 -0.92683 0.024544 -0.32425 0.273347 -0.96924 0.020715 -0.90244 0.02706 0 1 -0.96155 0.021362 -0.87805 0.029832 0.324253 3.658356 -0.95386 0.022029 -0.85366 0.03289 0.613371 11.62881 -0.94618 0.022717 -0.82927 0.03626 0.836031 28.33576 -0.93849 0.023426 -0.80488 0.039976 0.96816 48.06917 -0.9308 0.024158 -0.78049 0.044072-0.92311 0.024913 -0.7561 0.048589-0.91542 0.025691 -0.73171 0.053568-0.90773 0.026493 -0.70732 0.059057-0.90004 0.027321 -0.68293 0.065109-0.89235 0.028174 -0.65854 0.071781-0.88466 0.029054 -0.63415 0.079137-0.87697 0.029961 -0.60976 0.087247-0.86928 0.030897 -0.58537 0.096188-0.86159 0.031862 -0.56098 0.106045-0.8539 0.032857 -0.53659 0.116912-0.84621 0.033884 -0.5122 0.128893-0.83852 0.034942 -0.48781 0.142102-0.83083 0.036033 -0.46342 0.156664-0.82315 0.037159 -0.43902 0.172719-0.81546 0.038319 -0.41463 0.190419-0.80777 0.039516 -0.39024 0.209932-0.80008 0.040751 -0.36585 0.231446-0.79239 0.042023 -0.34146 0.255164 -0.7847 0.043336 -0.31707 0.281312 -0.77701 0.04469 -0.29268 0.310141 -0.76932 0.046085 -0.26829 0.341924 -0.76163 0.047525 -0.2439 0.376963 -0.75394 0.049009 -0.21951 0.415594 -0.74625 0.05054 -0.19512 0.458183 -0.73856 0.052119 -0.17073 0.505137 -0.73087 0.053747 -0.14634 0.556903 -0.72318 0.055425 -0.12195 0.613973 -0.71549 0.057157 -0.09756 0.676892 -0.70781 0.058942 -0.07317 0.746259 -0.70012 0.060783 -0.04878 0.822734 -0.69243 0.062681 -0.02439 0.907047 -0.68474 0.064639 0 1 -0.67705 0.066658 0.02439 1.102478 -0.66936 0.06874 0.04878 1.215459 -0.66167 0.070887 0.073171 1.340017 -0.65398 0.073101 0.097561 1.47734 -0.64629 0.075385 0.121951 1.628736 -0.6386 0.077739 0.146341 1.795646 -0.63091 0.080168 0.170732 1.979662 -0.62322 0.082672 0.195122 2.182535 -0.61553 0.085254 0.219512 2.406198 -0.60784 0.087917 0.243902 2.652782 -0.60015 0.090663 0.268293 2.924635 -0.59246 0.093495 0.292683 3.224348 -0.58478 0.096415 0.317073 3.554775 -0.57709 0.099426 0.341463 3.919064 -0.5694 0.102532 0.365854 4.320684 -0.56171 0.105735 0.390244 4.763462-0.55402 0.109037 0.414634 5.251615 -0.54633 0.112443 0.439024 5.789794 -0.53864 0.115955 0.463415 6.383124 -0.53095 0.119577 0.487805 7.037259 -0.52326 0.123312 0.512195 7.758428 -0.51557 0.127164 0.536585 8.553501 -0.50788 0.131136 0.560976 9.430053 -0.50019 0.135232 0.585366 10.39643 -0.4925 0.139456 0.609756 11.46185 -0.48481 0.143811 0.634146 12.63644 -0.47712 0.148303 0.658537 13.93141 -0.46944 0.152936 0.682927 15.35908 -0.46175 0.157713 0.707317 16.93306 -0.45406 0.162639 0.731707 18.66833 -0.44637 0.167719 0.756098 20.58144 -0.43868 0.172958 0.780488 22.6906 -0.43099 0.17836 0.804878 25.0159 -0.4233 0.183931 0.829268 27.5795 -0.41561 0.189676 0.853659 30.40581 -0.40792 0.195601 0.878049 33.52176 -0.40023 0.20171 0.902439 36.95702 -0.39254 0.208011 0.926829 40.74433 -0.38485 0.214508 0.95122 44.91975 -0.37716 0.221208 0.97561 49.52307 -0.36947 0.228118 1 54.59813 -0.36178 0.235243-0.3541 0.242591-0.34641 0.250168-0.33872 0.257982-0.33103 0.26604-0.32334 0.27435-0.31565 0.28292 -0.30796 0.291757 -0.30027 0.30087 -0.29258 0.310267 -0.28489 0.319959 -0.2772 0.329953 -0.26951 0.340259 -0.26182 0.350887 -0.25413 0.361847 -0.24644 0.373149 -0.23875 0.384805 -0.23107 0.396824 -0.22338 0.409219 -0.21569 0.422001 -0.208 0.435183 -0.20031 0.448776 -0.19262 0.462793 -0.18493 0.477249 -0.17724 0.492156 -0.16955 0.507528 -0.16186 0.523381 -0.15417 0.539729 -0.14648 0.556588 -0.13879 0.573973 -0.1311 0.591901 -0.12341 0.610389 -0.11573 0.629455 -0.10804 0.649116 -0.10035 0.669391 -0.09266 0.6903 -0.08497 0.711862-0.07728 0.734097 -0.06959 0.757027 -0.0619 0.780673 -0.05421 0.805057 -0.04652 0.830203 -0.03883 0.856135 -0.03114 0.882877 -0.02345 0.910454 -0.01576 0.938892 -0.00807 0.968219 -0.00038 0.998461 0.007305 1.029648 0.014994 1.06181 0.022684 1.094976 0.030373 1.129178 0.038062 1.164448 0.045752 1.20082 0.053441 1.238328 0.06113 1.277007 0.06882 1.316895 0.076509 1.358029 0.084198 1.400447 0.091888 1.44419 0.099577 1.4893 0.107266 1.535819 0.114956 1.583791 0.122645 1.633261 0.130334 1.684276 0.138024 1.736885 0.145713 1.791137 0.153403 1.8470840.161092 1.904778 0.168781 1.964275 0.176471 2.02563 0.18416 2.088901 0.191849 2.154148 0.199539 2.221434 0.207228 2.290821 0.214917 2.362375 0.222607 2.436165 0.230296 2.512259 0.237985 2.590731 0.245675 2.671653 0.253364 2.755103 0.261053 2.841159 0.268743 2.929904 0.276432 3.02142 0.284121 3.115795 0.291811 3.213118 0.2995 3.313481 0.30719 3.416979 0.314879 3.523709 0.322568 3.633773 0.330258 3.747275 0.337947 3.864322 0.345636 3.985026 0.353326 4.109499 0.361015 4.237861 0.368704 4.370232 0.376394 4.506737 0.384083 4.647507 0.391772 4.7926730.399462 4.942374 0.407151 5.09675 0.41484 5.255949 0.42253 5.42012 0.430219 5.589419 0.437908 5.764007 0.445598 5.944047 0.453287 6.129711 0.460977 6.321175 0.468666 6.518619 0.476355 6.72223 0.484045 6.932201 0.491734 7.14873 0.499423 7.372023 0.507113 7.60229 0.514802 7.83975 0.522491 8.084627 0.530181 8.337153 0.53787 8.597567 0.545559 8.866114 0.553249 9.14305 0.560938 9.428636 0.568627 9.723143 0.576317 10.02685 0.584006 10.34004 0.591696 10.66301 0.599385 10.99608 0.607074 11.33954 0.614764 11.69374 0.622453 12.05899 0.630142 12.435660.637832 12.82409 0.645521 13.22466 0.65321 13.63773 0.6609 14.06371 0.668589 14.503 0.676278 14.956 0.683968 15.42316 0.691657 15.9049 0.699346 16.4017 0.707036 16.91401 0.714725 17.44233 0.722414 17.98714 0.730104 18.54898 0.737793 19.12836 0.745483 19.72584 0.753172 20.34198 0.760861 20.97737 0.768551 21.6326 0.77624 22.30831 0.783929 23.00511 0.791619 23.72368 0.799308 24.4647 0.806997 25.22886 0.814687 26.01689 0.822376 26.82954 0.830065 27.66757 0.837755 28.53177 0.845444 29.42297 0.853133 30.34201 0.860823 31.28975 0.868512 32.26710.876201 33.27497 0.883891 34.31432 0.89158 35.38614 0.89927 36.49144 0.906959 37.63126 0.914648 38.80668 0.922338 40.01882 0.930027 41.26882 0.937716 42.55786 0.945406 43.88717 0.953095 45.258 0.960784 46.67165 0.968474 48.12945 0.976163 49.63279 0.983852 51.18308 0.991542 52.7818 0.99923154.43046-1-0.8-0.6-0.4-0.200.20.40.60.810102030405060节点x[i]数值解u [i ]y1u(x)y2y3图1.三种积分方法和精确解的比较图-1-0.8-0.6-0.4-0.200.20.40.60.8101020304050图2.复化梯形积分法所得数据与精确解比较图-1-0.8-0.6-0.4-0.200.20.40.60.810102030405060图3.复化Simpon 积分法所得数据与精确解比较图-1-0.8-0.6-0.4-0.200.20.40.60.8101020304050节点x[i]数值解u [i ]图4.Guass 积分法所得数据与精确解比较图三种方法都能得到较为精确的结果,基本都和理论曲线重合,但是得到相同的精度所需计算的步数相差很大。
数值分析习题与答案
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知的相对误差满足,而,故即2.有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
1. 给定的数值表解:计(误差限,因误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知由式由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里8.使,显然,再令由9. 令称为第二类的表达式,并证明是[]上带权解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数解得最小二乘拟合曲线为11.满足条件的插值多项式(2) ,).设为互异节点,=( ),=( ).(4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中,则=( ),=( )答:(1)(2)(3)(4)习题1.解 6.13)对)求出,按式()求得2. 用由(6.8)式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.(1)(2)(3)解:本题直接利用求积公式精确度定义,则可突出求积公式的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、设 x0, x1, , xn 为 n+1 个互异节点, l j (x)( j 0,1, ,n) 为这组节点上的 n 次 Lagrange
插值基函数,试证:
n
(1)
x
k j
l
j
(
x)
xk
j0
(k 0,1, , n)
n
(2) ( xj x)k l j (x) 0
j0
(k 1, , n)
(3)设P(x)是任意一个最高次系数为 1的n+1次多项式,则
( 2) ( 2) 取 a=1,对矩阵 A 进行 Cholesky 分解,并用平方根法求解上述方程组, 计算过程保留 2 位小数。
7、 用追赶法解下列方程组
2 1 0 0 x1
0
1 2 1 0 x2
1
0 1 2 1 x3
0
0 0 1 2 x4 2.5
8、 已知
6 13 17
A 13 29 38
17 38 50
1、分别用 Gauss 消去法、 列主元素法和全主元素法解下列方程组, 2 x1 x2 2 x3 6 4 x1 3x2 x3 11 6 x1 x2 5x3 13
计算过程保留 3 位小数。
2、 用三角分解法求解题 1 中的方程组。
3、 用紧凑格式解下列方程组,并写出 L,U 矩阵。
1 2 3 4 x1
1、设下列各数均为经过四舍五入后得到的近似值,试求各数的绝对误差限和相对误差限。 a 3580,b 0.00476,c 2958 10 2, d 0.1430 10 8
2、 已知 a 1.2031,b 0.978 是经过四舍五入后得到的近似值,问 a b, a b 有几位有效
数字? 3、 计算球的体积,为使其相对误差限为 1%,测量半径 R 时,相对误差最大为多少?
l31 l32 1
ln1 l n2 ln3
1 lnn 1 1
5、 用三角分解法求下列矩阵的逆矩阵。
11 1 21 0 1 10
6、 设有方程组 Ax=b ,其中 A
210 12a 0a2
x ( x1, x2, x3 )T ,b (3,3,1) T
( 1) ( 1) 求出 A 能进行 Cholesky 分解,即 A=LL T(其中 L 为下三角矩阵)的 a 取值范围。
6、已知函数表为
1
2
3
4
xi
3
5
9
15
y f ( xi )
分别用 Newton 向前、向后插值公式计算 f(1.5) , f(3.7) 的近似值。
7、设 f (x) x7 5x5 1 ,求差商
(1)f [20 ,21, ,2 7 ]
(2) f [2 0 ,21, ,2 k ]
(k 8)
8、设 f (x) 是一个 n 次多项式,
2、已知函数表为
0. 527
xi
0. 727
0. 807
0. 927
0. 01075 0. 01219 0. 01188 0. 01426
yi
用二次插值计算 y(0.7) 的近似值。
3、已知函数表为
1
3
4
6
xi
-7
5
8
14
y f ( xi )
试求其 3 阶 Lagrange 插值多项式,并以此计算 f(2) 的近似值。
求 cond( A)1 及 cond( A) ,并说明方程组 Ax=b 是否病态。
9、 已知方程组
x1 0.99x2 1 0.99x1 0.98x2 1 的解为 x1 100, x2 100
(1) 计算系数矩阵的条件数。
(2) 取 x1* (1,0)T , x2* (100.5, 99.5)T ,分别计算残量 ri b
f (x)
n k
ak x (an
k0
0) 试证:
n m 1次多项式, m n 1
f [ x0 , x1, , xm , x] an 0
,m n 1 ,m n 1
9、设 f ( x) 3xex 2e2x 节点 x0 1, x1 1.05 ,求的 3 次 Hermite 插值多项式及 f(1.03)
的近似值,并估计误差。
Ax*i (i
1,2) 。
10、 求解超定方程组
的最小二乘解。
2x1 4x2 11 3x1 5x2 3 x1 2x2 6 2x1 x2 7
1、已知函数表为
-1
0
1
xi
yi 2xi
0.5 1
2
( 1) ( 1) 利用线性插值计算 20.3 的近似值并估计误差。 ( 2) ( 2) 利用二次插值计算 20.3 的近似值并估计误差。
2
1 4 9 16 x2 10
1 8 24 64 x3 44
1 16 81 256 x4 90
1
0
1
4、 若 Lk
lk 1k 1
Байду номын сангаасlk 2k
0
0
(k 1,2, , n 1)
l nk
1
1
0
求证: (1)
L
1 k
2I
Lk
1
l k 1k 1
l k 2k
1
0
0
l nk
1
1
l21 1
0
(2)
L1
1L
1 2
Ln1 1
n
P( x) P( xj )l j ( x)
j0
n 1( x)
n
(x xj)
j0
5、已知函数表为
1. 615 1.634 1. 702 1. 828
xi
2. 41450 2.46259 2. 65271 3. 03035
y f ( xi )
试求其 3 阶 Newton 插值多项式,并以此计算 f(1.682) 的近似值。