2010江门调研高三数学(理)
江门市2010年高考模拟考试数学(理科含答案)
江门市2010年高考模拟考试数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈已知ABCD 是复平面内一个平行四边形,对应的复数为i +1,对应的复数为i 23-,其中 i 为虚数单位.则对应的复数为A.i 32-B.i 32+-C.i -4D.i +-4 ⒉已知集合{}是菱形或矩形x x A |=,{}是矩形x x B |=,则=B C AA.{}是菱形x x |B.{}形是内角都不是直角的菱x x |C.{}是正方形x x |D.{}是邻边都不相等的矩形x x |⒊已知)sin(ϕω+=x A y 的最大值为1,在区间32, 6[ππ上, 函数值从1减小到1-,函数图象(如图1)与y 轴的交点P 坐标是A.)21 , 0(B.)22, 0( C.23, 0( D.⒋经过25)2()1(22=++-y x 的圆心,且与向量)4 , 3(-=a 垂直的直线的方程是A.01143=--y xB.01143=+-y xC.0134=-+y xD.0234=++y x ⒌已知0>a ,0>b ,12=+b a ,则ba 11+的取值范围是 A.)6 , (-∞ B.) , 4[∞+ C.) , 6[∞+ D.) , 223[∞++ ⒍从一个三棱柱111C B A ABC -的六个顶点中任取四点,这四点不共面的概率是A.51 B.52 C.53 D.54 ⒎若)()21(2010201022102010R x x a x a x a a x ∈++++=- ,则=++++20102010221002222a a a a A.1- B.0 C.1 D.2010A CD EO 图2B ⒏用{}c b a , , max 表示a 、b 、c 三个数中的最大值,则{}243 , 12 , 3max )(x x x f x -+=在区间]2 , 0[上的最大值M 和最小值m 分别是A .9=M ,13-=mB .5=M ,13-=mC .9=M ,2=mD .5=M ,1=m二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. ㈠必做题(9~13题)⒐某高中高一、高二、高三在校学生人数分别为1200、1200、1100,现要从中抽取140名学生参加周末公益活动,若用分层抽样的方法,则高三年级应抽取 人. ⒑下列命题中,真命题是 (将真命题前面的编号填写在横线上). ①已知平面α、β和直线a 、b ,若a =βα ,α⊂b 且b a ⊥,则βα⊥.②已知平面α、β和两异面直线a 、b ,若α⊂a ,β⊂b 且β//a ,α//b ,则βα//. ③已知平面α、β、γ和直线l ,若γα⊥,γβ⊥且l =βα ,则γ⊥l . ④已知平面α、β和直线a ,若βα⊥且β⊥a ,则α⊂a 或α//a . ⒒由直线x y =与曲线2x y =所围图形的面积=S . ⒓函数)1(log 1|2|)(2---=x x x f 的定义域为 .⒔产量相同的机床Ⅰ、Ⅱ生产同一种零件,它们在一小时内生产出的次品数1X 、2X 的分布列分别如下:两台机床中,较好的是 ,这台机床较好的理由是 . ㈡选做题(14~15题,考生只能从中选做两题)⒕(坐标系与参数方程选做题)在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎨⎧+==my x θθsin cos (m 是常数,] , (ππθ-∈是参数),若曲线C 与x 轴相切,则=m . ⒖(几何证明选讲选选做题)如图2,ABC Rt ∆中,090=C ,30=A ,圆O 经过B 、C 且与AB 、AC 相交于D 、E .若32==EC AE ,则=AD ,圆O 的半径=r .三、解答题:本大题共6小题,满分80分。
江门市2010年初中毕业生学业水平调研测试数学试题及答案
1江门市2010年初中毕业生学业水平调研测试数 学说明:⒈ 全卷共8页,22题,考试时间为100分钟,满分120分.⒉ 答卷前,请考生将自己的姓名、准考证号、学校按要求填写在密封线左边的空格内. ⒊ 答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷上,但不能用铅笔或红笔. ⒋ 考试结束时,将试卷交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内。
1.下列各数中,负整数是 ( )A .1-B .π-C .0D .3-2.某省在“扩内需促增长”中计划总投资2.37万亿元,推进新十项工程建设,以新十项工程的大投入带动全省新一轮大发展。
用科学计数法表示这个总投资是 ( )A .101037. 2⨯元 B .111037. 2⨯元 C .121037. 2⨯元 D .131037. 2⨯元 3.图1是某个几何体的平面展开图,这个几何体是 ( ) A .长方体 B .三棱柱 C .三棱锥 D .圆柱4.下列多项式中,完全平方式是 ( ) A .22--x x B .22+-x xC .122--x x D .122+-x x5.学校教职工一般由管理人员、后勤人员和专任教师三部分组 成,图2所示的扇形统计图表示某校教职工人数的分布情况。
已知该校有14位后勤人员,则该校教职工总人数是 ( ) A .49人 B .70人 C .140人 D .280人2二、填空题(本大题5小题,每小题4分,共20分)请将各题答案填写在相应的横线上。
6.国家实施惠农政策后,某镇农民2009年人均收入达到 a 万元,预计2010年人均收入将在2009年基础上提高20%,则该镇农民2010年人均收入为 . 7.函数321++=x x y 中,自变量 x 的取值范围是 . 8.)3 , 2(-P 是反比例函数xky =的图象上一点,则=k . 9.在一个不透明的布袋中有编号依次为1、2、3、4、5、6、7、8、9、10的10个小球,它们除编号不同外其他都相同。
广东江门市2025届高三上学期10月调研测试数学试题(解析版)
江门市2025届普通高中高三调研测试数学注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上,2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}209,010A x x B x x =∈≤≤=∈≤≤N N∣∣,则A B = ( )A. {}09xx ≤≤∣ B. {}1,2,3 C. {}03xx ≤≤∣ D. {}0,1,2,3【答案】D 【解析】【分析】根据题意求集合,A B ,集合交集运算求解.【详解】由题意可得:{}{}2090,1,2,3A x x =∈≤≤=N∣, {}{}0100,1,2,3,4,5,6,7,8,9,10B x x =∈≤≤=N ∣,所以{}0,1,2,3A B ∩=. 故选:D .2. 设,m n ∈R ,则“33(1)m n +=”是“22m n ”的( ) A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分又不必要条件【答案】A 【解析】【分析】根据充分、必要条件的判定方法进行判断. 【详解】由()331m n +=⇒1m n +=⇒122m n +=,又122m m +<,所以22m n <,故“33(1)m n +=”是“22m n <”的充分条件; 又若22m n <,如0m =,2n =,此时33(1)m n +=不成立, 所以“33(1)m n +=”是“22m n <”的不必要条件. 综上:“33(1)m n +=”是“22m n <”充分不必要条件. 故选:A3. 下列命题为真命题的是( ) A. 若0a b c >>>,则a a cb b c+<+ B. 若0,0a b c >><,则c c a b< C. 0a b >>,则22ac bc > D. 若a b >,则2a ba b +>> 【答案】D 【解析】【分析】根据不等式的性质作差法比较大小或取特殊值判断,即可得出结果. 【详解】对于A ,()()()()()a b c b a c c a b a a c b b cb bc b b c +−+−+−==+++, 因0a b c >>>,所以()0,0a b b b c −>+>,所以()()0c a b a a c b b c b b c −+−=>++,即a a cb b c+>+,故A 错误;对于B ,因为0a b >>,所以11a b<, 又0c <,所以c ca b>,故B 错误; 对于C ,当0c =时,220ac bc ==,故C 错误;对于D ,若a b >,则2,2a a b a b b >++>,的为所以2a ba b +>>,故D 正确. 故选:D.4. 已知函数()e e ,2,,2,3x x x f x x f x − +≤= >则()ln27f =( )A.83B.103C.72827D.73027【答案】B 【解析】【分析】利用对数的运算性质计算可得答案. 【详解】因为21ln e ln 3ln e 2=<<=所以3ln27ln 33ln 33==>,又因为()e e ,2,23x x x f x x f x − +≤ =>, 所以()()1ln ln3ln33ln273ln3110ln27ln3e e 3e 33333f f f f − ====+=+=+=. 故选:B.5. 下列函数中,以π为周期,且在区间π,π2上单调递增的是( ) A. sin y x = B. cos y x = C. tan y x = D. cos y x =【答案】D 【解析】【分析】先判断各函数的最小正周期,再确定各函数在区间上的单调性,即可选择判断. 【详解】对于A :由sin 1s 1π3π2in 2−−==−,,可知π不是其周期,(也可说明其不是周期函数)故错误; 对于B :()cos ,0cos ,0coscos cos ,0cos ,0x x x x yx x x x x x ≥≥ === −<< ,其最小正周期为2π,故错误; 对于C :tan y x =满足()tan tan x x π+=,以π为周期,当π,π2x∈时,tan tan y x x ==−,由正切函数的单调性可知tan tan y x x ==−在区间π,π2 上单调递减,故错误;对于D ,cos y x =满足()cos πcos x x +=,以π为周期, 当π,π2x∈时,cos cos y x x ==−,由余弦函数的单调性可知,cos y x =−在区间π,π2 上单调递增,故正确; 故选:D6. 在正方形ABCD 中,,2,AE EB FC BF AF ==与DE 交于点M ,则cos EMF ∠=( )A.B.15C.D.110【答案】C 【解析】【分析】建立平面直角坐标系,利用向量的坐标计算夹角的余弦值即可.【详解】建立平面直角坐标系,设正方形ABCD 棱长为2, 因为,2AE EB FC BF ==, 则()0,1E ,()0,2A ,()2,2D ,2,03F, 所以2,23AF=−,()2,1DE =−−, 所以cos cos ,EMFAF DE ∠== 故选:C的7. 金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度h 与其来摘后时间t (天)满足的函数解析式为()()ln 0h m t a a =+>.若采摘后1天,金针菇失去的新鲜度为40%;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为60%,则采摘后的天数为( )1.41≈) A. 1.5 B. 1.8C. 2.0D. 2.1【答案】B 【解析】【分析】根据已知条件得到两个等式,两个等式相除求出a 的值,再根据两个等式相除可求得结果.【详解】由题可得()()ln 10.4ln 30.8m a m a +=+=,两式相除可得()()ln 32ln 1a a +=+, 则()()ln 32ln 1a a +=+,()231a a +=+,∵0a >,解得1a =,设t 天后金针菇失去的新鲜度为60%,则()ln 10.6m t +=,又()110.4mln +=, ∴()ln 13ln 22t +=,()2ln 13ln 2t +=,()23128t +==,12 1.41 2.82t +==×=, 则 2.821 1.82 1.8t =−=≈, 故选:B.8. 已知各项都为正数数列{aa nn }满足121,2a a ==,()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,则下列结论中一定正确的是( ) A. 8124a > B. 201024a > C. 8124a < D. 201204a <【答案】B 【解析】【分析】由()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N 得()()1120n n n n n a a a a a −−− +−+> ,由题意,12n n n a a a −−>+,根据递推公式可验证B ,通过对3a 赋值,可验证ACD.【详解】由()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,的得()()1120n n n n n a a a a a −−− +−+> , 因为数列{aa nn }各项都为正数,所以10n n a a −>+,故()120n n n a a a −−−+>,即12n n n a a a −−>+,所以321213a a a >+=+=,对于A ,设34a =,则432426a a a >+=+=, 设47a =,则5437411a a a >+=+=, 设512a =,则65412719a a a >+=+=, 设620a =,则765201232a a a >+=+=, 设733a =,则876332053a a a >+=+=, 则8a 可以为54124<,故A 错误;对于B ,432325a a a >+>+>,543538a a a >+>+>,6548513a a a >+>+>,76513821a a a >+>+>, 876211334a a a >+>+>, 987342155a a a >+>+>, 1098553489a a a >+>+>,111098955144a a a >+>+>, 12111014489233a a a >+>+>,131211233144377a a a >+>+>, 141312377233610a a a >+>+>,151413610377987a a a >+>+>, 1615149876101597a a a >+>+>,17161515979872584a a a >+>+>, 181716258415974181a a a >+>+>,191817418125846765a a a >+>+>,20191867654184109461024a a a >+>+>>,故B 正确;对于C ,若3124a =, 由于12n n n a a a −−>+,则8124a >,故C 错误; 对于D ,若31024a =, 由于12n n n a a a −−>+,则201024a >,故D 错误; 故选:B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若函数()2()f x x x c =−在1x =处取得极大值,则( ) A. 1c =,或3c =B. ()10xf x +<的解集为()1,0−C. 当π02x <<时,()()2cos cos f x f x > D. ()()224f x f x ++−=【答案】BCD 【解析】【分析】A 选项,由题可得()10f ′=,据此得c 的可能值,验证后可判断选项正误;B 选项,由A 分析,可得()1xf x +表达式,解相应不等式可判断选项正误;C 选项,由A 分析结合cos x ,2cos x 大小关系可判断选项正误;D 选项,由A 分析,验证等式是否成立可判断选项正误.【详解】A 选项,由题()3222f x x cx c x =−+,则()2234f x x cx c =−+′, 因在1x =处取得极大值,则()214301f c c c +′=−=⇒=或3c =.当1c =时,()2341f x x x ′=−+,令()()10,1,3f x x ∞∞ >⇒∈−∪+ ′;()10,13f x x <⇒∈′.则()f x 在()1,1,3∞∞−+ ,上单调递增,在1,13上单调递减,则()f x 在1x =处取得极小值,不合题意;当3c =时,()23129f x x x =−+′,令()()()0,13,f x x ∞∞>⇒∈−∪+′;()()01,3f x x <⇒∈′.则()f x 在()(),13,∞∞−+,上单调递增,在()1,3上单调递减,则()f x 在1x =处取得极大值,满足题意;则3c =,故A 错误;B 选项,由A 可知,()()23f x x x =−,则()()()()()21120101,0xf x x x x x x x +=+−<⇒+<⇒∈−.故B 正确; C 选项,当π02x <<,则,则2cos cos x x <,由A 分析,()f x 在(0,1)上单调递增, 则()()2cos cos f x f x >,故C 正确;D 选项,令22x m x n +=−=,,由A 可知,()3269f x x x x =−+.则()()()()22f x f x f m f n ++−=+()()()()32322222696969m m m n n n m n m mn n m n m n =−++−+=+−+−+++,又4m n+=,则()()()()22242363624f m f n mn m n m n +=−−++=−+=,故D 正确. 故选:BCD10. 在ABC 中,1AB =,4AC =,BC =,点D 在边BC 上,AD 为BAC ∠的角平分线,点E 为AC 中点,则( ) A. ABCB. BA CA ⋅C. BE =D. AD =【答案】ACD 【解析】【分析】根据余弦定理可得π3A ∠=,进而可得面积判断A ,再结合向量的线性运算及向量数量积可判断BC ,根据三角形面积及角分线的性质可判断D.【详解】如图所示,由余弦定理可知222116131cos 22142AB AC BC BAC AB AC +−+−∠===⋅××, 而BAC ∠为三角形内角,故π3BAC ∠=,sin BAC ∠, 所以ABC面积11sin 1422S AB AC BAC =⋅⋅∠=××=A 选项正确; 1cos 1422BA CA AB AC AB AC BAC ⋅=⋅=⋅⋅∠=××= ,B 选项错误;由点E 为AC 中点,则12BE AE AB AC AB =−=−,所以222211412324BE AC AB AC AB AB AC =−=+−⋅=+−=,则BE = ,C 选项正确;由AD 为BAC ∠的角平分线,则π6BAD CAD ∠=∠=,所以1sin sin 2S AB AD BAD AC AD CAD =⋅⋅∠+⋅⋅∠,111151422224AD AD AD =××+××=,则AD =D 选项正确; 故选:ACD.11. 已知()()22sin cos nnn f x x x n +=+∈N ,则( ) A. ()2f x 的最小正周期为π2B. ()2f x 的图象关于点()π,0Z 28k k+∈对称 C. ()n f x 的图象关于直线π2x =对称 D.()1112n n f x −≤≤ 【答案】ACD 【解析】【分析】用函数对称性的定义及函数周期性的定义可判断ABC 选项的正误;利用导数法可判断D 选项的正误.【详解】()2442222221()sin cos cos 2sin cos 1sin 22f x x x x x x x x =+=+−=−11cos 43cos 41224x x −+=−×=,所以()f x 的最小正周期为2ππ=42T =,故A 正确; 令π4π2xk =+,可得ππ,Z 84k x k =+∈,所以()2f x 的图象关于点()ππ3,Z 484k k+∈对称,故B 错误; 对于C : ()()()()()2222sin cos sin cos nnnnf x x x x x πππ −=−+−=+−()22sin cos n n x x f x =+=,所以函数()f x 的图象关于直线π2x =对称,C 对; 对于D: ,因为()()2222sin cos cos sin 222nnnnf x x x x x πππ+=+++=+−()22sin cos n n x x f x =+=,所以,函数()f x 为周期函数,且π2是函数()f x 的一个周期, 只需求出函数()f x 在0,2π上的值域,即为函数()f x 在R 上的值域,()22sin cos n n f x x x =+ ,则()()212122222sin cos 2cos sin 2sin cos sin cos n n n n f x n x x n x x n x x x x −−−−−′−=,当,42x ππ ∈ 时,0cos sin 1x x <<<<, 因为2n ≥且k ∗∈N ,则222n −≥,故2222sin cos n n x x −−>,此时ff ′(xx )>0,所以,函数()f x 在ππ,42上单调递增,当0,4x π∈时,0sin cos 1x x <<<<, 因为2k ≥且k ∗∈N ,则222n −≥,故2222sin cos n n x x −−<,此时ff ′(xx )<0,所以,函数()f x 在0,4π上单调递减,所以,当π0,2 ∈ x 时,()1min π112422n n f x f − ==×=, 又因为()π012f f ==,则()max 1f x =, 因此,函数()f x 的值域为11,12n −,D 对.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12. 函数()ln f x x x =⋅的单调递减区间为______. 【答案】10,e##(10,e − 【解析】【分析】利用导数求得()f x 的单调递减区间.【详解】函数的定义域为()0,∞+,∵()ln 1f x x ′=+,令ln 10x +≤得10ex <≤, ∴函数()ln f x x x =⋅的单调递减区间是10,e.故答案为:10,e13. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()()sin 1cos f x x x =+,则当0x <时,()f x =__________.【答案】()sin 1cos x x −+ 【解析】【分析】根据函数的奇偶性与三角函数的奇偶性求解即可.【详解】因为当0x ≥时,()()sin 1cos f x x x =+, 所以当0x <时,则0x −>,所以()()()()sin 1cos sin 1cos f x x x x x −=−+−=−+ , 又函数()f x 是定义在R 上的偶函数,所以()()()sin 1cos f x f x x x =−=−+. 故答案为:()sin 1cos x x −+.14. 已知0,0a b >≠,且4a b +=,则48b a b++的最小值为__________.【答案】2+. 【解析】【分析】先将所求式子化简4848b b a b a b b ++=++,再根据基本不等式得到48a b+的最小值,则可判断当0b <,求得最小值.【详解】根据题意:4848b b a b a b b++=++, 若0b >,则1||b b =, 若0b >,则1||=−b b , 因为0,0a b >≠,则||0b >,481482()()34b a a b a b a b a b +=++=++33≥++当且仅当2b aab=即1),4(2a b ==时取等号;则当0b <时,48481b a b a b++=+−的最小值是312+=+,当且仅当1),2)a b ==时取等号.故答案为:2+.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点()4,3P −. (1)求sin2α的值;(2)若角β满足()5sin 13αβ+=,求cos β的值. 【答案】(1)2425−(2)3365或6365− 【解析】【分析】(1)根据三角函数的定义,求三角函数值,再根据二倍角公式,即可求解;(2)利用角的变换()cos cos βαβα=+− ,再结合两角差的余弦公式,即可求解.【小问1详解】由题意可知,()4,3P −,则=5r , 则3sin 5α=−,4cos 5α=, 24sin 22sin cos 25ααα==−;【小问2详解】()5sin 13αβ+=,所以()12cos 13αβ+=±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+−=+++ , 当()12cos 13αβ+=,所以1245333cos 13513565β =×+×−= ,当()12cos 13αβ+=−,所以1245363cos 13513565β=−×+×−=−, 综上可知,cos β的值为3365或6365− 16. 已知数列{}n a 的前n 项和为n S ,且()1344n n S n ++=−∈N .(1)证明:数列{}2log n a 为等差数列; (2)记数列{}2log n a 的前n 项和为n T ,若1231111100101n T T T T ++++< ,求满足条件的最大整数n . 【答案】(1)证明见解析 (2)99 【解析】【分析】(1)利用退一相减法可得n a 及2log n a ,即可得证;(2)根据等差数列求和公式可得()1n T n n =+,则()111111n T n n n n ==−++,利用裂项相消法可得1231111111n T T T T n ++++=−+ ,解不等式即可. 【小问1详解】由已知1344n n S +=−,当1n =时,211334412a S ==−=,即14a =;当2n ≥时,1344nn S −=−, 则11333444434n n n n n n a S S +−=−=−−+=⋅,即4n n a =,又1n =时,14a =满足4nn a =,所以242n nna ==, 设222log log 22nn n b a n ===,()12122n n b b n n +−=+−=, 即数列{bb nn }为等差数列,即数列{}2log n a 为以2为首项2为公差的等差数列; 【小问2详解】 由等差数列可知()()()122122n nb b n n nT n n ++===+,则()111111n T n n n n ==−++, 所以1231111n T T T T ++++ 1111112231n n =−+−++−+ 11n 1=−+,即110011101n −<+,N n +∈, 解得100n <,即满足条件的最大整数99n =.17. 已知ABC 的三个内角,,A B C 所对的边分别为,,a b c ,且4,3==a c b ,记ABC 的面积为S ,内切圆半径为r ,外接圆半径为R . (1)若b =,求sin A ;(2)记()12pa b c =++,证明:S r p =; (3)求rR 取值范围: 【答案】(1(2)证明见解析 (3)3,24【解析】【分析】(1)利用余弦定理求得cos A ,进而求得sin A . (2)根据三角形的面积公式证得结论成立.(3)用b 表示rR ,然后利用导数求得rR 的取值范围. 【小问1详解】 ∵4a =,b =,c =由余弦定理,得2221cos 23b c a A bc +−== ,∵0πA <<,sin A ∴.【小问2详解】∵ABC 的面积为S ,内切圆半径为r ,的∴()11112222S a r b r c r a b c r =×+×+×=++, 又∵1()2pa b c =++,∴S pr =,∴S r p =.【小问3详解】 由正弦定理得2sin aR A=,得2sin 2sin 42sin R A A a A ===, 因为4a =,3c b =, 由(2)得1(43)(22)2S pr r b b b r ==++=+, 又因为213sin sin 22b S bc A A ==×,所以23sin 4(1)b A r b =+, 所以2321b Rr b=×+, 由3443b b b b +>+>,解得12b <<,令23()(12)2(1)b f b b b =<<+,()()()232021b b f b b +=>+′, 则()f b 在(1,2)上单调递增, 所以()243f b <<, 故rR 的取值范围为3,24. 18. 设函数()()()1ln ,10f x x g x x x==−>. (1)求()f x 在1x =处的切线方程; (2)证明:()()f x g x ≥:(3)若方程()()af x g x =有两个实根,求实数a 的取值范围,【答案】(1)10x y −−=(2)证明见解析 (3)(0,1)(1,)∪+∞ 【解析】【分析】(1)根据切点和斜率求得切线方程. (2)利用构造函数法,结合导数证得不等式成立.(3)利用构造函数法,结合导数以及对a 进行分类讨论来求得a 的取值范围. 【小问1详解】 1()f x x′=,则(1)1,(1)0k f f ===′.()f x ∴在1x =处的切线方程为1y x =−,即10x y −−=. 【小问2详解】 令1()()()ln 1,(0,)h x f x g x x x x∞=−=+−∈+ 22111()x h x x x x −′=−=.令21()0x h x x ′−==,解得1x =. 01,()0x h x ′∴<<<;1,()0x h x ′>>.()h x 在(0,1)上单调递减,在(1,)+∞上单调递增.()(1)0h x h ≥=,即()()f x g x ≥.【小问3详解】令1()()()ln 1,(0,)m x f x g x a x x x∞=−=+−∈+, 问题转化为()m x 在(0,)+∞上有两个零点.2211()a ax m x x x x−=−=′.①当0a ≤时,()0m x ′<,()m x 在(0,)+∞递减,()m x 至多只有一个零点,不符合要求.②当0a >时, 令()0m x ′=,解得1x a= 当10x a<<时,()0m x ′<,()m x 递减; 当1x a>时,()0m x ′>,()m x 递增. 所以11()ln 1ln 1m x m a a a a a a a ≥=+−=−−.当1a =时,1(1)0m ma==,()m x 只有一个零点,不合题意. 令()ln 1,()ln a a a a a a ϕϕ′=−−=−, 当01a <<时,()ln 0ϕ′=−>a a , 所以()a φ在(0,1)递增,()(1)0a ϕϕ<=. 由于1(1)0,()0m m a a φ ==< ,111111(e )ln e 10e e a aa am a =+−=>, 111,e ax a ∴∃∈,使得1()0m x =,故01a <<满足条件.当1a >时,()ln 0a a ϕ′=−<, 所以()a φ在(1,)+∞递减,()(1)0a φφ<=. 由于1(1)0,()0m m a a φ==< ,21(e )ln e 1e 10ea a a a m a a −−−+−−−> 21e ,a x a −∴∃∈,使得2()0m x =,故1a >满足条件.综上所述:实数a 的取值范围为(0,1)(1,)∪+∞.【点睛】关键点点睛:本题的解题过程中,需通过导数分析函数的性质,并将问题转化为函数零点的讨论,充分体现了数学思想方法的应用.在解题时,要特别注意导数符号的变化对函数单调性的影响,确保分类讨论的全面性和严谨性.19. 如果定义域为[]0,1的函数()f x 同时满足以下三个条件:(1)对任意的[]0,1x ∈,总有()0f x ≥;(2)()11f =;(3)当120,0x x ≥≥,且121x x +≤时,()()()1212f x x f x f x +≥+恒成立.则称()f x 为“友谊函数”.请解答下列问题:(1)已知()f x 为“友谊函数”,求()0f 的值;(2)判断函数()[]()310,1xg x x x =−−∈是否为“友谊函数”?并说明理由;(3)已知()f x 为“友谊函数”,存在[]00,1x ∈,使得()[]00,1f x ∈,且()()0ff x x=,证明:()00f x x =.【答案】(1)()00f = (2)是,理由见解析. (3)证明见解析. 【解析】【分析】(1)结合条件,利用“赋值法”可求函数值. (2)根据给出的条件,逐一验证即可.(3)先判断函数的单调性,结合反证法进行证明. 【小问1详解】由条件(1)可知:()00f ≥;结合条件(3),令120x x ==,则()()020f f ≥⇒()00f ≤. 所以:()00f =. 【小问2详解】函数()[]()310,1xg x x x =−−∈是“友谊函数”.理由如下:对条件(1):因为()00g =,()3ln 31xgx ′=−,当[]0,1x ∈时,()0g x ′>,所以()g x 在[0,1]上单调递增,所以()0g x ≥,[]0,1x ∈. 对条件(2):()13111g =−−=.对条件(3):设120,0x x ≥≥,且121x x +≤,则:()()()1212g x x g x g x +−+ ()()()12121212313131x x x x x x x x + −+−−−−−−−12123331x x x x +=−−+()()123131x x =−−0≥.所以:()()()1212g x x g x g x +≥+.综上可知:函数()[]()310,1xg x x x =−−∈是“友谊函数”.【小问3详解】设1201x x ≤<≤且121x x +≤,则210x x −>, 所以()()()()211211f x f x f x x x f x −=+−− ()()()1211f x f x x f x ≥+−−()21f x x −0≥所以函数()f x 在[0,1]上单调递增. 下面用反证法证明:()00f x x =.假设()00f x x ≠,则()00f x x >或()00f x x <.若()00f x x >,则()()000f x f f x x <= ,这与()00f x x >矛盾; 若()00f x x <,则()()000f x f f x x >=,这与()00f x x <矛盾. 故假设不成立,所以()00f x x =.【点睛】方法点睛:对于抽象函数的问题,“赋值法”是解决问题的突破口.合理赋值是解决问题的突破口.。
广东省江门市届高三12月调研考试数学理试题Word版含答案
江门市2017届普通高中高三调研测试数学(理科)试题2016.12第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.错误!未找到引用源。
是虚数单位,若错误!未找到引用源。
,则错误!未找到引用源。
A .1B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
2.已知集合错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
3.在错误!未找到引用源。
中,错误!未找到引用源。
是错误!未找到引用源。
边的中点,错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
4.若等差数列错误!未找到引用源。
满足错误!未找到引用源。
,则错误!未找到引用源。
的前2016项之和错误!未找到引用源。
A .1506B .1508C .1510D .15125.若错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,则A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
6.在平面直角坐标系中,“直线错误!未找到引用源。
与直线错误!未找到引用源。
平行”是“错误!未找到引用源。
”的A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件7.如图,正方体ABCD-A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A 、E 、C 1的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是8.如图,空间四边形错误!未找到引用源。
中,点错误!未找到引用源。
分别错误!A B C D A B C D 1111E未找到引用源。
上,错误!未找到引用源。
高三数学一轮复习教案全套练习及详细解析(教师版)
第一章 集合第一节 集合的含义、表示及基本关系A 组1.已知A ={1,2},B ={x |x ∈A },则集合A 与B 的关系为________.解析:由集合B ={x |x ∈A }知,B ={1,2}.答案:A =B 2.若∅{x |x 2≤a ,a ∈R },则实数a 的取值范围是________.解析:由题意知,x 2≤a 有解,故a ≥0.答案:a ≥03.已知集合A ={y |y =x 2-2x -1,x ∈R },集合B ={x |-2≤x <8},则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y |y ≥-2},∴BA .答案:BA4.(2009年高考广东卷改编)已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是________.解析:由N={x|x 2+x=0},得N ={-1,0},则NM .答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5.答案:a <56.(原创题)已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合?解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B .B 组1.设a ,b 都是非零实数,y =a |a |+b |b |+ab|ab |可能取的值组成的集合是________.解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1}2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________.解析:∵B ⊆A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.答案:13.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个.解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若NM ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:AB =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件 8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:511 9.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值. 解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}.于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A . ②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3]. (2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎨⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2. (2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A=B,则必有a=2第二节集合的基本运算A组1.(2009年高考浙江卷改编)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=____.解析:∁U B={x|x≤1},∴A∩∁U B={x|0<x≤1}.答案:{x|0<x≤1}2.(2009年高考全国卷Ⅰ改编)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有________个.解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8}.答案:33.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.解析:由题意知,N={0,2,4},故M∩N={0,2}.答案:{0,2}4.(原创题)设A,B是非空集合,定义AⓐB={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B={y|y≥0},则AⓐB=________.解析:A∪B=[0,+∞),A∩B=[0,2],所以AⓐB=(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A={x|x>1},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.解:(1)当m=-1时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.(2)若B⊆A,则m>1,即m的取值范围为(1,+∞)B组1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁U A)∩B=________.解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}3.(2010年济南市高三模拟)若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0} 4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为________.解析:U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:m-n6.(2009年高考重庆卷)设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +xy,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=0}{(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. 解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3}, ∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意. 12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ; (3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意.若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98.综上可知,若A =∅,则a 的取值范围应为a >98.(2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意.当a ≠0时,则Δ=9-8a =0,即a =98时,方程有两个相等的实数根x =43,则A ={43}.综上可知,当a =0时,A ={23};当a =98时,A ={43}.(3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根,则Δ=9-8a ≥0,即a ≤98.综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________.解析:⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1]答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:23.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 324.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3,令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3,解得b 1=-1,b 2=0.答案:(-1,0,-1) 6.已知函数f (x )=⎩⎪⎨⎪⎧1+1x(x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a . 解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3,又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32.(2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2;若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧3x 3x -1(x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,a 2+1=32,∴a =±22.∴a =2或±22.B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23}2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧-2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_.解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3,∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1), 由2f (x )-f (-x )=lg(x +1),① 由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1).答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1)4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧16-4b +c =c4-2b +c =-2 ⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0).由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0) 36.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3, 解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3. 综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0,则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧5a 1=205a 1+15(a 1-a 2)=35,得⎩⎪⎨⎪⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的定义域为[-2,1],求实数a 的值.解:(1)①若1-a 2=0,即a =±1,(ⅰ)若a =1时,f (x )=6,定义域为R ,符合题意; (ⅱ)当a =-1时,f (x )=6x +6,定义域为[-1,+∞),不合题意.②若1-a 2≠0,则g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数. 由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0,∴-511≤a <1.由①②可得-511≤a ≤1.(2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知f (x +2)=f (x )(x ∈R ),并且当x ∈[-1,1]时,f (x )=-x 2+1,求当x ∈[2k -1,2k +1](k ∈Z )时、f (x )的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ), ∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *).(2)f (x )=⎩⎪⎨⎪⎧20003x(0<x ≤86,x ∈N *).1000216-x(87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.①f (x )=1x②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1)解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数.由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =x -4+15-3x 的值域是________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2.答案:[1,2]4.已知函数f (x )=|e x +aex |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__.解析:当a <0,且e x +a e x ≥0时,只需满足e 0+ae 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x 符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -ae x ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min 成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎨⎧1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎨⎧1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数f (x )=x 2,g (x )=x -1.(1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (x )x ∈R ,x 2-bx +b <0Δ=(-b )2-4b >0b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需⎩⎨⎧m2≤0-255≤m ≤255-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m2≥1,则x 1≤0.⎩⎪⎨⎪⎧ m 2≥1F (0)=1-m 2≤0m ≥2.若m2≤0,则x 2≤0, ⎩⎪⎨⎪⎧m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x |解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0.∴⎩⎪⎨⎪⎧a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤4 3.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__.解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916.答案:(0,916]4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________.①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3) ③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14.6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时, 在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0] 8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1.μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12)10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性.解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +bx ,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b1=1.即a +b =2.设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+bx 2恒成立.由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立.又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立.∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________.解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23)5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1), 又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧-3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9.B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2) ④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1). 5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________.解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-19.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧-x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ).11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值.解:(1)证明:∴函数定义域为R ,其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x ,设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1)又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2),又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n-1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组 1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎨⎧0<a <1a 2-1=0a 0-1=2无解或⎩⎨⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 36.已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t2-k +1+2)(-2t2-2t+1)+(2t2-2t +1+2)(-22t2-k+1)<0整理得23t2-2t -k>1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:② 2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎨⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________. 解析:由f (x )=a x·g (x )得f (x )g (x )=a x,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x +e x e -x -e x =-e x +e -xe x -e -x=-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]9.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变动时,函数b =g (a )的图象可以是________.解析:函数y =2|x |的图象如图.。
{高中试卷}广东省江门市高三调研测试数学(理)试题
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:江门市20XX年普通高中高三调研测试数学理科试题本试卷共4页,21题,满分150分,测试用时120分钟.参考公式:锥体的体积公式,其中是锥是锥体的底面积,体的高.如果事件、互斥,那么.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈已知,,则A.B.C.D.⒉已知,,则A.B.C.D.⒊已知命题:;命题:复平面内表示复数(,是虚数单位)的点位于直线上。
则命题是命题的A.充分非必要条件 B.必要非充分条件C.非充分非必要条件 D.充要条件⒋函数在其定义域上是A.周期为的奇函数B.周期为的奇函数C.周期为的偶函数D.周期为的偶函数⒌某种饮料每箱装6听,如果其中有2听不合格。
质检人员从中随机抽出2听,检出不合格产品的概率A.B.C.D.⒍以抛物线的顶点为中心、焦点为一个顶点且离心率的双曲线的标准方程是A.B.C.D.⒎已知一个几何体的三视图及其大小如图1,这个几何体的体积A.B. C.D.⒏输入正整数()和数据,,…,,如果执行如图2的程序框图,输出的是数据,,…,的平均数,则框图的处理框★中应填写的是A.B.C.D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)⒐已知等差数列的首项,前三项之和,则的通项.图⒑已知、满足约束条件,则的最大值是.⒒已知是正整数,若,则的取值范围是. ⒓与圆:关于直线:对称的圆的方程是. ⒔曲线上任意一点到直线的距离的最小值是.(二)选做题(14、15题,考生只能从中选做一题)⒕(几何证明选讲选做题)如图3,圆的割线交圆于、两点,割线经过圆心。
已知, ,。
则圆的半径.⒖(坐标系与参数方程选做题)在极坐标系()中,直线被圆截得的弦的长是.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. ⒗(本小题满分12分)在中,角、、所对的边长分别为、、,已知.⑴求角的大小; ⑵若,,求的值.⒘(本小题满分12分)在平面直角坐标系中,,,是平面上一点,使三角形的周长为.⑴求点的轨迹方程;图4⑵在点的轨迹上是否存在点、,使得顺次连接点、、、所得到的四边形是矩形?若存在,请求出点、的坐标;若不存在,请简要说明理由.⒙(本小题满分14分)如图4,四棱锥中,底面,是直角梯形,为的中点,,,,.⑴求证:平面;⑵求与平面所成角的正弦值.⒚(本小题满分14分)如图5所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为、、。
2024-2025学年广东省江门市高三上学期10月调研数学试题及答案
江门市2025届普通高中高三调研测试数学本试卷共5页,19小题,满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上,2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知集合{}{}209,010A x x B x x =∈≤≤=∈≤≤N N∣∣,则A B = ( )A. {}09xx ≤≤∣ B. {}1,2,3 C. {}03xx ≤≤∣ D. {}0,1,2,32. 设,m n ∈R ,则“33(1)m n +=”是“22m n ”的( ) A 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分又不必要条件3. 下列命题为真命题的是( ) A. 若0a b c >>>,则a a cb b c+<+ B. 若0,0a b c >><,则c c a b< C. 0a b >>,则22ac bc > D. 若a b >,则2a ba b +>> ..4. 已知函数()e e ,2,,2,3x x x f x x f x − +≤= >则()ln27f =( )A.83B.103C.72827D.730275. 下列函数中,以π为周期,且在区间π,π2上单调递增的是( ) A. sin y x = B. cos y x = C. tan y x =D. cos y x =6. 在正方形ABCD 中,,2,AE EB FC BF AF ==与DE 交于点M ,则cos EMF ∠=( )A.B.15C.D.1107. 金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度h 与其来摘后时间t (天)满足的函数解析式为()()ln 0h m t a a =+>.若采摘后1天,金针菇失去的新鲜度为40%;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为60%,则采摘后的天数为( )1.41≈) A. 1.5B. 1.8C. 2.0D. 2.18. 已知各项都为正数的数列{aa nn }满足121,2a a ==,()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,则下列结论中一定正确的是( ) A. 8124a > B. 201024a > C. 8124a <D. 201204a <二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若函数()2()f x x x c =−在1x =处取得极大值,则( ) A. 1c =,或3c =B. ()10xf x +<的解集为()1,0− C 当π02x <<时,()()2cos cos f x f x > D. ()()224f x f x ++−=.10. 在ABC 中,1AB =,4AC =,BC =,点D 在边BC 上,AD 为BAC ∠的角平分线,点E 为AC 中点,则( ) A. ABCB. BA CA ⋅C. BE =D. AD =11. 已知()()22sin cos nnn f x x x n +=+∈N ,则( ) A. ()2f x 的最小正周期为π2B. ()2f x 的图象关于点()π,0Z 28k k+∈对称 C. ()n f x 的图象关于直线π2x =对称 D.()1112n n f x −≤≤ 三、填空题:本题共3小题,每小题5分,共15分.12. 函数()ln f x x x =⋅的单调递减区间为______.13. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()()sin 1cos f x x x =+,则当0x <时,()f x =__________.14. 已知0,0a b >≠,且4a b +=,则48b a b++的最小值为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点()4,3P −. (1)求sin2α的值;(2)若角β满足()5sin 13αβ+=,求cos β的值. 16. 已知数列{}n a 前n 项和为n S ,且()1344n n S n ++=−∈N .(1)证明:数列{}2log n a 为等差数列; (2)记数列{}2log n a 的前n 项和为n T ,若1231111100101n T T T T ++++< ,求满足条件的最大整数n . 17. 已知ABC 的三个内角,,A B C 所对的边分别为,,a b c ,且4,3==a c b ,记ABC 的面积为S ,内的切圆半径为r ,外接圆半径为R . (1)若b =,求sin A ;(2)记()12pa b c =++,证明:S r p =; (3)求rR 的取值范围: 18 设函数()()()1ln ,10f x x g x x x==−>. (1)求()f x 在1x =处的切线方程; (2)证明:()()f x g x ≥:(3)若方程()()af x g x =有两个实根,求实数a 的取值范围,19. 如果定义域为[]0,1的函数()f x 同时满足以下三个条件:(1)对任意的[]0,1x ∈,总有()0f x ≥;(2)()11f =;(3)当120,0x x ≥≥,且121x x +≤时,()()()1212f x x f x f x +≥+恒成立.则称()f x 为“友谊函数”.请解答下列问题:(1)已知()f x 为“友谊函数”,求()0f 的值;(2)判断函数()[]()310,1xg x x x =−−∈是否为“友谊函数”?并说明理由;(3)已知()f x 为“友谊函数”,存在[]00,1x ∈,使得()[]00,1f x ∈,且()()0f f x x=,证明:()00f x x =..江门市2025届普通高中高三调研测试数学本试卷共5页,19小题,满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上,2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}209,010A x x B x x =∈≤≤=∈≤≤N N∣∣,则A B = ( )A. {}09xx ≤≤∣ B. {}1,2,3 C. {}03xx ≤≤∣ D. {}0,1,2,3【答案】D 【解析】【分析】根据题意求集合,A B ,集合交集运算求解.【详解】由题意可得:{}{}2090,1,2,3A x x =∈≤≤=N∣, {}{}0100,1,2,3,4,5,6,7,8,9,10B x x =∈≤≤=N ∣,所以{}0,1,2,3A B ∩=. 故选:D .2. 设,m n ∈R ,则“33(1)m n +=”是“22m n ”的( ) A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分又不必要条件【答案】A 【解析】【分析】根据充分、必要条件的判定方法进行判断. 【详解】由()331m n +=⇒1m n +=⇒122m n +=,又122m m +<,所以22m n <,故“33(1)m n +=”是“22m n <”的充分条件; 又若22m n <,如0m =,2n =,此时33(1)m n +=不成立, 所以“33(1)m n +=”是“22m n <”的不必要条件. 综上:“33(1)m n +=”是“22m n <”充分不必要条件. 故选:A3. 下列命题为真命题的是( ) A. 若0a b c >>>,则a a cb b c+<+ B. 若0,0a b c >><,则c c a b< C. 0a b >>,则22ac bc > D. 若a b >,则2a ba b +>> 【答案】D 【解析】【分析】根据不等式的性质作差法比较大小或取特殊值判断,即可得出结果. 【详解】对于A ,()()()()()a b c b a c c a b a a c b b cb bc b b c +−+−+−==+++, 因0a b c >>>,所以()0,0a b b b c −>+>,所以()()0c a b a a c b b c b b c −+−=>++,即a a cb b c+>+,故A 错误;对于B ,因为0a b >>,所以11a b<, 又0c <,所以c ca b>,故B 错误; 对于C ,当0c =时,220ac bc ==,故C 错误;对于D ,若a b >,则2,2a a b a b b >++>,的为所以2a ba b +>>,故D 正确. 故选:D.4. 已知函数()e e ,2,,2,3x x x f x x f x − +≤= >则()ln27f =( )A.83B.103C.72827D.73027【答案】B 【解析】【分析】利用对数的运算性质计算可得答案. 【详解】因为21ln e ln 3ln e 2=<<=所以3ln27ln 33ln 33==>,又因为()e e ,2,23x x x f x x f x − +≤ =>, 所以()()1ln ln3ln33ln273ln3110ln27ln3e e 3e 33333f f f f − ====+=+=+=. 故选:B.5. 下列函数中,以π为周期,且在区间π,π2上单调递增的是( ) A. sin y x = B. cos y x = C. tan y x = D. cos y x =【答案】D 【解析】【分析】先判断各函数的最小正周期,再确定各函数在区间上的单调性,即可选择判断. 【详解】对于A :由sin 1s 1π3π2in 2−−==−,,可知π不是其周期,(也可说明其不是周期函数)故错误; 对于B :()cos ,0cos ,0coscos cos ,0cos ,0x x x x yx x x x x x ≥≥ === −<< ,其最小正周期为2π,故错误; 对于C :tan y x =满足()tan tan x x π+=,以π为周期,当π,π2x∈时,tan tan y x x ==−,由正切函数的单调性可知tan tan y x x ==−在区间π,π2 上单调递减,故错误;对于D ,cos y x =满足()cos πcos x x +=,以π为周期, 当π,π2x∈时,cos cos y x x ==−,由余弦函数的单调性可知,cos y x =−在区间π,π2 上单调递增,故正确; 故选:D6. 在正方形ABCD 中,,2,AE EB FC BF AF ==与DE 交于点M ,则cos EMF ∠=( )A.B.15C.D.110【答案】C 【解析】【分析】建立平面直角坐标系,利用向量的坐标计算夹角的余弦值即可.【详解】建立平面直角坐标系,设正方形ABCD 棱长为2,因为,2AE EB FC BF == ,则()0,1E ,()0,2A ,()2,2D ,2,03F, 所以2,23AF=−,()2,1DE =−−,所以cos cos ,EMFAF DE ∠== .故选:C的7. 金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度h 与其来摘后时间t (天)满足的函数解析式为()()ln 0h m t a a =+>.若采摘后1天,金针菇失去的新鲜度为40%;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为60%,则采摘后的天数为( )1.41≈) A. 1.5 B. 1.8C. 2.0D. 2.1【答案】B 【解析】【分析】根据已知条件得到两个等式,两个等式相除求出a 的值,再根据两个等式相除可求得结果.【详解】由题可得()()ln 10.4ln 30.8m a m a +=+=,两式相除可得()()ln 32ln 1a a +=+, 则()()ln 32ln 1a a +=+,()231a a +=+,∵0a >,解得1a =,设t 天后金针菇失去的新鲜度为60%,则()ln 10.6m t +=,又()110.4mln +=, ∴()ln 13ln 22t +=,()2ln 13ln 2t +=,()23128t +==,12 1.41 2.82t +==×=, 则 2.821 1.82 1.8t =−=≈, 故选:B.8. 已知各项都为正数数列{aa nn }满足121,2a a ==,()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,则下列结论中一定正确的是( ) A. 8124a > B. 201024a > C. 8124a < D. 201204a <【答案】B 【解析】【分析】由()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N 得()()1120n n n n n a a a a a −−− +−+> ,由题意,12n n n a a a −−>+,根据递推公式可验证B ,通过对3a 赋值,可验证ACD.【详解】由()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,的得()()1120n n n n n a a a a a −−− +−+> , 因为数列{aa nn }各项都为正数,所以10n n a a −>+,故()120n n n a a a −−−+>,即12n n n a a a −−>+,所以321213a a a >+=+=,对于A ,设34a =,则432426a a a >+=+=, 设47a =,则5437411a a a >+=+=, 设512a =,则65412719a a a >+=+=, 设620a =,则765201232a a a >+=+=, 设733a =,则876332053a a a >+=+=, 则8a 可以为54124<,故A 错误;对于B ,432325a a a >+>+>,543538a a a >+>+>,6548513a a a >+>+>,76513821a a a >+>+>, 876211334a a a >+>+>, 987342155a a a >+>+>, 1098553489a a a >+>+>,111098955144a a a >+>+>, 12111014489233a a a >+>+>,131211233144377a a a >+>+>, 141312377233610a a a >+>+>,151413610377987a a a >+>+>, 1615149876101597a a a >+>+>,17161515979872584a a a >+>+>, 181716258415974181a a a >+>+>,191817418125846765a a a >+>+>,20191867654184109461024a a a >+>+>>,故B 正确;对于C ,若3124a =, 由于12n n n a a a −−>+,则8124a >,故C 错误; 对于D ,若31024a =, 由于12n n n a a a −−>+,则201024a >,故D 错误; 故选:B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若函数()2()f x x x c =−在1x =处取得极大值,则( ) A. 1c =,或3c =B. ()10xf x +<的解集为()1,0−C. 当π02x <<时,()()2cos cos f x f x > D. ()()224f x f x ++−=【答案】BCD 【解析】【分析】A 选项,由题可得()10f ′=,据此得c 的可能值,验证后可判断选项正误;B 选项,由A 分析,可得()1xf x +表达式,解相应不等式可判断选项正误;C 选项,由A 分析结合cos x ,2cos x 大小关系可判断选项正误;D 选项,由A 分析,验证等式是否成立可判断选项正误.【详解】A 选项,由题()3222f x x cx c x =−+,则()2234f x x cx c =−+′, 因在1x =处取得极大值,则()214301f c c c +′=−=⇒=或3c =.当1c =时,()2341f x x x ′=−+,令()()10,1,3f x x ∞∞ >⇒∈−∪+ ′;()10,13f x x <⇒∈′.则()f x 在()1,1,3∞∞−+ ,上单调递增,在1,13上单调递减,则()f x 在1x =处取得极小值,不合题意;当3c =时,()23129f x x x =−+′,令()()()0,13,f x x ∞∞>⇒∈−∪+′;()()01,3f x x <⇒∈′.则()f x 在()(),13,∞∞−+,上单调递增,在()1,3上单调递减,则()f x 在1x =处取得极大值,满足题意;则3c =,故A 错误;B 选项,由A 可知,()()23f x x x =−,则()()()()()21120101,0xf x x x x x x x +=+−<⇒+<⇒∈−.故B 正确; C 选项,当π02x <<,则,则2cos cos x x <,由A 分析,()f x 在(0,1)上单调递增, 则()()2cos cos f x f x >,故C 正确;D 选项,令22x m x n +=−=,,由A 可知,()3269f x x x x =−+.则()()()()22f x f x f m f n ++−=+()()()()32322222696969m m m n n n m n m mn n m n m n =−++−+=+−+−+++,又4m n+=,则()()()()22242363624f m f n mn m n m n +=−−++=−+=,故D 正确. 故选:BCD10. 在ABC 中,1AB =,4AC =,BC =,点D 在边BC 上,AD 为BAC ∠的角平分线,点E 为AC 中点,则( ) A. ABCB. BA CA ⋅C. BE =D. AD =【答案】ACD 【解析】【分析】根据余弦定理可得π3A ∠=,进而可得面积判断A ,再结合向量的线性运算及向量数量积可判断BC ,根据三角形面积及角分线的性质可判断D.【详解】如图所示,由余弦定理可知222116131cos 22142AB AC BC BAC AB AC +−+−∠===⋅××, 而BAC ∠为三角形内角,故π3BAC ∠=,sin BAC ∠, 所以ABC面积11sin 1422S AB AC BAC =⋅⋅∠=××=A 选项正确; 1cos 1422BA CA AB AC AB AC BAC ⋅=⋅=⋅⋅∠=××= ,B 选项错误;由点E 为AC 中点,则12BE AE AB AC AB =−=− , 所以222211412324BE AC AB AC AB AB AC =−=+−⋅=+−=,则BE = ,C 选项正确;由AD 为BAC ∠的角平分线,则π6BAD CAD ∠=∠=,所以1sin sin 2S AB AD BAD AC AD CAD =⋅⋅∠+⋅⋅∠,111151422224AD AD AD =××+××=,则AD =D 选项正确; 故选:ACD.11. 已知()()22sin cos nnn f x x x n +=+∈N ,则( ) A. ()2f x 的最小正周期为π2B. ()2f x 的图象关于点()π,0Z 28k k+∈对称 C. ()n f x 的图象关于直线π2x =对称 D.()1112n n f x −≤≤ 【答案】ACD 【解析】【分析】用函数对称性的定义及函数周期性的定义可判断ABC 选项的正误;利用导数法可判断D 选项的正误.【详解】()2442222221()sin cos sin cos 2sin cos 1sin 22f x x x x x x x x =+=+−=−11cos 43cos 41224x x −+=−×=,所以()f x 的最小正周期为2ππ=42T =,故A 正确; 令π4π2xk =+,可得ππ,Z 84k x k =+∈,所以()2f x 的图象关于点()ππ3,Z 484k k+∈对称,故B 错误; 对于C : ()()()()()2222sin cos sin cos nnnnf x x x x x πππ −=−+−=+−()22sin cos n n x x f x =+=,所以函数()f x 的图象关于直线π2x =对称,C 对; 对于D: ,因为()()2222sin cos cos sin 222nnnnf x x x x x πππ+=+++=+−()22sin cos n n x x f x =+=,所以,函数()f x 为周期函数,且π2是函数()f x 的一个周期, 只需求出函数()f x 在0,2π上的值域,即为函数()f x 在R 上的值域, ()22sin cos n n f x x x =+ ,则()()212122222sin cos 2cos sin 2sin cos sin cos n n n n f x n x x n x x n x x x x −−−−−′−=,当,42x ππ∈时,0cos sin 1x x <<<<, 因为2n ≥且k ∗∈N ,则222n −≥,故2222sin cos n n x x −−>,此时ff ′(xx )>0,所以,函数()f x 在ππ,42上单调递增,当0,4x π∈时,0sin cos 1x x <<<<, 因为2k ≥且k ∗∈N ,则222n −≥,故2222sin cos n n x x −−<,此时ff ′(xx )<0,所以,函数()f x 在0,4π上单调递减,所以,当π0,2 ∈ x 时,()1min π112422n n f x f − ==×=, 又因为()π012f f ==,则()max 1f x =, 因此,函数()f x 的值域为11,12n −,D 对.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12. 函数()ln f x x x =⋅的单调递减区间为______. 【答案】10,e##(10,e − 【解析】【分析】利用导数求得()f x 的单调递减区间.【详解】函数的定义域为()0,∞+,∵()ln 1f x x ′=+,令ln 10x +≤得10ex <≤, ∴函数()ln f x x x =⋅的单调递减区间是10,e.故答案为:10,e13. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()()sin 1cos f x x x =+,则当0x <时,()f x =__________.【答案】()sin 1cos x x −+ 【解析】【分析】根据函数的奇偶性与三角函数的奇偶性求解即可.【详解】因为当0x ≥时,()()sin 1cos f x x x =+, 所以当0x <时,则0x −>,所以()()()()sin 1cos sin 1cos f x x x x x −=−+−=−+ , 又函数()f x 是定义在R 上的偶函数,所以()()()sin 1cos f x f x x x =−=−+. 故答案为:()sin 1cos x x −+.14. 已知0,0a b >≠,且4a b +=,则48b a b++的最小值为__________.【答案】2+. 【解析】【分析】先将所求式子化简4848b b a b a b b ++=++,再根据基本不等式得到48a b+的最小值,则可判断当0b <,求得最小值.【详解】根据题意:4848b b a b a b b++=++, 若0b >,则1||b b =, 若0b >,则1||=−b b , 因为0,0a b >≠,则||0b >,481482()()34b a a b a b a b a b +=++=++33≥++当且仅当2b aab=即1),4(2a b =−=−时取等号;则当0b <时,48481b a b a b++=+−的最小值是312+−=+当且仅当1),2)a b =−=−时取等号.故答案为:2+.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点()4,3P −. (1)求sin2α的值;(2)若角β满足()5sin 13αβ+=,求cos β的值. 【答案】(1)2425−(2)3365或6365− 【解析】【分析】(1)根据三角函数的定义,求三角函数值,再根据二倍角公式,即可求解;(2)利用角的变换()cos cos βαβα=+− ,再结合两角差的余弦公式,即可求解.【小问1详解】由题意可知,()4,3P −,则=5r , 则3sin 5α=−,4cos 5α=, 24sin 22sin cos 25ααα==−;【小问2详解】()5sin 13αβ+=,所以()12cos 13αβ+=±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+−=+++ ,当()12cos 13αβ+=,所以1245333cos 13513565β =×+×−= ,当()12cos 13αβ+=−,所以1245363cos 13513565β=−×+×−=−, 综上可知,cos β的值为3365或6365− 16. 已知数列{}n a 的前n 项和为n S ,且()1344n n S n ++=−∈N .(1)证明:数列{}2log n a 为等差数列; (2)记数列{}2log n a 的前n 项和为n T ,若1231111100101n T T T T ++++< ,求满足条件的最大整数n . 【答案】(1)证明见解析 (2)99 【解析】【分析】(1)利用退一相减法可得n a 及2log n a ,即可得证;(2)根据等差数列求和公式可得()1n T n n =+,则()111111n T n n n n ==−++,利用裂项相消法可得1231111111n T T T T n ++++=−+ ,解不等式即可. 【小问1详解】由已知1344n n S +=−,当1n =时,211334412a S ==−=,即14a =;当2n ≥时,1344nn S −=−, 则11333444434n n n n n n a S S +−=−=−−+=⋅,即4n n a =,又1n =时,14a =满足4nn a =,所以242n nna ==, 设222log log 22nn n b a n ===,()12122n n b b n n +−=+−=, 即数列{bb nn }为等差数列,即数列{}2log n a 为以2为首项2为公差的等差数列; 【小问2详解】 由等差数列可知()()()122122n nb b n n nT n n ++===+,则()111111n T n n n n ==−++, 所以1231111n T T T T ++++ 1111112231n n =−+−++−+ 11n 1=−+,即110011101n −<+,N n +∈, 解得100n <,即满足条件的最大整数99n =.17. 已知ABC 的三个内角,,A B C 所对的边分别为,,a b c ,且4,3==a c b ,记ABC 的面积为S ,内切圆半径为r ,外接圆半径为R . (1)若b =,求sin A ;(2)记()12pa b c =++,证明:S r p =; (3)求rR 取值范围: 【答案】(1(2)证明见解析 (3)3,24【解析】【分析】(1)利用余弦定理求得cos A ,进而求得sin A . (2)根据三角形的面积公式证得结论成立.(3)用b 表示rR ,然后利用导数求得rR 的取值范围. 【小问1详解】 ∵4a =,b =,c =,由余弦定理,得2221cos 23b c a A bc +−== ,∵0πA <<,sin A ∴.【小问2详解】∵ABC 的面积为S ,内切圆半径为r ,的∴()11112222S a r b r c r a b c r =×+×+×=++, 又∵1()2pa b c =++,∴S pr =,∴S r p =.【小问3详解】 由正弦定理得2sin aR A=,得2sin 2sin 42sin R A A a A ===, 因为4a =,3c b =, 由(2)得1(43)(22)2S pr r b b b r ==++=+, 又因为213sin sin 22b S bc A A ==×,所以23sin 4(1)b A r b =+, 所以2321b Rr b =×+, 由3443b b b b +>+>,解得12b <<, 令23()(12)2(1)b f b b b =<<+,()()()232021b b f b b +=>+′, 则()f b 在(1,2)上单调递增, 所以()243f b <<, 故rR 的取值范围为3,24. 18. 设函数()()()1ln ,10f x x g x x x==−>. (1)求()f x 在1x =处的切线方程; (2)证明:()()f x g x ≥:(3)若方程()()af x g x =有两个实根,求实数a 的取值范围,【答案】(1)10x y −−=(2)证明见解析 (3)(0,1)(1,)∪+∞ 【解析】【分析】(1)根据切点和斜率求得切线方程. (2)利用构造函数法,结合导数证得不等式成立.(3)利用构造函数法,结合导数以及对a 进行分类讨论来求得a 的取值范围. 【小问1详解】 1()f x x′=,则(1)1,(1)0k f f ===′.()f x ∴在1x =处的切线方程为1y x =−,即10x y −−=. 【小问2详解】 令1()()()ln 1,(0,)h x f x g x x x x∞=−=+−∈+ 22111()x h x x x x −′=−=.令21()0x h x x ′−==,解得1x =. 01,()0x h x ′∴<<<;1,()0x h x ′>>.()h x 在(0,1)上单调递减,在(1,)+∞上单调递增.()(1)0h x h ≥=,即()()f x g x ≥.【小问3详解】令1()()()ln 1,(0,)m x f x g x a x x x∞=−=+−∈+, 问题转化为()m x 在(0,)+∞上有两个零点.2211()a ax m x x x x−=−=′.①当0a ≤时,()0m x ′<,()m x 在(0,)+∞递减,()m x 至多只有一个零点,不符合要求.②当0a >时, 令()0m x ′=,解得1x a= 当10x a<<时,()0m x ′<,()m x 递减; 当1x a>时,()0m x ′>,()m x 递增. 所以11()ln 1ln 1m x m a a a a a a a≥=+−=−−.当1a =时,1(1)0m m a==,()m x 只有一个零点,不合题意. 令()ln 1,()ln a a a a a a ϕϕ′=−−=−, 当01a <<时,()ln 0ϕ′=−>a a , 所以()a φ在(0,1)递增,()(1)0a ϕϕ<=. 由于1(1)0,()0m m a a φ ==< ,111111(e )ln e 10e e a a a am a =+−=>, 111,e a x a ∴∃∈,使得1()0m x =, 故01a <<满足条件.当1a >时,()ln 0a a ϕ′=−<, 所以()a φ在(1,)+∞递减,()(1)0a φφ<=. 由于1(1)0,()0m m a a φ==< ,21(e )ln e 1e 10ea a a a m a a −−−+−−−> 21e ,a x a − ∴∃∈,使得2()0m x =, 故1a >满足条件.综上所述:实数a 的取值范围为(0,1)(1,)∪+∞.【点睛】关键点点睛:本题的解题过程中,需通过导数分析函数的性质,并将问题转化为函数零点的讨论,充分体现了数学思想方法的应用.在解题时,要特别注意导数符号的变化对函数单调性的影响,确保分类讨论的全面性和严谨性.19. 如果定义域为[]0,1的函数()f x 同时满足以下三个条件:(1)对任意的[]0,1x ∈,总有()0f x ≥;(2)()11f =;(3)当120,0x x ≥≥,且121x x +≤时,()()()1212f x x f x f x +≥+恒成立.则称()f x 为“友谊函数”.请解答下列问题:(1)已知()f x 为“友谊函数”,求()0f 的值;(2)判断函数()[]()310,1x g x x x =−−∈是否为“友谊函数”?并说明理由; (3)已知()f x 为“友谊函数”,存在[]00,1x ∈,使得()[]00,1f x ∈,且()()00f f x x =,证明:()00f x x =.【答案】(1)()00f =(2)是,理由见解析.(3)证明见解析.【解析】【分析】(1)结合条件,利用“赋值法”可求函数值. (2)根据给出的条件,逐一验证即可.(3)先判断函数的单调性,结合反证法进行证明.【小问1详解】由条件(1)可知:()00f ≥;结合条件(3),令120x x ==,则()()020f f ≥⇒()00f ≤. 所以:()00f =.【小问2详解】函数()[]()310,1x g x x x =−−∈是“友谊函数”.理由如下: 对条件(1):因为()00g =,()3ln 31xg x ′=−,当[]0,1x ∈时,()0g x ′>,所以()g x 在[0,1]上单调递增,所以()0g x ≥,[]0,1x ∈.对条件(2):()13111g =−−=.对条件(3):设120,0x x ≥≥,且121x x +≤,则: ()()()1212g x x g x g x +−+()()()12121212313131x x x x x x x x + −+−−−−−−− 12123331x x x x +=−−+()()123131x x =−−0≥. 所以:()()()1212g x x g x g x +≥+.综上可知:函数()[]()310,1x g x x x =−−∈是“友谊函数”. 【小问3详解】设1201x x ≤<≤且121x x +≤,则210x x −>, 所以()()()()211211f x f x f x x x f x −=+−− ()()()1211f x f x x f x ≥+−−()21f x x −0≥所以函数()f x 在[0,1]上单调递增. 下面用反证法证明:()00f x x =. 假设()00f x x ≠,则()00f x x >或()00f x x <.若()00f x x >,则()()000f x f f x x <=,这与()00f x x >矛盾; 若()00f x x <,则()()000f x f f x x >=,这与()00f x x <矛盾. 故假设不成立,所以()00f x x =.【点睛】方法点睛:对于抽象函数的问题,“赋值法”是解决问题的突破口.合理赋值是解决问题的突破口.。
广东省江门市普通高中高三数学调研测试试题理(含解析)(最新整理)
江门市2018年普通高中高三调研测试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知集合,,则( )A。
B。
C。
D.【答案】D【解析】【分析】分别求得集合A和B,取交集即可得到答案.【详解】依题意,A={x|-3<x<1}, B={x|x0},所以A∩B=,故选:D.【点睛】本题考查集合的交集运算.2。
是虚数单位,是实数集,,若,则( )A。
B。
C. 2 D。
-2【答案】B【解析】【分析】直接由复数代数形式的乘除运算化简,结合已知条件列出方程,求解即可得答案.【详解】∵=∴,即a=−,故选:B.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念.3.已知;,则是的( )A. 必要不充分条件B. 充分不必要条件 C。
充要条件 D。
既不充分也不必要【答案】B【解析】试题分析:由已知得条件,条件,显然充分性不成立,如当,不成立;又由,所以必要性成立.故选B。
考点:1.命题的充分条件、必要条件;2.二次不等式。
4.是自然对数的底数,若,,,,则()A. B. C。
D.【答案】C【解析】【分析】利用指数和对数函数的单调性即可得到a,b,c的大小关系。
【详解】∵对数函数y=lnx在上单调递增,∴a=lnx〈ln1=0,∵指数函数在上单调递减,∴∵指数函数在上单调递增,∴由幂函数的性质可知即a<b<c,故选:C.【点睛】本题考查指数函数和对数函数性质的应用.5.若,,,则向量与的夹角为( )A。
B. C。
D。
【答案】C【解析】【分析】由已知条件可得,再由两个向量夹角的余弦公式,即可求出夹角的余弦,进而得解.【详解】由已知,解得,则两个向量夹角的余弦值,所以两向量夹角为。
故选:C.【点睛】本题考查了平面向量的运算和利用平面向量的数量积求向量的夹角.6.若抛物线的焦点是双曲线的右焦点,则此双曲线的离心率为( )A. B. C。
【VIP专享】江门市2010届普通高中高三调研测试
江门市2010届普通高中高三调研测试理科综合试题(生物)第一部分(选择题118分)一.单项选择题:(本题共16道小题,每小题4分,共64分。
在每题给出的四个选项中,只有一项符合题目要求)1.甲流是由H1N1病毒感染引起的,它与大肠杆菌最明显的区别是A.无成形的细胞核B.无遗传物质C.无细胞壁D.无细胞结构2.用32P标记的磷酸盐浸泡豌豆幼苗,追踪放射性的去向以研究豌豆根尖细胞分裂情况,得到根尖细胞连续分裂的时间(单位:h)的数据如图所示。
下列叙述正确的是A.DE阶段发生遗传物质的平均分配B.CD段完成DNA复制和有关蛋白质的合成C.BC阶段结束时DNA含量增加一倍D.“CD+DE”为一个细胞周期,等于17.3h3.下列有关人体内发生的生理活动的叙述中,错误的是A.色盲男孩一个次级精母细胞处于分裂后期细胞中可能含有两个X染色体,两个色盲基因B.动物激素一经靶细胞接受并起作用后将会被灭活C.唾液淀粉酶随食物进入胃腔后将继续发挥催化作用D.神经递质作用于突触后膜上的受体后迅速被分解4.下列关于实验分析的叙述中,正确的是A.氢氧化钠在琼脂块上的扩散面积可以反映物质运输的效率B.甲基绿的染色能让我们看清楚线粒体的分布C.用于鉴定蛋白质的双缩脲试剂A液与B液要混合均匀后,再加入含样品的试管中D.用同位素标记法的应用可以帮助我们分析分泌蛋白的合成运输途径5.下图是有关生态系统的概念图,对其中①②③④含意表达错误的是A.①生态系统的结构B.②生态系统的种类C.③食物链和食物网D.④信息传递6.下列关于细胞增殖、分化、癌变、衰老及干细胞的叙述中错误的是A.细胞分化是基因选择性表达的结果,细胞全能性的实现与分化无关B.干细胞能通过细胞分裂来维持自身细胞群的稳定,其分裂的方式是有丝分裂C.与其他分化成熟的细胞相比干细胞也有衰老的过程D.在接触到各种致癌因子后,干细胞比其他分化成熟的细胞更容易发生癌24.格里菲思和艾弗里所进行的肺炎双球菌的转化实验,可以证实A.DNA是遗传物质B.基因是有遗传效应的DNA片段C.基因通过控制酶的合成来控制代谢过程进而控制生物体的性状D.在转化过程中,S型细菌的DNA可能进入到了R型菌细胞中25.用生物学知识判断下列叙述中正确的有A.遗传病发病根本原因是遗传因素,但在不同程度上受环境因素影响B.植物组织培养形成根、芽时受细胞分裂素和生长素等的影响C.控制水葫芦在我国造成的严重灾害,应将其天敌引入我国D.群落演替的根本原因是人类活动对群落的影响往往是破坏性的第二部分(非选择题182分)三.非选择题:(本题共11道小题,共182分)26.(16分)下图(一)为高等绿色植物叶肉细胞中的部分代谢示意图;图(二)为不同光照强度下,测定绿色植物对CO2的吸收速率并绘制成的相应曲线。
2025届江门市高三数学上学期第二次月考试卷及答案解析
2024--2025学年新会华侨中学高三第一学期第二次月考数学试题本试卷共4页,19小题,满分150分.考试用时120分钟.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5}U =,集合M 满足{}2,4U M =ð,则( )A. 1M ÍB. 4MÍ C. 5MÎ D. 3MÏ【答案】C 【解析】【分析】由补集运算得出集合M ,再由元素与集合的关系判断.【详解】因为全集{}{}1,2,3,4,5,2,4U U M ==ð,所以{1,3,5}M =,根据元素与集合的关系可知,ABD 错误,C 正确.故选:C .2 已知()()10()sin π0x x f x x x -ì-<ï=í³ïî,则()()3f f -=( )A. B. 0 C.12D.【答案】D 【解析】【分析】先求()133f -=,再求()()1π3sin 33f f f æö-==ç÷èø,即可求解.【详解】根据已知()()11333f --=--=,所以()()1π3sin 33ff f æö-===ç÷èø故选:D .3. 若“x a >”是“1x >”的必要不充分条件,则实数a 的取值范围为( )A. (),1-¥ B. (],1-¥ C. ()1,+¥ D. [)1,+¥【答案】A 【解析】【分析】由题意可得{}1x x >⫋{}x x a >,再根据集合的包含关系求参即可..【详解】因为“x a >”是“1x >”的必要不充分条件,所有{}1x x >⫋{}x x a >,所以1a <,即实数a 的取值范围为(),1-¥.故选:A .4. 已知πcos 4a æö+=ç÷èøsin 2a =( )A. 56- B. 23-C.23D.56【答案】C 【解析】【分析】代入二倍角公式,以及诱导公式,即可求解.【详解】由条件可知,22ππ2cos 22cos 121243a a æöæö+=+-=´-=-ç÷ç÷èøèø,而π2sin 2cos 223a a æö=-+=ç÷èø.故选:C5. 若1nx æöç÷èø的二项展开式中,当且仅当第5项是二项式系数最大的项,则其展开式中51x 的系数为( )A. 8 B. 28 C. 70 D. 252【答案】D 【解析】【分析】先确定n 值,再由二项展开式的通项求解5x -项的系数即可.【详解】因为二项展开式中当且仅当第5项是二项式系数最大的项,即二项式系数01C ,C ,,C nn n n L 中第5个即4C n 最大,所以由二项式系数的性质可知,展开式中共9项,8n =,又811213nx x x -æöæö-=-ç÷ç÷èøèø,则81123x x -æö-ç÷èø二项展开式的通项公式()81831822188C 3C (1)3rrr r r r rr T x x x ----+æö=-=-ç÷èø,0,1,2,,r n =L .令835,62r r -=-=,所以51x 的系数为62288C 39C 252×==.故选:D .6. 心形代表浪漫的爱情,人们用它来向所爱之人表达爱意.一心形作为建筑立面造型,呈现出优雅的弧度,心形木屋融入山川,河流,森林,草原,营造出一个精神和自然聚合的空间.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为( )A. yB. y =C. y =D. y =【答案】C 【解析】【分析】根据奇偶性和最值排除错误答案即可.【详解】A 选项:1|1x y ==>,故A 错误;B 选项:记()f x =()()f x f x -=-=-,故()f x 为奇函数,不符合题意,故B 错误;C 选项:记()h x =()()h x h x -=,故y =当0x ³时,y ==,此函数在()0,1上单调递增,在()1,2上单调递减,且()()()00,11,20h h h ===,故C 正确;D 选项:记()g x =()()g x g x -=¹-,故()g x 既不是奇函数也不是偶函数,不符合题意,故D 错误.故选:C.7. 已知函数221(2)()15(2)24x ax x x f x x ì+->ï=íæö-£ïç÷èøî是R 上的减函数,则实数a 的取值范围是( )A. (,1]-¥-B. 1,2æù-¥-çúèûC. (,0]-¥D. (,1]-¥【答案】A 【解析】【分析】首先由题意有(2)1f =-,若()f x 是R 上的减函数,故只需当2x >时,()221f x ax x =+-单调递减,从而列出不等式组,解不等式组即可.【详解】当2x £时,15()24xf x æö=-ç÷èø单调递减,a ÎR ,且()f x 最小值(2)1f =-,当2x >时,当0a =时,()21f x x =-单调递增,不符题意,又注意到()f x 是R 上的减函数,故只能抛物线()221f x ax x =+-的开口向下即0a <,其对称轴为1x a=-,则由题意有201222211a a a <ìïï-£íï´+´-£-ïî,解得1a £-.故选:A.8. 已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当121x x <<时,()()()21210f x f x x x -->éùëû恒成立,设1ln 2a f æö=ç÷èø,()2log 3b f =,32c f æö=ç÷èø,则a ,b ,c 的大小关系为( )A. c a b >> B. c b a>> C. a c b>> D. b a c>>【答案】C 【解析】为【分析】先结合条件判断函数()f x 的对称性质和单调性,再分别界定三个自变量的值或者范围,利用函数对称性和单调性即得.【详解】依题可知函数()f x 的图象关于直线1x =对称,且在区间(,1)-¥上单调递增,则在区间(1,)+¥上单调递减.因2ln 213=<<,则131ln 22<<,23log 322<<,故213()()(log 3)2ln 2f f f >>,即a c b >>.故选:C.【点睛】关键点点睛:解题的关键在于,得知了函数在(1,+)¥上的单调性之后,如何判断三个自变量的大小范围,考虑到三个都是大于1的,且有一个是32,故对于2log 3和1ln 2,就必然先考虑它们与32的大小,而这需要利用对数函数的单调性得到.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布(100,100)N ,其中90分为及格线,120分为优秀线,下列说法正确的是( )附:随机变量x 服从正态分布2~(,)N m s ,则()0.6826P m s x m s -<<+=,(22)0.9544P m s x m s -<<+=,(33)0.9974P m s x m s -<<+=.A. 该市学生数学成绩的标准差为100B. 该市学生数学成绩的期望为100C. 该市学生数学成绩的及格率超过0.8D. 该市学生数学成绩不及格的人数和优秀的人数大致相等【答案】BC 【解析】【分析】根据正态分布网线的对称性,正态分布的概念判断.【详解】X 服从正态分布(100,100)N ,则标准差为10,期望为100,A 错,B 正确,100,10m s ==,11(90)()(1())(10.6826)0.158722P X P X P X m s m s m s £=£-=--<<+=´-=,(90)1(90)10.15870.84130.8P X P X ³=-<=-=>,C 正确;及格线m s -,而优秀线是2m s +,1(120)(2)(10.9544)0.02282P X P X m s ³=>+=´-=,这优秀率,优秀率与及格率相差很大,人数相差也很大,D 错.故选:BC .10. 下列命题正确的是( )A. 命题“1x ">,20x x ->”的否定是“01x $£,2000x x -£”;B. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的必要不充分条件C. 函数()21f x ax x =++的图象恒在()2g x x ax =+的图象上方,则a 的范围是()1,5D. 已知111222,,,,,a b c a b c 均不为零,不等式不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,则“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件【答案】BD 【解析】【分析】借助全称命题的否定的定义可得A ;借助充分条件与必要条件的关系推导可得 B ;借助作差法结合二次函数的性质计算可得C ;结合充分条件与必要条件的定义,举出相应反例可得D.【详解】对A :命题“1x ">,20x x ->”的否定是“01x $>,2000x x -£”,故A 错误;对B :由A 是B 的必要不充分条件,B 是C 的充分必要条件,可得A 是C 的必要不充分条件,由D 是C 的充分不必要条件,则A 是D 的必要不充分条件,故B 正确;对C :由题意可得()()2201f g x x x x a a x x ---++>=恒成立,即()()20111a x a x -++>-恒成立,则当1a =时,有10>恒成立,符合要求,当1a >时,()()()()2141150a a a a D =---=--<,解得()1,5a Î,当1a <时,()()20111a x a x -++>-不恒成立,故舍去,综上所述,a 的范围是[)1,5,故C 错误;对D :若“1112220a b c a b c ==<”,则“M N =”不成立,是若“M N ==Æ”,则“111222a b c a b c ==”不恒成立,故“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件,故D 正确.故选:BD .11. 已知函数()sin cos f x a x x =+的图象关于π3x =对称,下列结论中正确的是( )A. π6f x æö-ç÷èø是奇函数B. π4f æö=ç÷èøC. 若()f x 在[,]m m -上单调递增,则π03m <£D. ()f x 的图象与直线π23y x =+有三个交点【答案】AC 【解析】【分析】先函数对称性求解a ,得到()f x 的解析式.A 项,化简π2sin 6f x x æö-=ç÷èø可知为奇函数;B 项,代入解析式求值即可;C 项,利用整体角求()f x 的单调递增区间,由2ππ33m m -£-<£可得m 范围;D 项,利用导数可知直线恰为曲线在π,06æö-ç÷èø处的切线,进而可得公共点个数.【详解】因为()f x 的图象关于直线π3x =对称,所以2π(0)3f f æö=ç÷èø112-=,解得a =所以π()cos 2sin 6f x x x x æö=+=+ç÷èø,验证:当π3x =时,π23f æö=ç÷èø,()f x 取最大值,故()f x 的图象关于直线π3x =对称,满足题意;A 项,π2sin 6f x x æö-=ç÷èø,x ∈R ,由2sin()2sin x x -=-,则π6f x æö-ç÷èø是奇函数,故A 正确;B 项,由)πππcos 1444f æö=+=+=ç÷èøB 错误;C 项,π()2sin 6f x x æö=+ç÷èø,由πππ2π2π,262k x k k -+£+£+ÎZ ,解得2ππ2π2π,33k x k k -+££+ÎZ ,当0k =时,32π3π-££x ,由()f x 在[,]m m -上单调递增,则2ππ33m m -£-<£,解得π03m <£,故C 正确;D 项,π()2sin 6f x x æö=+ç÷èø的图象与直线π23y x =+均过点π,06æö-ç÷èø,由π()2cos 6f x x æö=+ç÷èø¢,则π2cos 026f æö-==ç÷èø¢,故直线π26y x æö=+ç÷èø即π23y x =+与曲线π()2sin 6f x x æö=+ç÷èø相切,如图可知()f x 的图象与直线π23y x =+有且仅有一个公共点,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知x ,y 之间的一组数据:若y ˆˆy a =+,则此曲线必过点_____________.x 14916y12.98 5.017.01【答案】(6.25,4)【解析】【分析】设t =ˆˆˆybt a =+,根据回归方程性质可得回归直线所过定点.【详解】由已知ˆˆya =,设t =ˆˆˆybt a =+,由回归直线性质可得(),t y 在直线ˆˆˆybt a =+上,又1234 2.54t +++==,1 2.98 5.017.0144y +++==,所以点()2.5,4在直线ˆˆˆybt a =+上,故点(6.25,4)在曲线ˆˆy a =上.故答案为:(6.25,4).13. 诗词是中国的传统文化遗产之一,是中华文化的重要组成部分.某校为了弘扬我国优秀的诗词文化,举办了校园诗词大赛,大赛以抢答形式进行.若某题被甲、乙两队回答正确的概率分别为11,43,且甲、乙两队抢到该题的可能性相等,则该题被答对的概率为___________.【答案】724【解析】【分析】分甲抢到题且答对和乙抢到题且答对两种情况计算即可.【详解】解:由题意,甲、乙两队抢到该题的概率均为12,该题被答对的概率为11117242324´+´=.故答案:724.14. 函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =-,若(1)3f =,则(1)(2)(50)f f f +++=L __________.【答案】3【解析】【分析】首先由函数的奇偶性和对称性,分析函数的周期性,再求值.【详解】()(2)f x f x =-Q ,(2)()f x f x \+=-,又()f x 奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x \+=-=-+=-+=()f x \是周期为4的周期函数,为为()f x Q 是定义在R 上的奇函数,(0)0,(4)(0)0f f f \=\==,(2)(0)0,(3)(1)(1)3f f f f f ===-=-=-(1)(2)(3)(4)0f f f f \+++=,()()()()()12...50012123f f f f f \+++=´++=.故答案为:3.【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,属于中档题型,本题关键是能够通过对称性与周期性的关系确定函数的周期,进而确定函数值的变化特点.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数2111222f x x x æö-=--ç÷èø.(1)求函数()f x 的解析式;(2)对任意的实数1,22x éùÎêúëû,都有()113222f x x ax ³+-恒成立,求实数a 的取值范围.【答案】(1) ()()2471f x x x x R =++Î;(2) (],7a Î-¥.【解析】【详解】试题分析:()1用换元法令112t x =-来求函数()f x 的解析式(2)由(1)得()f x 的解析式代入,分离含参量123a x x æö£++ç÷èø,求出实数a 的取值范围解析:(1)令11222t x x t =-Þ=+∴()()()21222222f t t t =+-+- 2471t t =++即:∴()()2471f x x x x R =++Î.(2)由()11312222f x x ax ³+-Þ ()21347122x x x ax ++³+-即:2232ax x x £++又因为:1,22x éùÎêúëû,∴123a x x æö£++ç÷èø令()123g x x x æö=++ç÷èø,则:()min a g x £又()g x 在1,12x éùÎêúëû为减函数,在[]1,2x Î为增函数.∴()()min 17g x g ==∴7a £,即:(],7a Î-¥.点睛:在解答含有参量的恒成立问题时,可以运用分离含参量的方法,求解不等式,注意分类讨论其符号,最后求解结果.16. 记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知)()()sin sin sin a A b c B C -=+-.(1)求角C ;(2)若ABC V 外接圆的半径为2,求ABC V 面积的最大值.【答案】(1)π6C =(2)2+【解析】【分析】(1)运用正弦定理实现边角转化,结合余弦定理进行求解即可;(2)根据正弦定理,结合外接圆的半径可以求出2c =,根据三角形面积公式、利用重要不等式进行求解即可.【小问1详解】由已知及正弦定理可得)()()a a b c b c -=+-,整理得222a b c +-=,222cos 2a b c C ab +-\==,()π0,π,6C C Î\=Q .【小问2详解】ABC QV 外接圆的半径为2,4sin cC\=,得222,4c a b =\+=,又(222,42a b ab ab +³\£,当且仅当a b ==时,等号成立,(111sin 422222ABC S ab C \=£´+´=+V ,V面积的最大值为2+.即ABC17. 为响应国家使用新能源的号召,促进“碳达峰碳中和”的目标实现,某汽车生产企业在积极上市四款新能源汽车后,对它们进行了市场调研.该企业研发部门从购买这四款车的车主中随机抽取了50人,让车主对所购汽车的性能进行评分,每款车的性能都有1分、2分、3分、4分、5分五个等级,各评分及相应人数的统计结果如下表.汽车款式合计汽车性能基础版豪华版一般优秀合计性能评分12345汽车款式基础版122310基础版基础版244531豪华版113541豪华版豪华版200353(1)求所抽车主对这四款车性能评分的平均数和第90百分位数;(2)当评分不小于4时,认为该款车性能优秀,否则认为性能一般.根据上述样本数据,完成上面列联a=的独立性检验,能否认为汽车的性能与款式有关?表,并依据0.05(3)为提高这四款新车的性能,现从样本评分不大于2的基础版车主中,随机抽取3人征求意见,记X 为其中基础版1车主的人数,求X的分布列及数学期望.附:()()()()()22n ad bca b c d a c b dc-=++++.a0.100.050.010.005xa2.7063.841 6.6357.879【答案】(1)3,4.5(2)列联表见解析,依据0.05a=的独立性检验,能认为汽车的性能与款式有关;(3)分布列见解析,1【解析】【分析】(1)根据平均数公式求平均数,根据百分位数定义求第90百分位数;(2)由条件数据填写列联表,提出零假设,计算2c,比较2c与临界值的大小,确定结论;(3)由条件可得X服从超几何分布,确定其取值,求取各值的概率,可得分布列,再由期望公式求期望.【小问1详解】由题意得这四款车性能评分的平均数为1 (172931641355)350´+´+´+´+´´=;509045´%=,所以第90百分位数为50数从小到大排列的45和第46个数的平均数,由已知50数从小到大排列后的第45个数为4,第46个数为5,故第90百分位数为454.5 2+=;【小问2详解】由题意得汽车款式汽车性能基础版豪华版合计一般201232优秀51318合计252550零假设为0H :汽车性能与款式无关,根据列联表中的数据,经计算得到220.0550(2013125)505.556 3.841321825259x c ´´-´==»>=´´´.根据小概率值0.05a =的独立性检验,推断0H 不成立,即认为汽车性能与款式有关,此推断犯错误的概率不超过0.05;【小问3详解】由题意可得X 服从超几何分布,且12N =,4M =,3n =,由题意知,X 的所有可能取值为0,1,2,3,则38312C 14(0)C 55P X ===,1482123C C (1)C 2855P X ===,824312112C C (2)C 55P X ===,34312C 1(3)C 55P X === 所以X 的分布列为X123P1455285512551551428121()0123155555555E X =´+´+´+´=.18. 已知锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos a c c B -=.(1)证明:2B C =;(2)若2a =,求cos 1C b c+的取值范围.【答案】(1)证明见解析 (2)33,42æöç÷èø【解析】【分析】(1)由正弦定理、两角和差的正弦公式化简得sin()sin B C C -=,进一步即可证明;(2)由题意首先求得cos C 的取值范围,进一步将目标式子cos 1C b c+转换为只含有cos C 的式子即可求解.【小问1详解】因为2cos a c c B -=,由正弦定理得sin sin 2sin cos A C C B -=,所以sin cos sin cos sin 2sin cos B C C B C C B +-=,所以()sin cos sin cos sin sin sin B C C B C B C C -=Û-=,而0π,0C πB <<<<,则B C C -=或πB C C -+=,即2B C =或B π=(舍去),故2B C =.【小问2详解】因为ABC V 是锐角三角形,所以π02π022π0π32C C C ì<<ïïï<<íïï<-<ïî,解得ππ64C <<,所以cos Ccos C <<,由正弦定理可得:sin sin b B c C =,则sin sin 22cos sin sin B C b c c C c C C=×=×=×,所以cos 12C b c =,所以cos 132C b c c+=,因为2cos a c c B -=,所以22cos 2c c C -=,所以22cos 21c C =+,所以()()234cos 132cos 21cos 13342442cos 21C C C b c c C -++====+,因为cos CÎ,所以24cos 1C -Î()1,2,所以()234cos 1cos 14C C b c -+=的取值范围是33,42æöç÷èø.19. 已知()x x a b f x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =.设()()()2f x F x f x =.(1)求a ,b 的值,并求()F x 的值域;(2)把区间()0,2等分成2n 份,记等分点的横坐标依次为i x ,1,2,3,,21i n =-L ,设()142321x g x -=-+,记()()()()()()*12321g g g g n H n x x x x n -=++++ÎN L ,是否存在正整数n ,使不等式()()F x H n ≥有解?若存在,求出所有n 的值,若不存在,说明理由.【答案】(1)答案见解析(2)存在,n =1,2或3【解析】【分析】(1)由()f x 是R 上的奇函数,且()325f =求出,a b 可得()f x 及()F x ,利用分离常量求出()F x 的值域;(2)()()113g x f x =-+得出()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,利用对称性求出()H n 可得答案.【小问1详解】因为()x x a bf x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =,所以()()002200325a bf a b a b f a b ì+==ïï-í+ï==ï-î,解得21a b =ìí=-î,则()2121x x f x -=+,因为定义域为R ,()()21212121x x x x f x f x -----==-=-++,所以()f x 是R 上的奇函数,故2,1a b ==-,()()()2222221212221212121x x x x x x x f x F x f x -++×+==´=+-+()22212221012122x x xx x x ++×==+¹++,因为20x >,所以()221121222x xF x =+£+=+,当且仅当122xx=,即x =0时等号成立,所以()2F x <又x R Î时,()211122xxF x =+>+,所以()12F x <<,即()F x 的值域为()1,2;【小问2详解】把区间()0,2等分成2n 份,则等分点的横坐标为i ix n=,1,2,3,,21i n =-L ,()()1142211113212133x x g x f x --=-=-+=-+++,()f x 为奇函数,所以()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,1,2,3,,21i n =-L ,所以()122221g g g g n n H n n n n n --æöæöæöæö=++++ç÷ç÷ç÷ç÷èøèøèøèøL 12122211n n n n n g g g g g g g n n n n n n n éùéùéù---+æöæöæöæöæöæöæö=+++++++ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúêúêúèøèøèøèøèøèøèøëûëûëûL 122212133333n n --=++++=L 1442443项所以()2123n H n -=<,即72n <.故存在正整数1,2n =或3,使不等式()()f x H n ³有解.【点睛】关键点点睛:第二问的解题的关键点是判断出()()113g x f x =-+,()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=.。
广东省江门市2024届高三上学期10月调研数学试题含答案
江门市2024届普通高中高三调研测试数学本试卷共5页,22小题,满分150分,测试用时120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上作答无效。
5.考试结束后,将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{A x x =>,{}23B x N x =∈≤,则A B = ()A.{}3x x <≤B.{}1,0,1- C.{}0,1,2 D.{}0,12.“240b ac -<”是“关于x 的不等式()200ax bx c a ++>≠的解集为R ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件3.已知()ln 0aa >与()ln 0b b >互为相反数,则()A.0a b +=B.0a b -= C.1ab = D.1ab=4.若函数()221f x x kx =-+在[]3,5上单调递增,则实数k 的取值范围为()A.(],3-∞ B.[]3,5 C.[)5,+∞ D.[)3,+∞5.函数()1ln f x x x=-的零点所在的区间是()A.()1,2 B.()2,e C.(),3e D.()3,46.若曲线2a xy e =在点()0,1处的切线与直线210x y ++=垂直,则a =()A.2- B.1- C.1D.27.气象台A 在早上8:00观测到一台风,台风中心在气象台A 正西方向处,它正向东北方向移动,移动速度的大小为40km/h ;距离台风中心以内的地区都将受到影响.若台风中心的这种移动趋势不变,该气象台受到台风影响的时段为()A.12:00-17:00B.13:00-18:00C.13:00-17:00D.14:00-18:008.北宋著名文学家苏轼的诗词“日啖荔枝三百颗,不辞长作岭南人”,描述的是我国岭南地区著名的水果荔枝.为了利用数学模型预测估计某果园的荔枝产量,现根据在果实成熟期,荔枝的日产量呈现“先递增后递减”的规律和该果园的历史观测数据,对该果园的荔枝日产量给出模型假设:前10天的每日产量可以看作是前一日产量的2倍还多1个单位;第11到15天,日产量与前日持平;从第16天起,日产量刚好是前一天的一半,直到第25天,若第1天的日产量为1个单位,请问该果园在不计损耗的情况下,估计这25天一共可以收获荔枝单位个数为(精确到整数位,参考数据:1021024=)()A.8173B.9195C.7150D.7151二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。
江门市2010年高考模拟考试
高考模拟考试数学(文科)试题 第 1 页 共 7 页江门市2010年高考模拟考试数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式:⑴锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.⑵用最小二乘法求线性回归方程系数公式2121 xn xyx n y xb n i ini i i--=∑∑==,x b y a-=.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈已知R 是实数集,{}R x x y y A ∈== , |2,则=A C RA.)0 , (-∞B.]0 , (-∞C.) , 0(∞+D.) , 0[∞+ ⒉在复平面内,复数)1(i i Z +=( i 为虚数单位)对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限 ⒊“0<mn ”是“向量) , ( n m a =与向量)2 , 1( -=b 平行”的A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 ⒋随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1,这12位同学购书的平均费用是 A.125元 B.5.125元 C.126元 D.5.126元⒌已知实数a 、b 、c 满足a b c <<,且0<ac ,那么下列不等式一定成立的是A.0)(>-c a acB.0)(<-a b cC.22ab cb < D.ac ab > ⒍海事救护船A 在基地的北偏东060,与基地相距3100海里,渔船B 被困海面,已知B 距离基地100海里,而且在救护船A 正西方,则渔船B 与救护船A 的距离是 A.100海里 B.200海里 C.100海里或200海里 D.3100海里⒎将函数x y sin =的图象C 按顺序作以下两种变换:⑴向左平移3π个单位长度;⑵横坐标伸长到原来的2倍,纵坐标不变。
江门市2009-2010学年度第二学期教学调研考试
7 89 94 4 6 4 7 3江门市2010-2011学年度第二学期教学调研考试高一数学模拟试题(2010.6.17)一、选择题(10小题,每小题5分,共50分。
1、设全集{}N x x x U ∈<≤=,61|,集合M=}4,2,1{,N={3,4,5},则(C U A .φ B . U C .{4} D . {1,2,3,5}2、下列三个数:3.0log ,3,3.033.03===c b a 的大小顺序是 ( )A.c b a << B.b c a << C.b a c << D.c a b <<3、如图2,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积...为( )D A .4π B . 4 C . 2 D . 12π 4. 01)1(=+++y x a 与圆0222=-+x y x 相切,则=a ( )BA .1B .-1C .2D .-25、右图所示是一个算法流程图,则与输出的值相等的式子为( )A .100321++++B .99321++++C .100D .99 6、如图3是某一年中央电视台举办的挑战主持人大赛上,七位评委为 某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后, 所剩数据的平均数和方差分别为( )A .84,84.4B .84,6.1C .85,6.1D .85,47、同时转动如图1所示的两个转盘,记转盘(甲)得到的数为x , 转盘(乙)得到的数为y ,则事件x+y=6的概率为( )C A.43 B.165 C.83 D.163 8. sin(-196π)的值等于( )B A. 21- B.12 C.23- D. 239102,a b ==2b A .二、填空题:本题共4小题,每题5分,满分20分。
1111213(14、在空间直角坐标系中,给定点P(2,-1,3),若点Q 与P 关于坐标平面xoy 对称,则|PQ|=______.图2 图415、观察以下等式:,4360cos 30sin 60cos 30sin 22=︒︒+︒+︒ ,4350cos 20sin 50cos 20sin 22=︒︒+︒+︒,4340cos 10sin 40cos 10sin 22=︒︒+︒+︒ 猜想一般结论:____________________________________________.三、解答题(6道题,共80分, 要求写出完整的解题过程) 15、(本题满分12分)已知函数()2sin()2cos 6f x x x π=+-.(Ⅰ)求函数 ()f x 的最小正周期和单调递增区间;(Ⅱ)指出函数f(x)的图像是由y=sinx 的图像经过怎样的变换得到?16、(本题满分12分)某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排一人).(Ⅰ)其中甲、乙两人都被安排的概率是多少?(Ⅱ)甲、乙两人中至少有一人被安排的概率是多少?17、(本题满分14分)如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点. (I) 求证:平面PDC ⊥平面PAD ; (II) 求证:BE//平面PAD .A B CD EP18、(本题满分14分)已知圆C 的方程为:2222440,()x y mx y m m R +--+-=∈. (1)试求m 的值,使圆C 的面积最小;(2)求与满足(1)中条件的圆C 相切,且过点(1,2)-的直线方程. 19、(本题满分14分)已知A 、B 、C 三点的坐标分别是A (3,0),B (0,3),C (sin ,cos )αα,(1)若1-=⋅,求α2sin 的值;(2)若13||=+,),0(πα∈求与的夹角。
广东省江门市2017-2018学年高三上学期12月调研数学试卷(理科) Word版含解析
2017-2018学年广东省江门市高三(上)12月调研数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x+2<0},B={x|2<2x<8},则()A.A=B B.A⊆B C.A⊇B D.A∩B=∅2.已知i为虚数单位,则复数z=在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.sin20°cos110°+cos160°sin70°=()A.﹣1 B.0 C.1 D.以上均不正确4.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如右图所示,那么点P所走的图形是()A.B. C.D.5.若“∀x∈R,x2+mx+2m﹣3≥0”为假命题,则m的取值范围是()A.(﹣∞,2]∪[6,+∞)B.(﹣∞,2)∪(6,+∞)C.[2,6]D.(2,6)6.已知实数1,m,9构成一个等比数列,则圆锥曲线+y2=1的焦距为()A.4 B.2C.或2 D.2或47.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若将其图象向右平移个单位后得到的图象关于原点对称,则函数f(x)的图象()A.关于直线x=对称B.关于直线x=对称C.关于点(,0)对称 D.关于点(,0)对称8.点O是△ABC所在平面内的一点(O不在直线BC上),若=3+,则△ABC与△OBC的面积之比为()A.B.C.D.49.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y ﹣4=0相切,则圆C 面积的最小值为( )A .πB .πC .(6﹣2)π D .π10.一个几何体的三视图如图所示,则此几何体的体积是( )A .112B .80C .72D .6411.已知正项数列{a n },a 2﹣1、a 3、a 7成等比数列,{a n }前n 项和S n 满足a n +12=2S n +n +4,则(n ﹣6)S n 的最小值为( ) A .﹣26 B .﹣27 C .﹣28 D .﹣3012.已知函数f (x )=,若函数f (x )的图象在点A 、B 处的切线重合,则a的取值范围是( ) A .(﹣1,+∞) B .(﹣ln2,+∞) C .(﹣2,﹣1) D .(1,2)二、填空题:本大题共4小题,每小题5分,满分20分.13.若奇函数f (x )满足对任意x ∈R 都有f (2+x )+f (2﹣x )=0,且f (1)=9,则f +f 已知抛物线y=x 2与双曲线﹣x 2=1(a >0)有共同的焦点F ,则双曲线的渐近线方程为______.15.若实数x ,y 满足,则的最小值为______.16.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,P 对角线BD 1的三等分点,P 到直线CC 1的距离为______三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知{a n}是一个等差数列,{a n}的前n项和记为S n,a1=4,S3=21(1)求数列{a n}的通项公式;﹣b n=2,求数列{b n}的通项公式.(2)设数列{b n}满足b1=,b n+118.在△ABC中,角A、B、C的对边分别为a、b、c,3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC;(2)若△ABC的面积S=5,求边长a的最小值.19.如图4,已知正三棱柱ABC﹣A1B1C1,延长BC至D,使C为BD的中点.(1)求证:平面AC1D⊥平面AA1B;(2)若AC=2,AA1=4,求二面角C1﹣AD﹣B的余弦值.20.已知椭圆C: +=1(a>b>0)的离心率为,且a+b=3.(1)求椭圆C的方程;(2)直线x+y﹣m=0(m是正常数)与椭圆C交于P、Q两点,当•=时,求直线PQ 的方程.21.已知函数f(x)=(m+)lnx+﹣x,其中常数m>0.(1)当m=2时,求f(x)的极大值;(2)已知m≥4,设A(x1,f(x1))、B(x2,f(x2))是曲线y=f(x)上的相异两点,l1、l2是曲线y=f(x)在A、B两点处的切线,若l1∥l2,求x1+x2的取值范围.【选做题】(共1小题,满分10分)22.已知平面向量、、满足条件++=,||=||=||=1.(1)求证:△P1P2P3是正三角形;(2)试判断直线OP1与直线P2P3的位置关系,并证明你的判断.【选做题】(共1小题,满分0分)23.已知α、β、γ是三个平面,α∩β=a,α∩γ=b,β∩γ=c(1)若a∩b=O,求证:a、b、c三线共点;(2)若a∥b,试判断直线a与直线c的位置关系,并证明你的判断.【选做题】((共1小题,满分0分)24.已知圆C:x2+y2﹣x+2y=0和直线l:x﹣y+1=0(1)试判断直线l与圆C之间的位置关系,并证明你的判断;(2)求与圆C关于直线l对称的圆的方程.2017-2018学年广东省江门市高三(上)12月调研数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x+2<0},B={x|2<2x<8},则()A.A=B B.A⊆B C.A⊇B D.A∩B=∅【考点】集合的包含关系判断及应用.【分析】解二次不等式和指数不等式求出集合A,B,进而可判断出集合A,B的包含关系.【解答】解:∵集合A={x|x2﹣3x+2<0}=(1,2),B={x|2<2x<8}=(1,3),∴A⊆B,故选:B2.已知i为虚数单位,则复数z=在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】利用复数代数形式的乘除运算化简,求出复数z所对应点的坐标得答案.【解答】解:∵z==,∴复数z=在复平面内对应的点的坐标为(2,﹣1),位于第四象限.故选:D.3.sin20°cos110°+cos160°sin70°=()A.﹣1 B.0 C.1 D.以上均不正确【考点】两角和与差的正弦函数.【分析】利用诱导公式化简,然后利用两角和与差的三角函数化简求解即可.【解答】解:sin20°cos110°+cos160°sin70°=﹣sin20°sin20°﹣cos20°cos20°=﹣cos0°=﹣1.故选:A.4.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如右图所示,那么点P所走的图形是()A.B. C.D.【考点】函数的图象与图象变化.【分析】本题考查的是函数的图象与图象变化的问题.在解答时首先要充分考查所给四个图形的特点,包括对称性、圆滑性等,再结合所给O,P两点连线的距离y与点P走过的路程x 的函数图象即可直观的获得解答.【解答】解:由题意可知:对于A、B,当p位于A,B图形时,函数变化有部分为直线关系,不可能全部是曲线,由此即可排除A、B,对于C,其图象变化不会是对称的,由此排除C,故选D.5.若“∀x∈R,x2+mx+2m﹣3≥0”为假命题,则m的取值范围是()A.(﹣∞,2]∪[6,+∞)B.(﹣∞,2)∪(6,+∞)C.[2,6]D.(2,6)【考点】全称命题.【分析】根据全称命题的定义和性质转化为一元二次函数进行求解即可.【解答】解:若“∀x∈R,x2+mx+2m﹣3≥0”为假命题,即“∃x∈R,x2+mx+2m﹣3<0”为真命题,则判别式△=m2﹣4(2m﹣3)>0,即m2﹣8m+12>0.解得m>6或m<2,故选:B.6.已知实数1,m,9构成一个等比数列,则圆锥曲线+y2=1的焦距为()A.4 B.2C.或2 D.2或4【考点】椭圆的简单性质;双曲线的简单性质.【分析】利用等比数列的等比中项求出m,然后求解一的焦距即可.【解答】解:实数1,m,9构成一个等比数列,则m=±3,当m=3时,圆锥曲线+y2=1是椭圆,c==,焦距为2.当m=﹣3时,圆锥曲线+y2=1是双曲线,c==2,焦距为:4.故选:D.7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若将其图象向右平移个单位后得到的图象关于原点对称,则函数f(x)的图象()A.关于直线x=对称B.关于直线x=对称C.关于点(,0)对称 D.关于点(,0)对称【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数的性质求出函数的解析式进行求解即可.【解答】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,∴T==π,解得ω=2,即f(x)=sin(2x+φ),将其图象向右平移个单位后得到y=sin[2(x﹣)+φ]=sin(2x+φ﹣),若此时函数关于原点对称,则φ﹣=kπ,即φ=+kπ,k∈Z,∵|φ|<,∴当k=﹣1时,φ=.即f(x)=sin(2x).由2x=,解得x=+,k∈Z,故当k=0时,函数的对称轴为x=,故选:B8.点O是△ABC所在平面内的一点(O不在直线BC上),若=3+,则△ABC与△OBC的面积之比为()A.B.C.D.4【考点】向量在几何中的应用.【分析】连接OA,交BC于P,根据三点共线设=x,=xt+t(1﹣x),利用平面向量的基本定理列方程组解得t即可得出AP,OP的数量关系,从而得出三角形的面积比.【解答】解:连接OA,交BC于P,∵B,P,C三点共线,不妨设=x,又A,P,O三点共线,设=xt+t(1﹣x),∵=3+,∴,解得t=.∴O在AP的延长线上.∴AP=OP.∴=.故选:C.9.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为()A.πB.πC.(6﹣2)πD.π【考点】直线与圆的位置关系.【分析】如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为AB中点时,圆C的半径最小,即面积最小.【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小此时圆的直径为O(0,0)到直线2x+y﹣4=0的距离为:d==,此时r=∴圆C的面积的最小值为:S min=π×()2=.故选:A.10.一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.64【考点】由三视图求面积、体积.【分析】由三视图可知此几何体是由一个棱柱和一个棱锥构成的组合体,代入数据分别求棱柱与棱锥的体积即可.【解答】解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,棱柱的体积为4×4×4=64;棱锥的体积为×4×4×3=16;则此几何体的体积为80;故选B.11.已知正项数列{a n },a 2﹣1、a 3、a 7成等比数列,{a n }前n 项和S n 满足a n +12=2S n +n +4,则(n ﹣6)S n 的最小值为( ) A .﹣26 B .﹣27 C .﹣28 D .﹣30 【考点】数列递推式.【分析】由数列递推式可得数列{a n }为等差数列,并求得公差,结合a 2﹣1、a 3、a 7成等比数列求出首项,得到{a n }前n 项和S n ,代入(n ﹣6)S n ,利用导数求得最值. 【解答】解:由a n +12=2S n +n +4 ①,得 a n 2=2S n ﹣1+n ﹣1+4(n ≥2)②,两式作差得:.∴,∵a n >0, ∴a n +1=a n +1. 即a n +1﹣a n =1.则数列{a n }为等差数列, ∴a 3=a 2+d ,a 7=a 2+5d ,由a 2﹣1、a 3、a 7成等比数列,得,即d 2=3a 2d ﹣a 2﹣5d ,∴=.则.∴(n ﹣6)S n =(n ﹣6)=.令f (n )=n 3﹣3n 2﹣18n , 则f ′(n )=3n 2﹣6n ﹣18.由f ′(n )=0,解得:n=1+. ∵n ∈N ,∴取n=4.∴当n=4时,f (n )有最小值为﹣56, ∴(n ﹣6)S n 的最小值为﹣28. 故选;C .12.已知函数f (x )=,若函数f (x )的图象在点A 、B 处的切线重合,则a的取值范围是( ) A .(﹣1,+∞) B .(﹣ln2,+∞) C .(﹣2,﹣1) D .(1,2) 【考点】利用导数研究曲线上某点切线方程;分段函数的应用.【分析】先根据导数的几何意义写出函数f(x)在点A、B处的切线方程,再利用两直线重合的充要条件列出关系式,从而得出a=lnx2+(﹣)2﹣1,最后利用导数研究它的单调性和最值,即可得出a的取值范围.【解答】解:设A(x1,y1),B(x2,y2),当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2,当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为:y﹣(x12+x1+a)=(2x1+1)(x﹣x1);当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y﹣lnx2=(x﹣x2);两直线重合的充要条件是=2x1+1①,lnx2﹣1=﹣x12+a②,由①及x1<0<x2得0<<1,由①②得a=lnx2+(﹣)2﹣1=﹣ln+(﹣1)2﹣1,令t=,则0<t<1,且a=(t﹣1)2﹣1﹣lnt,设h(t)=(t﹣1)2﹣1﹣lnt,(0<t<1),则h′(t)=(t﹣1)﹣=<0,∴h(t)在(0,1)为减函数,则h(t)>h(1)=﹣ln1﹣1,∴a>﹣1,∴若函数f(x)的图象在点A,B处的切线重合,a的取值范围(﹣1,+∞).故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.13.若奇函数f(x)满足对任意x∈R都有f(2+x)+f(2﹣x)=0,且f(1)=9,则f+f满足对任意x∈R都有f(2+x)+f(2﹣x)=0,可得:f(x+2)=f(x﹣2),∴函数的周期T=4,f(1)=9,且对任意x都有f(﹣x)=﹣f(x),取x=0可得f(0)=﹣f(0),解得f(0)=0,x=0时,f(2)=0∴f+f+f(﹣1)+f(0)=﹣f(1)+0=﹣9故答案为:﹣9.14.已知抛物线y=x2与双曲线﹣x2=1(a>0)有共同的焦点F,则双曲线的渐近线方程为y=.【考点】抛物线的简单性质;双曲线的简单性质.【分析】求出抛物线的焦点坐标,然后求出双曲线的a,即可求解双曲线的渐近线方程.【解答】解:∵抛物线方程为x2=8y,∴2p=8,=2,可得抛物线的焦点为F(0,2).∵抛物线y=x2与双曲线﹣x2=1(a>0)有共同的焦点F,∴双曲线的上焦点为(0,2),可得c==2,解得a2=3,可得a=且b=1,∴双曲线﹣x2=1(a>0)的渐近线方程为y=x.故答案为:y=15.若实数x,y满足,则的最小值为1.【考点】简单线性规划.【分析】作出可行域,目标函数z=表示可行域内的点与原点连线的斜率,数形结合可得.【解答】解:作出所对应的可行域(如图阴影),目标函数z=表示可行域内的点与原点连线的斜率,∴当直线经过点A(1,1)时z取最小值1故答案为:1.16.如图,正方体ABCD﹣A1B1C1D1的棱长为1,P对角线BD1的三等分点,P到直线CC1的距离为【考点】点、线、面间的距离计算.【分析】如图所示,连接B1D1,作MP∥B1B,连接C1M,则C1M等于P到直线CC1的距离,利用余弦定理,求出C1M即可.【解答】解:如图所示,连接B1D1,作MP∥B1B,连接C1M,则C1M等于P到直线CC1的距离.∵P对角线BD1的三等分点,∴B1M=,∴C1M==,∴P到直线CC1的距离等于.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知{a n}是一个等差数列,{a n}的前n项和记为S n,a1=4,S3=21(1)求数列{a n}的通项公式;(2)设数列{b n}满足b1=,b n﹣b n=2,求数列{b n}的通项公式.+1【考点】数列递推式;数列的求和.【分析】(1)设数列{a n}的公差为d,由已知得3×4+•d=21,由此能求出数列{a n}的通项公式.﹣b n=2=23n+1,由此利用叠加法能求出数列{b n}的通项公式.(2)由b n+1【解答】解:(1)设数列{a n}的公差为d,由已知得3×4+•d=21…解得d=3…,{a n }的通项公式为a n =3n +1…(2)由(1)得b n +1﹣b n =2=23n +1…当n ≥2时,b n =(b n ﹣b n ﹣1)+(b n ﹣1﹣b n ﹣2)+…+(b 2﹣b 1)+b 1,…∴b n =23n ﹣2+23n ﹣5+…+24+=+=×23n +1(n ≥2)…∵b 1=满足b n =×23n +1,∴b n =×23n +1,n ∈N +…18.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,3(b 2+c 2)=3a 2+2bc .(1)若sinB=cosC ,求tanC ;(2)若△ABC 的面积S=5,求边长a 的最小值. 【考点】余弦定理;正弦定理. 【分析】(1)利用余弦定理表示出cosA ,将已知等式变形后代入求出cosA 的值,进而确定出sinA 的值,根据sinB=cosC ,B=π﹣(A +C ),求出tanC 的值即可; (2)利用三角形面积公式表示出三角形ABC 面积,将已知面积与sinA 的值代入求出bc 的值,已知等式变形,利用基本不等式求出a 的最小值即可.【解答】解:(1)∵3(b 2+c 2)=3a 2+2bc ,即b 2+c 2﹣a 2=bc ,∴cosA==,又A 为三角形内角,∴sinA==,∵sinB=cosC ,∴sin (A +C )=cosC ,∴cosC +sinC=cosC ,即sinC=cosC ,∴tanC=;(2)∵S=5,∴bcsinA=5,∵sinA=,∴bc=15,∵b 2+c 2≥2bc ,b 2+c 2=a 2+bc ,∴a 2≥2bc ﹣bc=bc=20,∴a ≥2,则a 的最小值为2.19.如图4,已知正三棱柱ABC ﹣A 1B 1C 1,延长BC 至D ,使C 为BD 的中点.(1)求证:平面AC1D⊥平面AA1B;(2)若AC=2,AA1=4,求二面角C1﹣AD﹣B的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)推导出AB⊥AD,AA1⊥AD,从而AD⊥平面AA1B,由此能证明平面AC1D⊥平面AA1B.(2)以A为原点,AD为x轴,AB为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出二面角C1﹣AD﹣B的余弦值.【解答】解:(1)证明:由已知△ABC是正三角形,∠BAC=∠BCA=60°,又∵AC=BC=CD,∴∠CAD=∠CDA=30°,…∴∠BAD=30°+60°=90°,AB⊥AD,…又∵AA1⊥底面ABD,∴AA1⊥AD,…∵AB∩AA1=A,∴AD⊥平面AA1B,…又∵AD⊂平面AC1D,∴平面AC1D⊥平面AA1B.…解:(2)∵AA1⊥底面ABD,AB⊥AD,∴如图,以A为原点,AD为x轴,AB为y轴,AA1为z轴,建立空间直角坐标系…A(0,0,0),D(2,0,0),C1(,1,4),…=(2,0,0),=(),…设平面ADC1的法向量=(x,y,z),则,取z=1,则=(0,﹣4,1),…取平面ADB的法向量为=(0,0,1),则cos<>===,由图知二面角C1﹣AD﹣B为锐角,∴二面角C1﹣AD﹣B的余弦值为.…20.已知椭圆C: +=1(a>b>0)的离心率为,且a+b=3.(1)求椭圆C的方程;(2)直线x+y﹣m=0(m是正常数)与椭圆C交于P、Q两点,当•=时,求直线PQ的方程.【考点】椭圆的简单性质;直线与圆锥曲线的关系.【分析】(1)由已知=,c+a=3,a2=b2+c2,联立解出即可得出.(2)设P(x1,y1),Q(x2,y2),直线方程与椭圆方程联立化为5x2﹣8mx+4m2﹣4=0,利用△>0,根与系数的关系及其数量积运算性质•=,解出即可得出.【解答】解:(1)由已知=,c+a=3,a2=b2+c2,解得a=2,b=1.∴椭圆C的标准方程为+y2=1.(2)设P(x1,y1),Q(x2,y2),联立,化为5x2﹣8mx+4m2﹣4=0,由△>0,得64m2﹣20(4m2﹣4)>0,即m2<5,∵m>0,∴.∴x1+x2=,x1x2=.∵•=,∴x1x2+y1y2=,又y1y2=(﹣x1+m)(﹣x2+m)=x1x2﹣m(x1+x2)+m2,∴2x1x2﹣m(x1+x2)+m2=,﹣+m2=,解得m2=4,又.∴m=2,∴PQ的方程为x+y﹣2=0.21.已知函数f(x)=(m+)lnx+﹣x,其中常数m>0.(1)当m=2时,求f(x)的极大值;(2)已知m≥4,设A(x1,f(x1))、B(x2,f(x2))是曲线y=f(x)上的相异两点,l1、l2是曲线y=f(x)在A、B两点处的切线,若l1∥l2,求x1+x2的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)求函数的导数,得到函数的单调区间,从而求出函数的极大值即可;(2)求函数的导数,根据导数的几何意义,结合基本不等式的性质即可得到结论.【解答】解:(1)当m=2时,f(x)=lnx+﹣x,f′(x)=﹣﹣1,(x>0),∴f′(x)=﹣,(x>0),由f′(x)>0,得:<x<2;由f′(x)<0,得:0<x<或x>2,∴f(x)在(,2)上单调递增,在(0,)和(2,+∞)上单调递减,=f(2)=ln2﹣;∴f(x)极大值(2)f′(x)=﹣﹣1,(x>0),由已知f′(x1)=f′(x2),(x1,x2>0且x1≠x2)得:∴﹣=﹣,即x1+x2=(m+)x1x2,∵x1≠x2,∴由不等式性质可得x1•x2<恒成立,又∵x1,x2>0,m>0,∴x1+x2<(m+),∴x1+x2>对m≥4恒成立,令g(m)=m+,(m≥4),则g′(m)=1﹣,∵m≥4,∴g′(m)>0,∴g(m)在[4,+∞)递增,∴g(m)≥g(4)=,记h(x)=f′(x)=﹣(x﹣m)(x﹣),h′(x)=﹣(m+)(x﹣),h(x)=f′(x)的符号与单调性为:),若f′(x1)=f′(x2)=0,则x1=,x2=m(以下均假设x1<x2),l1在l2的下方,l1∥l2;若f′(x1)=f′(x2)<0,则x1∈(0,),x2∈(m,+∞),l1、l2在点(m,f(m))的两侧,l1∥l2;若f′(x1)=f′(x2)>0,则x1∈(,),x2∈(,m),l1、l2在点(,f())的两侧,l1∥l2;综上所述,l1∥l2时,x1+x2>=,x1+x2的取值范围是(,+∞).【选做题】(共1小题,满分10分)22.已知平面向量、、满足条件++=,||=||=||=1.(1)求证:△P1P2P3是正三角形;(2)试判断直线OP1与直线P2P3的位置关系,并证明你的判断.【考点】两点间的距离公式;向量的模.【分析】(1)(法一)根据向量的运算法则计算出||=||=||,从而判断三角形的形状;(法二)设出坐标,根据坐标运算得到P1P2=P1P3=P2P3,判断三角形的形状;(2)根据向量乘积是0,得到向量垂直即可.【解答】证明:(1)(法一)∵++=,∴+=﹣,∴=,∴+2•+=,∵||=||=||=1,∴===1,∴•=﹣,=|﹣|2=﹣2•+=3,∴||=,同理||=||=,∴△P1P2P3是正三角形;(方法二)设P1(x1,y1),P2(x2,y2),P3(x3,y3),∵||=||=||=1,∴,∵++=,∴,∴,∴+=+,∴2x1 x2+2y1 y2=﹣1,∴p1p2==,P1P3=P2P3=,∴P1P2=P1P3=P2P3,∴△P1P2P3是正三角形;(2)OP1⊥P2P3,证明:∵++=,∴=﹣﹣,∴•=(﹣)=(﹣﹣)(﹣)=﹣,∵||=||=||=1,=,∴•=0,OP1⊥P2P3.【选做题】(共1小题,满分0分)23.已知α、β、γ是三个平面,α∩β=a,α∩γ=b,β∩γ=c(1)若a∩b=O,求证:a、b、c三线共点;(2)若a∥b,试判断直线a与直线c的位置关系,并证明你的判断.【考点】空间中直线与直线之间的位置关系;平面的基本性质及推论.【分析】(1)由已知O∈a,O∈b,O∈β,O∈γ,由β∩γ=c,得O∈c,由此能证明a、b、c 三线共点.(2)由已知a⊄γ,b⊂γ,a∥γ,从而得到a∥c.【解答】证明:(1)∵a∩b=O,∴O∈a,O∈b,∵α∩β=a,a∩γ=b,∴α⊂β,b⊂γ,∴O∈β,O∈γ,又∵β∩γ=c,∴O∈c,即O∈a,O∈b,O∈c,∴a、b、c三线共点.解:(2)a∥c.证明如下:∵α∩β=a,α∩γ=b,a∥b,∴a⊄γ,b⊂γ,又∵a∥b,∴a∥γ,又∵a⊂β,β∩γ=c,∴a∥c.【选做题】((共1小题,满分0分)24.已知圆C:x2+y2﹣x+2y=0和直线l:x﹣y+1=0(1)试判断直线l与圆C之间的位置关系,并证明你的判断;(2)求与圆C关于直线l对称的圆的方程.【考点】直线与圆的位置关系.【分析】(1)求出圆心与直线的距离与半径比较,即可得出结论;(2)求出圆心C关于直线l的对称点,即可求与圆C关于直线l对称的圆的方程.【解答】解:(1)直线l与圆C的位置关系是相离…由x2+y2﹣x+2y=0即(x﹣)2+(y+1)2=得,圆心C(,﹣1),半径r=…圆心到直线l:x﹣y+1=0的距离d==>r…即直线l与圆C相离…(2)设圆心C关于直线l的对称点为C′(x,y)则C,C′的中点(,)在直线l上,且CC′⊥l…∴…,解得x=﹣2,y=,即对称圆的圆心为C ′(﹣2,)…对称圆的半径r=,方程为(x +2)2+(y ﹣)2=…2016年9月29日。
广东省江门市普通高中2015-2016学年高二上学期期末调研测试数学(理)试题带答案
江门市2017届普通高中高二第一学期调研测试数 学(理科)本试卷共4页,24题,满分150分,测试用时120分钟. 注意事项:⒈答题前,考生务必把自己的姓名、考生号等填写在答题卡相应的位置上。
⒉做选择题时,必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
⒊非选择题必须使用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
⒋所有题目必须在答题卡上指定位置作答,不按以上要求作答的答案无效。
⒌考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
参考公式:2cos2sin 2sin sin βαβαβα-+=+..一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列的前4项分别是:1,3,6,10,这个数列的一个通项公式是A .)1(2--=n n a nB .12-=n a nC .2)1(+=n n a nD .2)1(-=n n a n 2.命题“若0=α,则ααcos sin <”的否命题是A .若0=α,则ααcos sin ≥B .若ααcos sin <,则0≠αC .若0≠α,则ααcos sin ≥D .若ααcos sin ≥,则0≠α 3.下列不等式中,解集是空集的是A .012>+-x xB .522>-x x C .0122>++-x x D .22>+x x4.已知)5 , 2 , 3(-=a ,)3 , , 1(m b =,若b a ⊥,则常数=mA .6-B .6C .9-D .9 5.在ABC ∆中,60A ∠=,a =b =ABC ∆解的情况A .无解B .有唯一解C .有两解D .不能确定6.“1<x ”是“2||<x ”的A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件秘密★启用前 试卷类型:AA 17.在直角坐标系xOy 中,直线x y =与抛物线y x 42=相交于O 、A 两点,则点A 到抛物线焦点的距离为A .5B .6C .7D .8 8.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若bc C a A 1cos cos =+,则 A .a 、b 、c 成等比数列 B .a 、b 、c 成等差数列 C .2a 、2b 、2c 成等比数列 D .2a 、2b 、2c 成等差数列9.在平面直角坐标系xOy 中,设不等式组⎪⎩⎪⎨⎧≥-+≤≤≤≤.022,30,20y x y x 所表示的平面区域为S ,若A 、B 为区域S 内的两个动点,则||AB 的最大值为A .52B .13C .3D .510.如图1,在正三棱柱111C B A ABC -中,12BB AB =,则1AB 与B C 1所成角的大小为 A .045 B .060 C .090 D .010511.已知椭圆12422=+y x ,直线 l 交椭圆于A 、B 两点,若AB 的中点坐标为)1 , 21(-,则 l 的方程为A .02=+y x B .0252=--y x C .022=--y x D .0294=--y x 12. 若a 、b 是函数q px x x f +-=2)((0>p ,0>q )的两个不同的零点,且a 、b 、2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则q p +的值等于A .6B .7C .8D .9二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“R x ∈∃,使得0522=++x x ”的否定是____________.14. 已知圆4)2(22=+-y x ,则过抛物线x y 42=的焦点的直线与已知圆相交的最短弦长等于____________.ABCDE1B 1A 1C 1D 图3A15.已知数列{}n a 满足:* , N n m ∈∀都有n m n m a a a +=⋅,且21=a .记数列1222-+=n nnn a a a b 的前n 项和为n S ,则=n S ____________. 16. 如图2,三棱锥ABCD 各棱的长均为1,E 、F 分别是AD 、BC 的中点,则=EF ____________.17.(本小题满分12分)设{}n a 是正项等比数列,21=a ,423+=a a . ⑴求{}n a 的通项公式;⑵设{}n b 是首项为1,公差为2-的等差数列,求数列{}n n b a +的前n 项和n S .18.(本小题满分12分)已知关于x 的函数1)1()(2-+-+=a ax x a x f ,R a ∈是常数. ⑴当1=a 时,求不等式0)(>x f 的解集;⑵若R x ∈∀,都有22)(x x f <,求a 的取值范围(用集合表示).19.(本小题满分12分)在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A c a sin 23=. ⑴求角C ;⑵若7=c ,且ABC ∆的面积为310,求ABC ∆的周长.20.(本小题满分12分)如图3,直四棱柱1111D C B A ABCD -中,四边形ABCD 为菱形,060=∠ABC ,E 是1CC 的中点,且D A B A 11⊥.⑴证明:平面⊥BD A 1平面BDE ; ⑵求直线D A 1与直线BE 所成角的余弦值.21.(本小题满分12分)平面直角坐标系xOy 中,点)0 , 2(-A ,)0 , 2(B ,直线AM ,BM 相交于点M ,且它们的斜率之积是43-. ⑴求点M 的轨迹C 的方程;⑵直线l :1-=x y 与曲线C 相交于1P ,2P 两点,Q 是x 轴上一点,若Q P P 21∆的面积为26,求Q 点的坐标.请考生从第22、23、24题中任选一题作答。
广东省江门市2025届高三上学期10月调研测试数学试题
广东省江门市2025届高三上学期10月调研测试数学试题一、单选题1.已知集合{}{}209,010A x x B x x =∈≤≤=∈≤≤NN ∣∣,则A B =I ( ) A .{}09xx ≤≤∣ B .{}1,2,3 C .{}03xx ≤≤∣ D .{}0,1,2,32.设,m n ∈R ,则“33(1)m n +=”是“22m n <”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分又不必要条件3.下列命题为真命题的是( )A .若0a b c >>>,则a a cb bc +<+ B .若0,0a b c >><,则c ca b<C .0a b >>,则22ac bc >D .若a b >,则2a ba b +>> 4.已知函数()e e ,2,,2,3x x x f x x f x -⎧+≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩则()ln27f =( )A .83B .103C .72827D .730275.下列函数中,以π为周期,且在区间π,π2⎛⎫⎪⎝⎭上单调递增的是( )A .sin y x =B .cos y x =C .tan y x =D .cos y x =6.在正方形ABCD 中,,2,AE EB FC BF AF ==u u u r u u u r u u u r u u u r与DE 交于点M ,则cos EMF ∠=( )AB .15CD .1107.金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度h 与其来摘后时间t (天)满足的函数解析式为()()ln 0h m t a a =+>.若采摘后1天,金针菇失去的新鲜度为40%;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为60%,则采摘后的天数为( )(结果保留1.41) A .1.5B .1.8C .2.0D .2.18.已知各项都为正数的数列 a n 满足121,2a a ==,()2212123,n n n n n n a a a a a a n n ----+-->≥∈N ,则下列结论中一定正确的是( ) A .8124a > B .201024a > C .8124a <D .201204a <二、多选题9.若函数()2()f x x x c =-在1x =处取得极大值,则( )A .1c =,或3c =B .()10xf x +<的解集为()1,0-C .当π02x <<时,()()2cos cos f x f x >D .()()224f x f x ++-=10.在ABC V 中,1AB =,4AC =,BC ,点D 在边BC 上,AD 为BAC ∠的角平分线,点E 为AC 中点,则( )A .ABC VB .BA CA ⋅=u u u r u u u rC .BE =D .AD =11.已知()()22sin cos n nn f x x x n +=+∈N ,则( )A .()2f x 的最小正周期为π2B .()2f x 的图象关于点()π,0Z 28k k ⎛⎫+∈ ⎪⎝⎭对称C .()n f x 的图象关于直线π2x =对称 D .()1112n n f x -≤≤三、填空题12.函数()ln f x x x =⋅的单调递减区间为.13.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()()sin 1cos f x x x =+,则当0x <时,()f x =.14.已知0,0a b >≠,且4a b +=,则48b a b++的最小值为.四、解答题15.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点()4,3P -. (1)求sin2α的值; (2)若角β满足()5sin 13αβ+=,求cos β的值. 16.已知数列{}n a 的前n 项和为n S ,且()1344n n S n ++=-∈N .(1)证明:数列{}2log n a 为等差数列; (2)记数列{}2log n a 的前n 项和为n T ,若1231111100101nT T T T ++++<L ,求满足条件的最大整数n . 17.已知ABC V 的三个内角,,A B C 所对的边分别为,,a b c ,且4,3==a c b ,记ABC V 的面积为S ,内切圆半径为r ,外接圆半径为R . (1)若b =,求sin A ; (2)记()12p a b c =++,证明:S r p =; (3)求rR 的取值范围:18.设函数()()()1ln ,10f x x g x x x==->. (1)求()f x 在1x =处的切线方程; (2)证明:()()f x g x ≥:(3)若方程()()af x g x =有两个实根,求实数a 的取值范围,19.如果定义域为[]0,1的函数()f x 同时满足以下三个条件:(1)对任意的[]0,1x ∈,总有()0f x ≥;(2)()11f =;(3)当120,0x x ≥≥,且121x x +≤时,()()()1212f x x f x f x +≥+恒成立.则称()f x 为“友谊函数”.请解答下列问题: (1)已知()f x 为“友谊函数”,求()0f 的值;(2)判断函数()[]()310,1xg x x x =--∈是否为“友谊函数”?并说明理由;(3)已知()f x 为“友谊函数”,存在[]00,1x ∈,使得()[]00,1f x ∈,且()()00f f x x =,证明:()00f x x =.。
广东省江门市高三数学调研测试 理
广东省江门市普通高中高三调研测试数学(理科)本试卷共4页,21题,满分150分,测试用时1.参考公式:锥体的体积公式ShV31=,其中S是锥体的底面积,h是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈复数ii+12(i是虚数单位)的虚部是A.1 B.1- C.i D.i-⒉设集合{}2|>=xxM,{}2|2>=xxN,下列关系正确的是A.φ=NM B.NM⊇ C.NM= D.NM⊆⒊以下命题正确的是A.0>>ba,bdacdc>⇒<<0 B.baba11<⇒>C.ba>,dbcadc->-⇒< D.22bcacba>⇒>⒋已知1e、2e互相垂直,2||2||21==ee,21eea+=λ,221eeb-=,且a、b 互相垂直,则实数λ的值为A.21B.41C.1 D.2⒌如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为A.π33B.π63C.π32 D.π3⒍两个正数a、b的等差中项是2,一个等比中项是3,则双曲线12222=-byax的离心率是A.3 B.10 C.310D.10或310⒎如图2,PAB∆所在的平面α和四边形ABCD所在的平面β互相垂直,且α⊥AD,α⊥BC,4=AD,8=BC,6=AB.若1tan2tan=∠-∠BCPADP,则动点P在平面α的轨迹是A.椭圆的一部分 B.线段C .双曲线的一部分D .以上都不是⒏设x 、y 满足⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则2-+x y x 的取值范围是A .]1 , 0[B .]0 , 1[-C .) , (∞-∞D .]2 , 2[-二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)⒐曲线21x y -=与x 轴围成图形的面积是 . ⒑在程序框图3中输入611π=a 、35π=b ,则输出=c .⒒62)2(-x x 展开式中,3x 的系数是 .⒓已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边,若ca bC B +-=2cos cos ,则=B . ⒔给出下列四个命题:①命题“R x ∈∀,02≥x ”的否定是“R x ∈∃,02≤x ”;②若a 、]1 , 0[∈b ,则不等式4122<+b a 成立的概率是16π③线性相关系数r 的值越大,表明两个变量的线性相关程度越强;④函数12+-=ax x y 在) , 2[∞+上恒为正,则实数a 的取值范围是)25, (-∞. 其中真命题的序号是 (请填上所有真命题的序号). (二)选做题(14、15题,考生只能从中选做一题)⒕(坐标系与参数方程选做题)在极坐标系) , (θρ中,过点)4, 22(π作圆θρsin 4=的切线,则切线的极坐标方程为 .⒖(几何证明选讲选做题)如图4,点A 、B 、C 是 圆O 上的点,且2=AB ,6=BC ,32π=∠CAB , 则AOB ∠对应的劣弧长为 .三、解答题:本大题共6小题,满分80明过程和演算步骤.⒗(本小题满分14分)已知函数x x x a x f 2cos 4cos sin )(+=,R x ∈,6)6(=πf .⑴求常数a 的值;ABCDE F⑵求函数)(x f 的最小正周期和最大值.⒘(本小题满分12分)某旅游景点利润为100万元,因市场竞争,若不开发新项目,预测从起每年利润比上一年减少4万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江门市2010届普通高中高三调研测试数 学(理科)本试卷共4页,21题,满分150分,测试用时120分钟. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 用最小二乘法求线性回归方程系数公式2121 xn x yx n yx b n i i ni ii --=∑∑==,x b y a-=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. ⒈已知集合{}3 , 2 , 1 , 0--=A ,{}01|<+=x x B ,则集合B A 的元素的个数是 A .3个 B .2个 C .1个 D .0个⒉已知复数Z 的共轭复数i Z -=1(其中i 是虚数单位),则=2ZA .2B .2-C .i 2D .i 2-⒊已知函数)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f 2)(⋅=.则当0>x 时,=)(x fA .xx -⋅2B .x x 2⋅-C .xx -⋅-2D .x x 2log ⋅⒋数列{}n a 的前n 项和为n S ,已知3tanπn S n =,则=2a A .332 B .332- C .32 D .32- ⒌给定下列四个命题:①a 、b 是两异面直线,那么经过直线a 可以作无数个与直线b 平行的平面。
②α、β是任意两个平面,那么一定存在平面γ,满足γα⊥且γβ⊥。
③a 、b 是长方体互相平行的两条棱,将长方体展开,那么在展开图中,a 、b 对应的线段所在直线互相平行。
④已知任意直线a 和平面α,那么一定存在平面γ,满足γ⊂a 且γα⊥。
其中,为真命题的是A .①和②B .②和③C .③和④D .②和④⒍在平面直角坐标系xOy 中,点)1 , 2(A ,)1 , 3(-B ,则=∠AOB A .060 B .0120 C .0135 D .0150开1, 0==i sas s +=1+=i i是否 ① ② 输出a结输入1a 、2a 、…、a图ECBA ·O图2⒎防疫站有A 、B 、C 、D 四名内科医生和E 、F 两名儿科医生,现将他们分成两个3人小组分别派往甲、乙两地指导疾病防控。
两地都需要既有内科医生又有儿科医生,而且A 只能去乙地。
则不同的选派方案共有A .6种B .8种C .12种D .16种⒏在平面直角坐标系xOy 中,不等式组⎩⎨⎧≤≤≤≤5252y x 确定的平面区域为D ,在D 中任取一点) , (b a P ,则P 点满足102>+b a 的概率为A .32 B .127 C .21 D .125 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.㈠必做题(9—13题)⒐平面向量 a 、 b 中,)4 , 3( -=a ,)1 , 2( =b , 则向量=- 2a b .⒑在阳光体育活动中,全校学生积极参加室外跑步。
高三⑴班每个学生上一个月跑步的路程从大到小 排列依次是1a 、2a 、3a 、…、50a (任意1=i 、2、…、49,1+>i i a a ),图1是统计该班上一个月跑步长度前10名学生平均跑步路程a 的程序框图。
则图中判断框①应填 ,处理框(执行框)②应填 . ⒒从圆4)1()1(22=++-y x 外一点)3 , 3(P 作这个圆的切的角为θ,则线,设两条切线之间所夹=θsin . ⒓对于具有线性相关关系的一组数据:用最小二乘法求得y 关于x 的线性回归方程a x by ˆˆ+=经过一点(样本中心点) 是 .⒔不等式5 |1||2|≥++-x x 的解集是 . ㈡选做题(14、15题,考生只能从中选做一题)⒕(坐标系与参数方程选做题)在以O 为极点的极坐标系中,直线l 的极坐标方程是02cos =-θρ,直线l 与极轴相交于点M ,以OM为直径的圆的极坐标方程是 。
⒖(几何证明选讲选做题)如图2,ABC ∆是圆O 的内接三角形,圆O 的半径1=r ,1=AB ,2=BC ,EC 是圆O 的切线,则=∠ACE .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.x0 1 2 3 y2- 0 5 9图4图3E CBDAEDCBA⒗(本小题满分12分)已知x x x f cos 232cossin 2)(2+=ϕ(ϕ是常数,πϕ<<0),)(x f y =的图象经过点)23, 6(πP .⑴求ϕ的值;⑵在等腰ABC ∆中,23)(=A f ,3=BC ,求AB .⒘(本小题满分12分)某个猜答案游戏,组织者将提出相互独立的三个选择题,每题有四个选项,其中只有一个是正确的,游戏规定前两个选择题至少答对一个才有资格答第三题。
甲将回答的(Ⅰ)(Ⅱ)(Ⅲ)三题的分值分别是10、15、15,根据自己的知识经验,甲可以排除(Ⅰ)题的2个错误选项、排除(Ⅱ)题的1个错误选项,不能排除(Ⅲ)题的错误选项。
假设甲在每题剩下选项中随机选择,三题所得总分为ξ。
⑴若组织者按(Ⅰ)(Ⅱ)(Ⅲ)的顺序出题,求ξ的分布列和数学期望; ⑵若组织者不按(Ⅰ)(Ⅱ)(Ⅲ)的顺序出题,ξ的数学期望是否都相等? (第⑵问共1分,直接写出“是”或“否”即可,不必具体计算)⒙(本小题满分14分)如图3,ABC ∆是边长为a 的等边三角形,D 、E 分别是AB 、AC 边上一点,BC DE //。
将ABC ∆沿DE 折成直二面角B DE A --,连接AB 、AC ,得到四棱锥BCDE A -(如图4),其中平面ABC 与平面ADE 相交于直线l . ⑴求证:DE l //; ⑵若2aDE =,求二面角B l D --的大小; ⑶若x DE =,求四棱锥BCDE A -的体积)(x V .⒚(本小题满分14分)已知椭圆C :)0( 12222>>=+b a by a x 的离心率为23,过坐标原点O 且斜率为21的直线 l 与C 相交于A 、B ,102||=AB . ⑴求a 、b 的值;⑵若动圆1)(22=+-y m x 与椭圆C 和直线 l 都没有公共点,试求m 的取值范围.⒛(本小题满分14分)已知函数3)12(33)(23-+--=x a ax x x f ,a 是常数.⑴若31=a ,曲线)(x f y =上点P 处的切线与直线032=+y x 平行,求点P 的坐标; ⑵试证明,对任意常数a ,函数)(x f y =在区间)3 , 3(-存在零点.21(本小题满分14分)已知数列{}n a ,11=a ,对任意*∈N n ,n nn a a -++=221. ⑴求数列{}n a 的通项公式;⑵设数列{}n a 的前n 项和为n S ,试证明:3>n 时,14+>n nS n .理科数学评分参考一、选择题 BCAD DCAB二、填空题 ⒐)2 , 7(-; ⒑11<i ,10S a =; ⒒54; ⒓)3 , 5.1(; ⒔{}32|≥-≤x x x 或; ⒕θρcos 2=; ⒖015.三、解答题⒗⑴依题意23432cos 6cos 232cos 6sin2)6(22=+=+=ϕπϕππf ……2分,432cos 2=ϕ,因为πϕ<<0,220πϕ<<,所以232cos =ϕ……3分,62πϕ=,3πϕ=……4分.⑵23)(=A f ,即23)6sin(3cos 23sin 23cos 236cos sin 22=+=+=+ππA A A A A ……6分,π<<A 0,6766πππ<+<A ,所以656ππ=+A ,32π=A ……8分,ABC∆是等腰三角形,6π==C B ……9分,由正弦定理ABCC AB sin sin =……11分,得3=AB …12分.⒘⑴甲答对(Ⅰ)(Ⅱ)(Ⅲ)三题的概率分别是211=p 、312=p 、414=p ……1分, ξ的取值为0=ξ、10、15、25、30、40……2分,31)1)(1()0(21=--==p p P ξ,41)1)(1()10(321=--==p p p P ξ, 81)1()1()15(321=--==p p p P ξ,245)1()1()25(321321=-+-==p p p p p p P ξ,241)1()30(321=-==p p p P ξ,241)40(321===p p p P ξ……8分,所以ξ的分布列为……9分 所以ξ的数学期望24140241302452581154110310⨯+⨯+⨯+⨯+⨯+⨯=ξE……10分,5.12=……11分⑵否……12分.⒙⑴BC DE //,ADE DE 平面⊂,ADE BC 平面⊄,所以ADE BC 平面//……2分,ξ 0101525 30 40p 31 41 81 245 241 241因为ABC BC 平面⊂,l ADE ABC =平面平面 ,所以l BC //……3分,所以DE l //……4分.⑵取DE 、BC 的中点F 、G ,连接AF 、FG 、AG ……5分,因为ABC ∆是边长为a 的等边三角形,2aDE =,所以FG AF =,DE AF ⊥,DE FG ⊥,从而l AF ⊥,l FG ⊥……6分,所以AFG l 平面⊥,AG l ⊥,FAG ∠二面角B l D --的平面角……8分,在FAG∆中,因为B DE A --是直二面角,DE AF ⊥,所以BCDE AF 平面⊥,FG AF ⊥……9分,又因为FG AF =,所以4π=∠FAG ,即二面角B l D --的大小为4π……10分. ⑶x AF 23=,)(23x a FG -=……11分,四棱锥BCDE A -的底面积 )(43)(23)(21222x a x a x a FG BC DE S -=-⨯+⨯=⨯+=……12分, 四棱锥BCDE A -的体积)(8123)(4331313222x x a x x a Sh V -=⨯-⨯==……14分.⒚⑴依题意, l :2xy =……1分,不妨设设) , 2(t t A 、) , 2(t t B --(0>t )……2分, 由102||=AB 得40202=t ,2=t ……3分,所以⎪⎪⎩⎪⎪⎨⎧=-==+23 1282222a b a ac b a ……5分,解得4=a ,2=b ……6分.⑵由⎪⎩⎪⎨⎧=+-=+1)( 14162222y m x y x 消去y 得01248322=++-m mx x ……7分,动圆与椭圆没有公共点,当且仅当014416)124(34)8(222<-=+⨯⨯--=∆m m m 或5||>m ……9分,解得3||<m 或5||>m ……10分。