2019广州调研考试高三数学(理科)试卷
广东省广州市2019届高三3月综合测试(一)理科数学试题(解析版)
3
x a 的展开式的各项系数和为 32,则该展开式中 x
5
4
的系数是
A.5 B.10 答案:A 考点:二项式定理。
C.15
D.20
解析:依题意,令 x=1,得: (1 a ) =32,所以, a 1 ,
5
展开式中 x 的系数为: 2C5 x x C5 x =5
4
1 4 3 4
a, b N , b a ),则圆周率的近似值为
A.
b a
B.
a b
C.
3a b
D.
3b a
答案:C 考点:几何概型。 解析:正十二边形的面积为:12×
1 2 2 sin 30 12, 2
12 b 3a ,选 C。 , 4 a b
5.若等边三角形 ABC 的边长为 1,点 M 满足 CM CB 2CA ,则 MA MB A. 3 B.2 C. 2 3 D.3
答案:D 考点:平面向量的三角形法则。
解析: MA MB ( MD DA) DC = ( BC AC ) 2 AC = 2 AC BC 2 AC = 2 1 1 cos 60 2 =3
2
答案:A 考点:分段函数的图象,数形结合法。 解析:当 x>1 时, f x x
1 ,画出它的图象,并作它关于直线 x=1 对称的图象, x
再画出当 x<1 时, f ( x) ln( x a ) 的图象,如下图所示:
5
图象上存在关于直线 x 1 对称的不同两点,等于于函数 f ( x) ln( x a ) 与, f x x 对称的图象有交点, 所以,只需 f(1)= ln(1 a ) >2,解得: a e 1
【理数】2019广州二模理科数学试题及答案(类型A)
图1俯视图侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2019.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为 A .2log 3- B .3log 2- C .19D3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x >C .存在0x ∈R ,使得3200x x ≤D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A .16 B .13 C .12D .38 6.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16B .13CD7.一个几何体的三视图如图1,则该几何体的体积为A .6π4+B .12π4+DCBAC .6π12+D .12π12+ 8.将正偶数2,4,6,8,L 按表1的方式进行 排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==u u u r u u u r u u u r u u u r ,则AE AF ⋅u u u r u u u r的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图2FE D CBA a 图3重量/克0.0320.02452515O 17.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =L ,则样本数据的平均值为112233n n X x p x p x p x p =++++L . (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分)如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.图419.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+L .2019年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分 (2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A==. ……………6分∵D 是边AC的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分 解得BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分 ∴1sin sin 33AB A C BC ⋅===. ……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分M O H F E D CB A (3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫ ⎪⎝⎭:. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD I 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB = ∴EM =……………3分在△AME 中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =I ,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,AB BC B AB =⊂I 平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分∵AO BD ⊥,,EO BD O EO =⊂I 平面EBD ,BD ⊂平面EBD , ∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH == 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂I 平面ABCD ,BC ⊂平面ABCD , ∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴,建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =-u u u r ,()2,2,0BD =--u u u r ,()1,1,1BE =--u u u r. ……………9分设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=u u u r ,n 0BE ⋅=u u u r, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分设直线AE 与平面BDE 所成角为θ,则sin θ=cos ,u u u r n AE ⋅=u u u ru u u r n AEnAE 3=. ……………11分∴cos θ==,sin tan cos θθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列.∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++L ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅L ,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅L ,② ……………11分①-②得0121344444n nn T n --=++++-⋅L 14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++L ()0122142434144n n n n --=+⨯+⨯++-⋅+⋅L .由()12311n nx x x x x x x x+-++++=≠-L , ……………11分两边对x 取导数得,012123n x x x nx -++++=L ()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦L . ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分 解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,2422k x k ±==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224ABx y x k x x --+===--,故直线AB 的方程为()12124x y x +-=-. ……………4分 令1y =-,得1822x x =-+, ∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---=⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x kkk+-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-,则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=u u r u u r, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-. (ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<, 故函数()g x 在()1,+∞上单调递减. 由于()()110,2ln 21022k g k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x k x x -+>,与题设矛盾. …………5分 (ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<. 故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减,从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x k g x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分 (3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =L 分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L ……………12分 111121n n =+--+ ……………13分 223222n n n n --=+. ……………14分。
2019年广东省高考数学试卷(理科)
2021年广东省高考数学试卷〔理科〕一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个 选项中,只有一项为哪一项符合题目要求的.1. 〔5分〕设集合 M={x| x 2+2x=0,x€ R} , N={x| x 2—2x=0, x€ 号,贝U MUN=〔 A. {0} B. {0, 2} C. {-2, 0} D. {-2, 0, 2}2. 〔5分〕定义域为R 的四个函数y=x 3, y=2x, y=x 2+1, y=2sinx 中,奇函数的个 数是〔 〕 A. 4B. 3 C 2 D. 13. 〔5分〕假设复数z 满足iz=2+4i,那么在复平面内,z 对应的点的坐标是〔 〕A. 〔2, 4〕B. 〔2, -4〕C. 〔4, -2〕D. 〔4, 2〕 4. 〔5那么X 的数学期望E 〔X 〕=〔 〕 A — B. 2 C. D. 3 2 25. 〔5分〕某四棱台的三视图如下图,那么该四棱台的体积是〔〕A. 4 B — C.D. 633 6. 〔5分〕设m, n 是两条不同的直线,% B 是两个不同的平面,以下命题中正 确的是〔 〕A.假设 a± & m? a, n? B,那么 m±nB.假设 all 0, m? a, n? & 那么 m // nC.假设 m±n, m? a, n? 3 那么 a± pD.假设 m ,a, m // n, n // & 那么 a± 0 7. 〔5分〕中央在原点的双曲线 C 的右焦点为F 〔3, 0〕,离心率等于,,那么 C 的方程是〔〕F ¥ J B Jc /n -7 二——1 — — C — — D —--〔5 分〕设整数 n>4,集合 X={1, 2, 3,…,n}.令集合 S={ 〔x, y, z 〕 | x, zC X,且三条件 x< y<z, y<z<x, z<x< y 恰有一个成立}.假设〔x, y, z 〕 〔z, w, x 〕都在S 中,那么以下选项正确的选项是〔〕A. 8. y, 和A. 〔y, z, w〕C S, 〔x, y, w〕 ?SB. 〔y, z, w〕€ S, 〔x, y, w〕€ SC. 〔y, z, w〕?S, 〔x, y, w〕S SD. 〔y, z, w〕 ?S, 〔x, y, w〕 ?S二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9. 〔5分〕不等式x2+x —2<0的解集为.10. 〔5分〕假设曲线y=kx+lnx在点〔1, k〕处的切线平行于x轴,那么k=.11. .〔5分〕执行如下图的程序框图,假设输入n的值为4,那么输出s的值为.12. 〔5分〕在等差数列{a n}中,33+88=10,那么3a5+a7=.K+4V>413. 〔5 分〕给定区域D: r+y<4 .令点集T={〔x°, Vo〕 CD|xo, yo^Z, 〔x0,Ly°〕是z=x+y在D上取得最大值或最小值的点},那么T中的点共确定条不同的直线.14. 〔5分〕〔坐标系与参数方程选做题〕曲线C的参数方程为〔t为参数〕,C在点〔1,1〕处的切线为I,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,那么I的极坐标方程为. 15. 如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD过C作圆O 的切线交AD于E.假设AB=6, ED=2,那么BC=.三、解做题:本大题共6小题,总分值80分.解答须写出文字说明、证实过程和演算步骤.16. 〔12分〕函数f 〔x〕 =V2cos 〔x-—〕, xCR.12〔I〕求f 〔—工〕的值;6〔H〕假设cosB2,筱〔",2兀〕,求f 〔2什工〕. 5 2 317. 〔12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18. (14分)如图1,在等腰直角三角形ABC中,/A=90°, BC=6 D, E分别是AC, AB上的点,CD二BE二加,O为BC的中点.将△ ADE沿DE折起,得到如图2 所示的四棱椎A'-BCDE其中A O<.(1)证实:A工平面BCDE(2)求二面角A'-CD- B的平面角的余弦值.2 S19. (14分)设数列{a n}的前n项和为3b a〔二1,二1二日三门2力4,n_ * € N .(1)求a2的求;(2)求数列{an}的通项公式;(3)证实:对一切正整数n,有!小+..・」-<工. a l a2 a n 420. (14分)抛物线C的顶点为原点,其焦点F (0, c) (c>0)到直线l: x-y-2=0的距离为色巨,设P为直线l上的点,过点P作抛物线C的两条切线PA, PB,其中A, B为切点.(1)求抛物线C的方程;(2)当点P (xo, yo)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|?|BF|的最小值.21. (14 分)设函数f (x) = (x- 1) e x- kx2 (kC R).(1)当k=1时,求函数f (x)的单调区问;(2)当1]时,求函数f (x)在[0, k]上的最大值M.叁2021年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. (5分)设集合M={x| x2+2x=0,x€ R} , N={x| x2—2x=0, xC R},贝U MUN=(A. {0}B. {0, 2}C. {-2, 0}D. {-2, 0, 2}【分析】根据题意,分析可得,M={0, -2}, N={0, 2},进而求其并集可得答案.【解答】解:分析可得,M 为方程x2+2x=0 的解集,贝U M={x| x2+2x=C}={0, — 2},N 为方程x2— 2x=0 的解集,贝U N={x|x2-2x=0}={0, 2},故集合M UN=[0, - 2, 2},应选:D.【点评】此题考查集合的并集运算,首先分析集合的元素,可得集合的意义,再求集合的并集.2. 〔5分〕定义域为R的四个函数y=x3, y=2x, y=x2+1, y=2sinx中,奇函数的个数是〔〕A. 4B. 3C. 2D. 1【分析】根据函数奇偶性的定义及图象特征逐一盘点即可.【解答】解:y=x3的定义域为R,关于原点对称,且〔-x〕3=- x3,所以函数y=x3 为奇函数;y=2x的图象过点〔0, 1〕,既不关于原点对称,也不关于y轴对称,为非奇非偶函数;y=x2+1的图象过点〔0, 1〕关于y轴对称,为偶函数;y=2sinx的定义域为R,关于原点对称,且2sin 〔 - x〕 =-2sinx,所以y=2sinx为奇函数;所以奇函数的个数为2,应选:C.【点评】此题考查函数奇偶性的判断,属根底题,定义是解决该类题目的根本方法,要熟练掌握.3. 〔5分〕假设复数z满足iz=2+4i,那么在复平面内,z对应的点的坐标是〔〕A. 〔2, 4〕B. 〔2, -4〕C. 〔4, -2〕D. 〔4, 2〕【分析】由题意可得z2彗,再利用两个复数代数形式的乘除法法那么化为412i,从而求得z对应的点的坐标.【解答】解:复数z满足iz=2+4i,贝U有z=2+产」2+4i〕i=4 — 2i,1 -1故在复平面内,z对应的点的坐标是〔4, -2〕, 应选:C.【点评】此题主要考查两个复数代数形式的乘除法,虚数单位i的幕运算性质, 复数与复平面内对应点之间的关系,属于根底题.4. 〔5分〕离散型随机变量X的分布列为那么X的数学期望E 〔X〕=〔〕A —B. 2 C. D. 3 2 2【分析】利用数学期望的计算公式即可得出.【解答】解:由数学期望的计算公式即可得出:E〔X〕 =〞+2X三+3」巨.5 10 10 2应选:A.【点评】熟练掌握数学期望的计算公式是解题的关键.5. 〔5分〕某四棱台的三视图如下图,那么该四棱台的体积是〔〕A. 4 B = C D. 6 33【分析】由题意直接利用三视图的数据求解棱台的体积即可.【解答】解:几何体是四棱台,下底面是边长为2的正方形,上底面是边长为1 的正方形,棱台的高为2, 并且棱台的两个侧面与底面垂直,四楼台的体积为V=L X〔22+ 1 3+722X I2〕X2=^-- ■J'J应选:B.【点评】此题考查三视图与几何体的关系, 棱台体积公式的应用,考查计算水平与空间想象水平.6. 〔5分〕设m, n是两条不同的直线,% B是两个不同的平面,以下命题中正确的是〔〕A.假设a± & m? a, n? B,那么m±nB.假设all 0, m? a, n? & 那么m // nC.假设m±n, m? a, n? 3 那么a± pD.假设m,a, m // n, n // & 那么a± 0 【分析】由a± p, m? a, n? B,可才t得m,n, m // n,或m, n异面;由all 0, m? & n?就可得m // n,或m, n异面;由m,n, m? a, n? 0,可得a与0 可能相交或平行;由m± a, m // n,那么n,a,再由n // B可得a± 0.【解答】解:选项A,假设n & m? % n? 3那么可能m±n, m // n,或m, n 异面,故A错误;选项B,假设all & m? a, n? B,那么m // n,或m, n异面,故B错误;选项C,假设m,n, m? a, n? 0,那么a与B可能相交,也可能平行,故C错误;选项D,假设m, a, m // n,那么n, a,再由n II 0可得「0,故D正确.应选:D.【点评】此题考查命题真假的判断与应用,涉及空间中直线与平面的位置关系, 属根底题.7. (5分)中央在原点的双曲线C的右焦点为F (3, 0),离心率等于,,那么C的方程是( )A / IB /C ,「D ’A「- - B ——C—— D —— -【分析】设出双曲线方程,利用双曲线的右焦点为 F (3, 0),离心率为1,建2立方程组,可求双曲线的几何量,从而可得双曲线的方程.22【解答】解:设双曲线方程为三二7二1 (a>0, b>0),那么 a b.•.双曲线C的右焦点为F (3, 0),离心率等于,,上1 r c-3* c c , c=3, a=2, • . b2=c2 - a2=5一心2 2「•双曲线方程为,誉:1. 4 5应选:B.【点评】此题考查双曲线的方程与几何性质,考查学生的计算水平,属于根底题.8. (5 分)设整数n>4,集合X=[1, 2, 3,…,n}.令集合S={ (x, y, z) | x, y, z€ X,且三条件x< y<z, y<z<x, z<x< y 恰有一个成立}.假设(x, y, z) 和(z, w, x)都在S中,那么以下选项正确的选项是( )A. (y, z, w) S S, (x, y, w) ?SB. (y, z, w) S S, (x, y, w) S SC. (y, z, w) ?S, (x, y, w) € SD. (y, z, w) ?S, (x, y, w) ?S【分析】特殊值排除法,取x=2, y=3, z=4, w=1,可排除错误选项,即得答案.【解答】解:方法一:特殊值排除法, 取x=2, y=3, z=4, w=1,显然满足(x, y, z)和(z, w, x)都在S中,此时(y, z, w) = (3, 4, 1) C S, (x, y, w) = (2, 3, 1) C S,故A、G D 均错误;只有B成立,应选B.直接法:根据题意知,只要y<z<w, z<w<y, w<y<z 中或x<y<w, y<w<x, w<x <y中恰有一个成立那么可判断〔y, z, w〕€ S, 〔x, y, w〕€ S.v(x, y, z) € S, (z, w, x) C S,x<y<z•・①,y<z<x••②,z<x<y••③三个式子中恰有一个成立;z<w<x…④,w<x<z••⑤,x<z<w••⑥三个式子中恰有一个成立.配对后有四种情况成立,第一种:①⑤成立,止匕时w <x<y<z,于是〔y, z, w〕€ S, 〔x, y, w〕C S; 第二种:①⑥成立,此时x<y<z<w,于是(y, z, w) e S, (x, y, w) e S;第三种:②④成立,此时y<z< w<x,于是(y, z, w) e S, (x, y, w) e S;第四种:③④成立,此时z<w<x<y, 于是(y, z, w) S S, (x, y, w) S S.综合上述四种情况,可得〔y, z, w〕 C S, 〔x, y, w〕€ S.应选:B.【点评】此题考查简单的合情推理,特殊值验证法是解决问题的关键,属根底题.二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9. 〔5分〕不等式x2+x —2<0的解I集为〔一2, 1〕.【分析】先求相应二次方程x2+x-2=0的两根,根据二次函数y=x2+x- 2的图象即可写出不等式的解集.【解答】解:方程x2+x- 2=0的两根为-2, 1, 且函数y=/+x-2的图象开口向上,所以不等式x2+x- 2<0的解集为〔-2, 1〕.故答案为:〔-2, 1〕.【点评】此题考查一元二次不等式的解法,属根底题,深刻理解三个二次〞间的关系是解决该类题目的关键,解二次不等式的根本步骤是:求二次方程的根;作出草图;据图象写出解集.10. 〔5分〕假设曲线y=kx+lnx在点〔1, k〕处的切线平行于x轴,那么k= - 1 .【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k 的化【解答】解:由题意得,y'踮, X•••在点〔1, k〕处的切线平行于x轴,. ・k+1=0,彳4 k= - 1,故答案为:-1.【点评】此题考查了函数导数的几何意义应用,难度不大.11. 〔5分〕执行如下图的程序框图,假设输入n的值为4,那么输出s的值为7 .【分析】由中的程序框图及中输入4,可得:进入循环的条件为i04,即i=1, 2, 3, 4.模拟程序的运行结果,即可得到输出的S值.【解答】解:当i=1时,S=1+1 - 1=1;当i=2 时,S=#2-1=2;当i=3 时,S=?3—1=4;当i=4 时,S=4M—1=7;当i=5时,退出循环,输出S=7;故答案为:7.【点评】此题考查的知识点是程序框图, 在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比拟多时,要用表格法对数据进行治理.12. 〔5分〕在等差数列{a n}中,33+88=10,那么3a5+a7= 20 .【分析】根据等差数列性质可得:3a5+a7=2 〔a5+a6〕=2 〔央+出〕.【解答】解:由等差数列的性质得:3a5+a7=2a5+ 〔a s+a/〕=2a5+ 〔2%〕 =2 〔a5+%〕 =2 〔a3+%〕 =20,故答案为:20.【点评】此题考查等差数列的性质及其应用, 属根底题,准确理解有关性质是解决问题的根本.工+4V>413. 〔5 分〕给定区域 D: r+y<4 .令点集 T={ 〔xo, yo 〕 CD|xo, yoCZ, 〔xo, yo 〕是z=x+y 在D 上取得最大值或最小值的点},那么T 中的点共确定 6 条 不同的直线.【分析】先根据所给的可行域,利用几何意义求最值, z=x+y 表示直线在y 轴上 的截距,只需求出可行域直线在y 轴上的截距最值即可,从而得出点集T 中元素 的个数,即可得出正确答案.【解答】解:画出不等式表示的平面区域,如图.作出目标函数对应的直线,由于直线 z=x+y 与直线x+y=4平行,故直线z=x+y 过 直线 x+y=4 上的整数点:〔4,.〕,〔3, 1〕, 〔2, 2〕, 〔1, 3〕或〔.,4〕时,直线的纵截距最大,z 最大;当直线过〔o, 1〕时,直线的纵截距最小,z 最小,从而点集T={ 〔4, o 〕, 〔3, 1〕, 〔2, 2〕,〔1, 3〕,〔o,4〕,〔o,1〕},经过这六个点的直线一共有6条.即T 中的点共确定6条不同的直线. 故答案为:6.【点评】此题主要考查了简单的线性规划, 以及利用几何意义求最值,属于根底 题.14. 〔5分〕〔坐标系与参数方程选做题〕以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,那么 I 的极坐标方程为 P cos+% sin _02=o 〔埴 p sin 〔或 P cos 〔 9〕一回也得总分值〕 .【分析】先求出曲线C 的普通方程,再利用直线与圆相切求出切线的方程, 最后 利用x= p cos,8 y= p sin 他换求得其极坐标方程即可.「•曲线C 是以〔o, o 〕为圆心,半径等于 血的圆. C 在点〔1,1〕处的切线I 的方程为x+y=2, 令 x= p cos,8y= p sin,0曲线C 的参数方程为{x=V2costy=V2sint〔t 为参数〕,C 在点〔1,1〕处的切线为I,【解答】解:由「一 [y=V2sint〔t 为参数〕,两式平■方后相加得x 2+y 2=2,…〔4分〕代入x+y=2 ,并整理得p cos+〕p sin & 2=0 ,即p 4^;〕一日或P cos〔B那么l的极坐标方程为p cos+Op sin & 2=0 〔填p sin〔 84或P CCIB〔日二$〕=^巧也得总分值〕•…〔10分〕故答案为:p cos+Op sin 4〕2=0 〔填P n 〔.H或p 8 式 9 —.也得总分值〕.【点评】此题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x= p cos,8y= p sin.015. 如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD过C作圆O 的切线交AD 于E.假设AB=6, ED=2, WJ BC=__^_.【分析】利用AB是圆O的直径,可得/ ACB=90. IP AC±BD,又BC=CD 可得△ ABD是等腰三角形,可得/ D=/B.再利用弦切角定理可得/ ACE=/ B, 得至ij/AECWACB=90,进而得到^ CED^AACB,利用相似三角形的性质即可得出.【解答】解:.「AB是圆O的直径,「./ ACB=90.即AC BD.又 = BC=CD AB=AD,「. / D=/ ABC, / EAC=Z BAC•.CE与..相切于点C, 「./ACE之ABC / AECW ACB=90.・ .△CED^ AACB.. •里里,又CD=BCAB BCBC=V AB*ED =76X2-2^3.【点评】此题综合考查了圆的性质、弦切角定理、等腰三角形的性质、相似三角形的判定与性质等根底知识,需要较强的推理水平.三、解做题:本大题共6小题,总分值80分.解答须写出文字说明、证实过程和演算步骤.16. 〔12 分〕函数f 〔x〕 ='/^cos 〔x-y1-〕, xCR. JT〔I〕求f 〔-三〕的值;6〔n〕假设cosel,长〔JLL, 2兀〕,求f〔2肝2L〕.5 2 3【分析】〔1〕把x=-二直接代入函数解析式求解.6〔2〕先由同角三角函数的根本关系求出sin 8的值以及sin2.然后将x=20二代3入函数解析式,并利用两角和与差公式求得结果.【解答】解:〔1〕f ^〕=A/2COS〔^^^T〕=V2COS〔--^〕=V2o Q iz q 一上〔2〕由于8号©=|, e e 等,2n〕所以, 「[一一・:所以$in2 e =2sin8 cos 9 =2 乂〔"〕"二,cos2 9 =cos2 9 -si n20 二〔汨〕一〔4〕2 = 5 5 25所以f〔2 = +_Z-〕=V2C0S^2=+-z_^r;r〕=V2C0S〔2 =+—j-〕:=cos2日-sin2 ==U 0 JL T7 z24 s1725 ।25’ 25【点评】此题主要考查了特殊角的三角函数值的求解, 考查了和差角公式的运用, 属于知识的简单综合,要注意角的范围.17. 〔12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?〔3〕从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【分析】〔1〕茎叶图中共同的数字是数字的十位,这是解决此题的突破口,根据所给的茎叶图数据,代入平均数公式求出结果;〔2〕先由〔1〕求得的平均数,再利用比例关系即可推断该车间12名工人中有几名优秀工人的人数;〔3〕设从该车间12名工人中,任取2人,恰有1名优秀工人〞为事件A,结合组合数利用概率的计算公式即可求解事件A的概率.【解答】解:(1)样本均值为升20+21+25+30=22;6(2)抽取的6名工人中有2名为优秀工人,所以12名工人中有4名优秀工人;(3)设从该车间12名工人中,任取2人,恰有1名优秀工人〞为事件A,clcJ 1 c所以P(A〞一V二会, v12即恰有1名优秀工人的概率为—.33【点评】此题主要考查茎叶图的应用,古典概型及其概率计算公式,属于容易题.对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,考查最根本的知识点.18. (14分)如图1,在等腰直角三角形ABC中,/A=90°, BC=6 D, E分别是AC, AB上的点,CD=BE=V2, O为BC的中点.将△ ADE沿DE折起,得到如图2 所示的四棱椎A'-BCDE其中A O=?(1)证实:A工平面BCDE(2)求二面角A'-CD- B的平面角的余弦值.【分析】(1)连接OD, OE.在等腰直角三角形ABC中,/B=/ C=45, CD二BE二班, AD=AE乏/!,CO=BO=3分另1」在4 COD与△ OBE中,利用余弦定理可得OD, OE.禾用勾股定理的逆定理可证实/ A OD=A' OE=90再利用线面垂直的判定定理即可证实;(2)方法一:过点O作OF, CD的延长线于F,连接A' F利用(1)可知:A' 0 ,平面BCDE根据三垂线定理得A LCD,所以/ A' FO;二面角A'-CD- B的平面角.在直角△ OCF中,求出OF即可;方法二:取DE中点H,那么OH, OB.以O为坐标原点,OH、OB、OA分别为x、V、z轴建立空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(1)证实:连接OD, OE.由于在等腰直角三角形ABC中,/ B=/ C=45, CD二BE二加,CO=BO=3在ACOD中,加二{C02+C D々CO・CDs s45;二立,同理得比=^・由于AD=A' D=A‘ E=AE=2/2, A’ 0二®所以 A 2+OD2=A 2), A 2+Og=A,孑所以/A' OD=A' OE=90所以A' UOD, A吐OE, ODA OE=O.所以A吐平面BCDE(2)方法一:过点O作OF,CD的延长线于F,连接A' F由于A吐平面BCDE根据三垂线定理,有A 1CD.所以/A' F的二面角A'-CD- B的平面角.在Rt^COF中,0F=C0S E5'=^.在A' 0中,卜’ F 二W .,口/二^^ 所以一「」卜,•A r b所以二面角A' - CD- B 的平面角的余弦值为 堡.5方法二:取DE 中点H,那么OH±OB.以O 为坐标原点,OH 、OB OA 分别为x 、v 、z 轴建立空间直角坐标系. 那么 O (0, 0, 0), A' (0, 0,加),C (0, - 3, 0), D (1, - 2, 0) 0A 7* = (0, 0,无)是平面BCDE 勺一个法向量.设平面A ClDj 法向量为n= (x, y, z)前六二(0, 3,五),而二(L 1, 0). 二一、/n ・CA' =3y+V^w=0 人 皿_ rz所以? 一,令 x=1,那么 y=—1,[n*CD=x+y=O所以4(1,-1,行)是平面A' C 的一个法向量 设二面角A'-CD- B 的平面角为8,且8 6(0, g)|3F>|n|一中立-5所以二面角A'-CD- B 的平面角的余弦值为 亟5【点评】此题综合考查了等腰直角三角形的性质、 余弦定理、线面垂直的判定与 性质定理、三垂线定哩、二面角、通过建立空间直角坐标系利用法向量的夹角求 面角等根底知识与方法,需要较强的空间想象水平、推理水平和计算水平. 19. (14分)设数列{a n }的前n 项和为3b a i =1,(2)利用 a n =&-S n-1 (n >2)即可得到 na n +1= (n+1) a n +n (n+1),可化为 缪T 〞,缪T,再利用等差数列的通项公式即可得出;(3)利用(2),通过放缩法——< % n【解答】解:(1)当 n=1 时,—p-=2a 1=a £^--l^y,解得 比=4 (1 2)2 %54n 3-n 2 4口① 当 n >2 时,2 SnT 二 ST) a n -7r(n-l ) 3-(n-l ) 24(nT)② J o ①-②得「. :., 口 : । n , ,整理得 na n +1= (n+1) a n +n (n+1),即 %? &L+], n+1 n . -r a9 a ।当 n=1 时,年一^2-1二1 w JL所以数列{曰}是以1为首项,1为公差的等差数列 所以上"二口,即a =n 2 n仇所以数列{a n }的通项公式为a n =n 2, n € N *、一 「L (n>2)即可证实.(n-1) n n-1 n(1) 求a 2的值;(2) (3)求数列{a n }的通项公式; 证实:对一切正整【分析】(1)利用a 1=1,有 _p_l_+... a l a2 a n 42Sn_ 1 2 ____________ 2--a ^l —^行,nCN *.令n=1即可求出;an+l a n n+1 n当n=1, 2时,也成立.【点评】熟练掌握等差数列的定义及通项公式、通项与前 n 项和的关系a n =S- Sn-i (n>2)>裂项求和及其放缩法等是解题的关键.20. (14分)抛物线C 的顶点为原点,其焦点F (0, c) (c>0)到直线l: x -y-2=0的距离为型2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线 2 PA, PB,其中A, B 为切点. (1)求抛物线C 的方程;(2)当点P (x0, y0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|?|BF|的最小值.【分析】(1)利用焦点到直线l: x- y-2=0的距离建立关于变量c 的方程,即可 解得c,从而得出抛物线C 的方程; (2)先设A (町,[J),//),由(1)得到抛物线C 的方程求导数,得到切线PA PB 的斜率,最后利用直线 AB 的斜率的不同表示形式,即可得出 直线AB 的方程;(3)根据抛物线的定义,有|AF|二1J + 1, |即|二|谥+1,从而表示出|AF|?|BF , 再由(2)得X 1+X 2=2x 0, X 1X 2=4y 0, X 0=y 0+2,将它表示成关于y 0的二次函数的形 式,从而即可求出|AF|?| BF 的最小值.【解答】解:(1)焦点F (0, c) (c>0)到直线所以抛物线C 的方程为x 2=4y.(2)设[. . . ■ ■ ■ :「:, 由(1)得抛物线C 的方程为悬所以切线PA, PB 的斜率分别为 工 工2勺’2叼 所以PA :或]〔犬—犬]〕①PB :工:斗父2〔¥一;12〕②联立①②可得点P 的坐标为〔31%, 七2〕,即三1,二二!, : 2 4270 41 J(3)由于--J % n 2 (nT)门 n-1 n(n>2)l : x - y - 2=0的距离I -c-21 c+2 3^2解得c=1, 所二丁 n 4 n 4又由于切线PA的斜率为其孙=.』",整理得为三孙乂04岩,L1 X Q-X I U 2 1 U 4 11 2_1 2直线AB的斜率kJ町国际二止2二现町r 2 4 2所以直线AB的方程为y—■工工o 〔上一£ 1〕,整理得产/乂/白盯式口w J,即尸1,町X-V口,由于点P 〔XQ, yo〕为直线l: x- y- 2=0上的点,所以xo - yo- 2=0,即yo=x0—2, 所以直线AB的方程为XQX - 2y - 2yo=O.〔3〕根据抛物线的定义,有|阿|1君+1,|BF|[g+1,所以k:卜…•」:’-「:। , 了〜, - J :'[「- = 当U+/〔町+ 〞〕2-2'区21+1,由〔2〕得X I+X2=2XQ, x1X2=4yo, Xo=yo+2,所以I..'' I' ' ' .''' । ,' :। ,:" । :,■:■.■|l・,> :। : ,:=2yg+2y0+5=2〔y D+y〕2+1-.所以当V.二q时,|AF|?|BF的最小值为u 4【点评】此题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算水平,有一定的综合性.21. 〔14 分〕设函数f 〔X〕 = 〔X- 1〕 e x - kx2〔kC R〕.〔1〕当k=1时,求函数f 〔X〕的单调区问;〔2〕当k€ e,1]时,求函数f〔X〕在[0, k]上的最大值M.【分析】(1)利用导数的运算法那么即可得出f'(x),令f'(x) =0,即可得出实数根,通过列表即可得出其单调区问;(2)利用导数的运算法那么求出f'(x),令f'(x) =0得出极值点,列出表格得出单调区问,比拟区间端点与极值即可得到最大值.【解答】解:(1)当k=1 时,f (x) = (x—1) e x-x2,f (x) =e x + (x- 1) e x - 2x=x (e x -2) 令 f (x) =0,解得 x 1二0, x 2=ln2>0 所以f (x), f (x)随x 的变化情况如下表:所以函数f (x)的单调增区间为(-8, 0)和(ln2, +8),单调减区间为(0,ln2)(2) f (x) = (x-1) e x - kx 2, x€[0, k] ,(y, U.f (x) =x3- 2kx=x (e x — 2k), f (x) =0,解得 x1二0, x?=ln (2k) 令小(k) =k- ln (2k),我 心,口,0’2k k所以小(k)在 6,1]上是减函数,..・小(1) &小(k) <1 -ln2<小 (k)(工<k.2 即 0<ln (2k) < k所以f (x), f (x)随x 的变化情况如下表:f (0) =- 1, f (k) -f (0) =(k- 1) e k -k 3-f (0) =(k- 1) e k -k 3+1 =(k-1) e k - (k 3-1)=(k —1) e k — (k — 1) (k 2+k+1) =(k- 1) [e k - (k 2+k+1)] k£ 弓,1], k-10O.对任意的(L 1], y=e k 的图象包在y=k 2+k+1下方,所以e k - (k 2+k+1) < 0 2 所以 f (k) -f (0) >0,即 f (k) >f (0)所以函数f (x)在[0, k]上的最大值M=f (k) = (k-1) e k -k 3.【点评】熟练掌握导数的运算法那么、利用导数求函数的单调性、极值与最值得方法是解题的关键.。
2019年高考理科数学(全国1卷)答案详解(附试卷)
P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
广东省2019年高考数学试卷(理科)以及答案解析
广东省2019年高考数学试卷(理科)以及答案解析绝密★启用前广东省2019年高考理科数学试卷注意事项:1.考生答卷前,必须在答题卡上填写姓名和准考证号。
2.回答选择题时,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M∩N=()A。
{x|-4<x<3}B。
{x|-4<x<-2}C。
{x|-2<x<2}D。
{x|2<x<3}2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A。
(x+1)^2+y^2=1B。
(x-1)^2+y^2=1C。
x^2+(y-1)^2=1D。
x^2+(y+1)^2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A。
a<b<cB。
a<c<bC。
c<a<bD。
b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为0.618,称为黄金分割比例。
某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A。
165cmB。
175cmC。
185cmD。
190cm5.函数f(x)=在[-π,π]的图像大致为()A。
B。
C。
D。
6.我国古代典籍《周易》用“卦”描述万物的变化。
每一重卦由从下到上排列的6个爻组成,爻分为阳爻“ ”和阴爻“ ”,如图为一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A。
B。
C。
D。
7.已知非零向量,满足||=2||,且(-)⊥,则与的夹角为()A。
2019徐汇区年第一学期高三数学区期末统测试卷(理科)
2019年第一学期徐汇区高三年级数学学科学习能力诊断卷 (理科试卷)(考试时间:120分钟,满分150分)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、方程4220x x+-=的解是 。
2、设集合{}|0,|12x A x B x x x ⎧⎫=>=<⎨⎬-⎩⎭,则A B ⋃= 。
3、已知圆22440x x y --+=的圆心是点P ,则点P 到直线10x y --=的距离是 。
4、若3sin 5θ=-,则行列式cos sin sin cos θθθθ= 。
5、已知向量(2,3),(4,7)a b ==-,则向量b 在向量a 的方向上的投影为 。
6、已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是 。
7、若函数()()(2)f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析式()f x = 。
8、一颗骰子投两次, 记第一次得到的数值为a , 第二次得到的数值为b , 将它们作为关于x y 、的二元一次方程组322ax by x y +=⎧⎨+=⎩,的系数, 则方程组有唯一解的概率为 。
(用数字作答)9、已知函数()y f x =存在反函数1()y fx -=,若函数(1)y f x =+的图象经过点(3,1),则函数1()y f x -=的图象必经过点 。
10、若函数)1lg()(2--=ax x x f 在区间),1(+∞上是增函数,则a 的取值范围是 。
11、若2010220100122010(13)()x a a x a x a x x R -=++++∈,则20101222010333a a a +++= 。
12、已知x 是1,2,3,x ,5,6,7这七个数据的中位数,且1,3,2,x y -这四个数据的平均数为1,则1y x-的最小值为 。
2019年高三11月调研测试(半期)理数试题及参考答案
log2
an ,数列{bn}的前 n
项和为 Sn ,求
S1
S2 2
S3 3
Sn n
的最大值及取最大值时 n
的值.
11 月调研测试卷(理科数学)第 3 页 共 4 页
20.(12 分)
如图,半圆 O 的直径 AB 2 ,点 C,P 均在半圆周上运动,点 P 位于 C,B 两点之间,且 CAP . 6
b2
4
b2
b
,由1
b
4
可得
b2
b
(0,12)
.
2
第 11 题:由 f (x) f (x 2) 知 f (x) 周期为 2 ,∵ f (x) f (| x |) ,∴ f (x) 为偶函数,当 x [1,1] 时,
f
(x)
2x, 2 x,
0 ≤ x ≤1, 即得 f (x) 一个周期内的图象, g(x) 的零点个数即为 f (x) 与 1≤ x ≤0.
11 月调研测试卷(理科数学)第 4 页 共 4 页
2020 年普通高等学校招生全国统一考试
11 月调研测试卷 理科数学
参考答案
一、选择题
1~6 BCDBDA
7~12 BACDBC
第 7 题: sin Acos C 1 sin C sin B sin(A C) , 2
∴ sin Acos C 1 sin C sin Acos C cos Asin C ,解得 cos A 1 ,即 A ,
2020 年普通高等学校招生全国统一考试 11 月调研测试卷 理科数学
理科数学测试卷共 4 页。满分 150 分。考试时间 120 分钟。
注意事项: 1. 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证 号填写在答题卡上。 2. 回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮 擦擦干净后,再选涂其它答案标号框。写在本试卷上无效。 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
广东省广州市2019届高三年级第一学期调研考试(一模)理科数学试题(解析版)
2019届广州市高三年级调研测试理科数学本试卷共5页,23小题,满分150分,考试用时120分钟 一、选择题:本题共12小题,每小题5分,共60分。
1.设集合M=2{|02},{|230},x x N x x x ?=--<则集合M N Ç=( )A. {|02}x x ?B. {|03}x x ?C. {|12}x x -<<D. {|01}x x ?【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合N ,再由交集的定义即可得结果. 【详解】因为集合{}|02M x x=?,{}{}2|230|13N x x x x x =--<=-<<,{}|02M Nx x \??,故选A.【点睛】本题考查一元二次不等式的解法和集合的交集问题,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 2.若复数(1a iz i i+=-是虚数单位)为纯虚数,则实数a 的值为( ) A. -2 B. -1 C. 1 D. 2 【答案】C 【解析】 【分析】利用复数代数形式的除法运箅化简复数1a iz i+=-,再根据实部为0且虚部不为0求解即可. 【详解】()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数,1010a a ì+?ï\í-=ïî,即1a =,故选C.主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( ). A. 1 B. 53C. 2D. 3 【答案】C 【解析】试题分析:因为322123124S a a =??,所以32642d a a =-=-=,选C.考点:等差数列性质4.若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线的方程为( ) A. 230x y +-= B. 210x y -+= C. 230x y +-= D. 210x y --= 【答案】D 【解析】圆心C(3,0),k PC =12-,∵点P 是弦MN 的中点,∴PC ⊥MN , ∴k MN k PC =-1,∴k MN =2,∴弦MN 所在直线方程为y -1=2(x -1), 即2x -y -1=0.考点:圆的弦所在的直线方程.5.已知实数ln222,22ln 2,(ln 2)a b c ==+=,则,,a b c 的大小关系是 A. c b a << B. c a b << C. b a c << D. a c b << 【答案】B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果. 【详解】由对数函数的性质0ln21<<, 所以22ln 22,+>所以由指数函数的单调性可得,200ln 2112222,0ln 2ln 21=<<=<<=,c a b \<<,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(本题三个数分别在三个区间()()()0,1,1,2,2,+? );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 6.下列命题中,真命题的是( ) A. 00,0x x R e $危B. 2,2xx R x "?C. 0a b +=的充要条件是1ab=- D. 若,x y R Î,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】根据指数函数的值域判断A ;根据特殊值判断B C 、;根据逆否命题与原命题的等价性判断D . 【详解】根据指数函数的性质可得x 0e >,故A 错误;2x =时,22x x >不成立,故B 错误;当0a b ==时,1ab=-不成立,故C 错误; 因为“2x y +>,则,x y 中至少有一个大于1”的逆否命题 “,x y 都小于等于1,则2x y +?”正确,所以“2x y +>,则,x y 中至少有一个大于1”正确,故选D.【点睛】本题主要考查指数函数的值域、特称命题与全称命题的定义,以及原命题与逆否命题的等价性,意在考查综合应用所学知识解答问题的能力,属于中档题. 7.由()y f x =的图象向左平移3p个单位,再把图象上所有点横坐标伸长到原来的2倍得到sin 36y x p 骣琪=-琪桫的图象,则()f x =( ) A. 3sin 26x p 骣琪+琪桫 B. sin 66x p 骣琪-琪桫 C. 3sin 23x p骣琪+琪桫D. sin 63x p 骣琪+琪桫 【答案】B 【解析】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,再把所得图象向右平移3p 个单位,即可得到()f x 的图象,根据三角函数的图象变换规律可得()f x 的解析式.【详解】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,可得函数66y sin x p骣琪=-琪桫的图象, 再把函数66y sin x p骣琪=-琪桫的图象向右平移3p 个单位,即可得到()66366f x sin x sin x p pp 轾骣骣犏琪琪=--=-琪琪犏桫桫臌的图象, 所以()f x = 66sin x p骣琪-琪桫,故选B. 【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,属于中档题. 能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8. 已知甲袋中有1个黄球和2个红球,乙袋中有2个黄球和2个红球,现随机地从甲袋中取出两个球放入乙袋中,然后从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A.13 B. 12 C. 59 D. 29【答案】C 【解析】试题分析:甲取出的求有两种情况:(1)从甲取出1黄球1红球,概率为:132136213C C C ?,(2)从甲取出2红球,概率为:142136129C C C ?,故概率为125399+=.考点:1、古典概型;2、分类加法、分步乘法计数原理.9.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1 B. 31 C. 51 D. 22【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p骣琪琪桫,双曲线的焦点坐标为(),0c ,2p c \=,点A 是两曲线的一个交点,且AF x ^轴,将x c =代入双曲线方程得到2,b A c a骣琪琪桫, 将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+, 即4224440a a b b +-=,解得222ba=+ 22222222b c a a a -\==+)22232221c a=+=解得21ce a==,故选A . 【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.10.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( ) A. 3(1)2n n -++? B. 3(1)2n n ++? C. 1(1)2n n ++? D. 1(1)2n n +-? 【答案】D 【解析】当1q = 时,不成立,当1q ¹ 时,()3161171{1a q q a q -=-- ,两式相除得3631171163q q q -==-+ ,解得:2q = ,11a = 即1112n n n a a q --== ,12n n n a n -?? ,2112232......2n n s n -=+??+? ,2n s = ()211222......122n n n n -??+-?? ,两式相减得到:21122......22n n n s n --=++++-?()12212112n nn n n -=-?-?- ,所以()112nn s n =+-? ,故选D.11.如图为一个多面体的三视图,则该多面体的体积为( )A.203 B. 7 C. 223 D. 233【答案】C 【解析】该几何体为如图所示的几何体11EFBC ABCD -,是从棱长为2的正方体中截取去两个三棱锥后的剩余部分,其体积111111131111211212273232A B C D ABCD A A EF D D BC V V V V ---=--=-创创-创创=,故选C. 12.已知过点(,0)A a 作曲线:x C y x e =?的切线有且仅有两条,则实数a 的取值范围是( ) A. ()(--4)0+ト?,,B. ()0+¥, C. ()(--1)1+ト?,, D. ()--1¥, 【答案】A 【解析】 【分析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为20x a =,整理得到方程2000x ax a --=有两个解即可,240a a D=+>解出不等式即可.【详解】设切点为()00,x x x e ,(1)x y x e =+¢,000(1)x x x y x e =\=+?¢,则切线方程为:()00000=1()x x y x e x e x x -+?,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+?, 2001x a x \=+,即方程2000x ax a --=有两个解,则有2400a a a D=+>?或4a <-. 故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为45°,且1,2a b ==,则a b -=__________ 【答案】1 【解析】 【分析】先利用平面向量的运算法则以及平面向量的数量积公式求出a b -平方的值,再开平方即可得结果. 【详解】因为向量,a b 的夹角为45°,1,2a b ==,()2222a b a b a b -=+-?222cos 45a b a b °=+-?21221212=+-创?,可得1a b -=,故答案为1.【点睛】本题主要考查平面向量的运算法则以及平面向量的数量积公式,属于简单题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a ba b q ?;二是向量的平方等于向量模的平方22a a =.14.已知423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+=__________. 【答案】1令1x =,得401234(23)a a a a a +=++++; 令1x =-,得401234(23)a a a a a -+=-+-+;两式相加得22024130123402413()()()()a a a a a a a a a a a a a a a ++-+=++++?+--444(2(23)(1)1=?=-=.点睛: “赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b +++?R 的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)n ax by a b +?R 的式子求其展开式各项系数之和,只需令1x y ==即可.15.已知实数,x y 满足203500x y x y x y ì-?ïï-+?ïí>ïï>ïî,则11()()42x y z =的最小值为__________.【答案】C 【解析】试题分析:不等式组20{350x y x y -?-+?表示的平面区域如下图所示,目标函数2111()()()422x y x y z +==,设2t x y =+,令20x y +=得到如上图中的虚线,向上平移20x y +=易知在点()1,2A 处取得最小值,min 4t =,所以目标函数4min 11()216z ==. 考点:线性规划.16.在四面体P ABC -中,1PA PB PC BC ====,则该四面体体积的最大值为________. 3由于平面PBC 是边长为1的正三角形,P ABC A PBC V V --= ,底面面积固定,要使体积最大,只需高最大,故当PA ^平面PBC 时体积最大,2133113V =创?.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答.17.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin B C A A B -=+. (1)求角C 的大小;(2)若A=6p,△ABC 的面积为43M 为BC 的中点,求AM. 【答案】(1) 2;3C p=(2) 27【解析】 【分析】(1)利用正弦定理,结合同角三角函数的关系化简已知的等式,得到三边的关系式,再利用余弦定理表示出根据cos C 的值,可求角C 的大小;(2)求得()6B AC A pp =-+==,ABC D为等腰三角形,由三角形面积公式可求出CB CM 、的值,再利用余弦定理可得出AM 的值. 【详解】(1)∵222cos cos sin sin sin B C A A B -=+∴()2221sin 1sin sin sin sin B C A A B ---=+() ∴222sin sin sin sin sin C B A A B -=+由正弦定理得:222c b a ab -=+即222a b c ab +-=-∴22211cos 222a b c C ab +-=-=-即∵C 为三角形的内角,∴23C p= (2)由(1)知23C p =,∴()6B AC A pp =-+== ∴△ABC 为等腰三角形,即CA=CB 又∵M 为CB 中点 ∴CM=BM 设CA=CB=2x 则CM=BM=x1sin 432CABSCA CB C =鬃=∴CA=4,CM=2由余弦定理得:222cos 27CA CM CM CA C +-鬃=.【点睛】本题主要考查正弦定理、余弦定理以及三角形的面积公式,属于中档题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 得分布列和数学期望.【答案】(1) 30.2;(2)分布列见解析, 400. 【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)X 的可能取值为:240, 300,360, 420, 480,根据直方图求出样本中一、二、三等品的频率分别为111,,236,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】(1)样本的质量指标平均值为0.0417.50.162.5??????30.2=. 根据样本质量指标平均值估计总体质量指标平均值为30.2 .(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为111,,236, 故从所有产品中随机抽一件,是一、二、三等品的概率分别为111,,236, 随机变量X 的取值为:240, 300,360, 420, 480,()()12111111240;3006636369P X P X C ==?==创=;()()112211115111360;420263318233P X C P X C ==创+?==创=, ()111480224P X ==?, 所以随机变量X 的分布列为:()115112403003604204804003691834E X \=?????.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19.如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A-CD-F 为60°,DE ∥CF ,CD ⊥DE ,AD=2,DE=DC=3,CF=6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B-EG-D 的余弦值为14. 【答案】(1)详见解析;(2)点G 满足32CG =. 【解析】 【分析】(1)先证明//BC 平面ADE ,//CF 平面ADE ,可得平面//BCF 平面ADE ,从而可得结果;(2)作AO DE ^于点O ,则AO ^平面CDEF ,以平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系,设()3,,0,15G t t-#,利用向量垂直数量积为零列方程组求得平面BEG 的法向量,结合面DEG 的一个法向量为()0,0,1n =,利用空间向量夹角余弦公式列方程解得12t =,从而可得结果.【详解】(1)因为ABCD 是矩形,所以BC ∥AD , 又因为BC 不包含于平面ADE , 所以BC ∥平面ADE ,因为DE ∥CF ,CF 不包含于平面ADE , 所以CF ∥平面ADE ,又因为BC ∩CF =C ,所以平面BCF ∥平面ADF , 而BF ⊂平面BCF ,所以BF ∥平面ADE .(2)∵CD ⊥AD ,CD ⊥DE∴∠ADE 为二面角A-CD-F 的平面角 ∴∠ADE=60° ∵CD ⊥面ADE\平面CDEF ^平面ADE ,作AO DE ^于点O ,则AO ^平面CDEF ,由2,3AD DE ==,得1,2DO EO ==,以O 为原点,平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴, 建立如图所示的空间直角坐标系O xyz -,则()()()()()3,3,1,0,0,1,0,0,2,0,3,5,0A C D E F --,()3OB OA AB OA DC =+=+=,设()3,,0,15G t t-#,则()()3,2,3,0,,3BE BG t =--=-,设平面BEG 的法向量为(),,m x y z =,则由00m BE m BG ì?ïí?ïî,得323030x y z ty z ì-+-=ïíï-=î,取233x ty z tì=-ïï=íïïî, 得平面BEG 的一个法向量为()23m t t =-, 又面DEG 的一个法向量为()0,0,1n =,23cos ,4413m n t m n m n t t ×\==-+,314t\=, 解得12t =或1322t =-(舍去),此时14CG CF =,得1342CG CF ==,即所求线段CF 上的点G 满足32CG =.【点睛】本题主要考查线面平行的判定定理、空间向量的应用,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20.已知椭圆C :22221(0,0)x y a b a b +=>>的离心率为12,点P 3(3,在C 上.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左右焦点,过2F 的直线l 与椭圆C 交于不同的两点A 、B ,求△1F AB 的内切圆的半径的最大值.【答案】(1) 22143x y += ;(2) 最大值为34.【解析】 【分析】 (1) 根据离心率为12,点33,骣琪琪在椭圆上,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b ,即可得结果;(2)可设直线l 的方程为1x m y =+,与椭圆方程联立,可得()2234690m ymy ++-=,结合韦达定理、弦长公式,利用三角形面积公式可得12121221121234F ABm S F F y y m D +=-=+,换元后利用导数可得,1F ABS D 的最大值为3,再结11442F AB S a r rD =?可得结果.【详解】(1)依题意有22222123314c a a b c a bì=ïïï=+íïï+=ïî,解得231a b c ì=ïï=íï=ïî故椭圆C 的方程为22143x y +=.(2)设()()1122,,,A x y B x y ,设1F AB D 的内切圆半径为r ,1F AB D 的周长为121248AF AF BF BF a +++==,11442F AB S a rr D \=?,根据题意知,直线l 的斜率不为零, 可设直线l 的方程为1x my =+,由221431x y x my ìï+=íï=+ïî,得()2234690m y my ++-=, ()()22636340,m m m R D=++>?,由韦达定理得12122269,3434m y y y y m m --+==++, ()12212121212112142F ABm S F F y y y y y y D +\=-+-=,令t ,则1t ³,12124313F AB t S t t tD \==++, 令()13f t t t =+,则当1t ³时,()()21'10,3f t f t t=->单调递增,()()141,33F AB f t f S D \??,即当1,0t m ==时,1F AB S D 的最大值为3,此时max 34r =,故当直线l 的方程为1x =时,1F AB D 内切圆半径的最大值为34.【点睛】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题. 用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 21.已知函数21()(2ln ),x f x a x x a R x-=-+?. (1)讨论()f x 的单调性;(2)若()f x 的有两个零点,求实数a 的取值范围.【答案】(1) 当a≤0,()f x 在(0,2)上单调递增,在(2,+∞)递减;当104a <<,()f x 在(0,2)和a +?)上单调递增,在(2,aaa=14,()f x 在(0,+∞)递增;当a >14,()f x 在(02,+a 2)递减;(2) ()1,081ln2a 骣琪?琪-桫.【解析】 【分析】(1)求出()'f x ,分四种情况讨论a 的范围,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,可证明()()00022200000111112ln 0f x a x x a x x x x x =-+-?-?<,()f x 有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,可证明,当14a =时与当0a >且14a ¹时,至多一个零点,综合讨论结果可得结论.【详解】(1)()f x 的定义域为()0,+?,()()()2332122'1x ax x f x a xx x --骣-琪=-+=琪桫, (i )当0a £时,210ax -<恒成立,()0,2x Î时,()()'0,f x f x >在()0,2上单调递增; ()2,x ??时,()()'0,f x f x <在()2,+?上单调递减.(ii )当0a >时,由()'0f x =得,1232,x x x a a===-(舍去), ①当12x x =,即14a =时,()0f x ³恒成立,()f x 在()0,+?上单调递增;②当12x x >,即14a >时,x a骣琪Î琪桫或()2,x ??,()'0f x >恒成立,()f x 在(),2,a骣琪+?琪桫上单调递增;2x 骣Î时,()'0f x <恒成立,()f x 在2a骣琪琪桫上单调递减. ③当12x x <,即104a <<时,x a骣琪??琪桫或()0,2x Î时,()'0f x >恒成立,()f x 在()0,2,a骣琪+?琪桫单调递增,x 骣琪Î琪桫时,()'0f x <恒成立,()f x 在a骣琪琪桫上单调递减. 综上,当0a £时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?;当14a =时,()f x 单调递增区间为()0,+?,无单调递减区间为;当14a >时,()f x 单调递增区间为(),2,a 骣琪+?琪桫,单调递减区间为2a骣琪琪桫. (2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,令()()1212ln ,f x x x f x x =-=,则()12'10f x x=->在()2,+?成立,故()12ln f x x x =-单调递增,()()1052ln5122ln51f x ?=+->,()()0002220000111112ln 0f x a x x a x x x x x =-+-?-?<, ()f x \有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,1088ln 2a \>>--,当0a =时,()21x f x x-=,只有一个零点,不符合题意;当14a =时,()f x 在()0,+?单调递增,至多只有一个零点,不符合题意;当0a >且14a ¹时,()f x 有两个极值,()()1222ln 20,2ln 4f a f a a a a a骣琪=-+>=-琪桫, 记()2ln g x x x x x =-,()()'1ln 1ln 2g x x x xx=++-+, 令()ln h x x x=+,则()3221121'22x h x x x x -=-+, 当14x >时,()()'0,'h x g x >在1,4骣琪+?琪桫单调递增;当104x <<时,()()'0,'h x g x <在10,4骣琪琪桫单调递减, 故()()1''=22ln 20,4g x g g x 骣琪>->琪桫在()0,+?单调递增,0x ®时,()0g x ®,故2ln 0f a a a a a骣琪=->琪桫,又()()1222ln 204f a =-+>,由(1)知,()f x 至多只有一个零点,不符合题意, 综上,实数a 的取值范围为1,088ln 2骣琪-琪-桫.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.(二)选考题:共10分,请在22-23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C 的极坐标方程为23cos 2sin r q q =+,直线()1:6l R p q r =?,直线()2:3l R pq r =?,设极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求直线12,l l 的直角坐标系方程以及曲线C 的参数方程;(2)若直线1l 与曲线C 交于O 、A 两点,直线2l 与曲线C 交于O 、B 两点,求△AOB 的面积.【答案】(1)13:l y x = ; 2:3l y x ;32,12x cos y sin q q qì=ïíï=+î 为参数;(2)23【解析】 【分析】(1)利用极角的定义、直线的倾斜角的定义以及两直线过原点,可得到直线1l 与直线2l 的直角坐标方程;曲线C 的极坐标方程两边同乘以r 利用222,cos ,sin x y x y rr q r q =+== 即可得其直角坐标方程,然后化为参数方程即可;(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==,同理223OB r ==形面积公式可得结果.【详解】(1)依题意,直线1l 直角的坐标方程为3y x =, 直线2l 直角的坐标方程为3y x ,由2sin r q q =+得223cos 2sin rr q r q =+,222,cos ,x y x sin y r r q r q =+==,()()222314x y r \=-+-=,\曲线C 的参数方程为32cos (12x y sin a a aì=ïíï=+î为参数).(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==, 同理223OB r ==6AOBp?, 11142323222AOB S OA OB sin AOB D \=?创?,即AOB D 的面积为23【点睛】本题主要考查极坐标方程化为直角坐标方程与参数方程,属于中档题. 利用关系式cos sin x y r q r qì=ïí=ïî,222tan x y yxr q ì+=ïíï=ïî可以把极坐标方程与直角坐标方程互化,通过选取相应的参数可以把普通方程化为参数方程. 23.选修4-5:不等式选讲 已知函数()()13f x x a a R =-?. (1)当2a =时,解不等式()113x f x -+?; (2)设不等式()13x f x x -+?的解集为M ,若11[,]32M Í,求实数a 的取值范围.【答案】(1){|01}x x x 3或.(2)14[,]23-. 【解析】试题分析:(1)利用零点分段讨论求解.(2)利用11,32x 轾Î犏犏臌化简313x x a x -+-?得到1x a -?在区间11,32轾犏犏臌上是恒成立的,也就是11a x a -<<+是不等式11,32轾犏犏臌的子集,据此得到关于a 的不等式组,求出它的解即可.解析:(1)当2a =时,原不等式可化为3123x x -+-?.①当13x £时,原不等式可化为3123x x -++-?,解得0x £,所以0x £; ②当123x <<时,原不等式可化为3123x x --+?,解得1x ³,所以12x ?; ③当2x ³时,原不等式可化为3123x x --+?,解得32x ³,所以2x ³.综上所述,当2a =时,不等式的解集为{}|01x x x 3或. (2)不等式()13x f x x -+?可化为313x x a x -+-?,依题意不等式313x x a x -+-?在11,32轾犏犏臌恒成立,所以313x x a x -+-?,即1x a -?,即11a xa -#+,所以113112a a ì-?ïïíï+?ïî.解得1423a -#,故所求实数a 的取值范围是14,23轾-犏犏臌.。
2019届高三理科数学测试卷(二)附答案
2019届高三文科数学测试卷(二)附答案注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}20A x x =->,{}2320B x x x =-+<,若全集U A =,则U B =ð( ) A .(],1-∞B .(),1-∞C .()2,+∞D .[)2,+∞2.总体由编号为00,01,02,...,48,49的50个个体组成,利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为( ) 附:第6行至第9列的随机数表:2635796250321149197373399746732 274861987164414871620 747742979799196835125A .3B .16C .38D .493.设i 是虚数单位,若复数()5i12ia a +∈-R 是纯虚数,则a =( ) A .1-B .1C .2-D .24.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=,则11S =( ) A .9B .22C .36D .665.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a ,b 的分别为10,4,则输出的a =( )A .0B .14C .4D .26.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误的是( )A .1MN CC ⊥B .MN ⊥平面11ACC A C .MN AB ∥D .MN ∥平面ABCD7.函数()()e e cos x x f x x -=-在区间[]5,5-上的图象大致为( )A .B .C .D .8.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31200元B .36000元C .36800元D .38400元9.点P 是双曲线22221x y a b-=右支上一点,1F 、2F 分别为左、右焦点.12PF F △的内切圆与x 轴相切于点N ,若点N 为线段2OF 中点,则双曲线的离心率为( ) A .3B .2C .3D .210.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象经过点()0,1B -,在区间ππ,183⎛⎫⎪⎝⎭上为单调函数,且()f x 的图象向左平移π个单位后与原来的图象重合,则ϕω=( )A .π12-B .π12C .π6 D .π6-11.已知函数()()2e 0x f x x x =+<与()()2ln g x x x a =++的图象上存在关于y 轴对称的点,则实数a 的取值范围是( ) A .(),e -∞B .1,e ⎛⎫-∞ ⎪⎝⎭C .1,e e ⎛⎫- ⎪⎝⎭D .1e,e ⎛⎫- ⎪⎝⎭12.已知数列{}n a ,定义数列{}12n n a a +-为数列{}n a 的“2倍差数列”,若{}n a 的“2倍差数列”的通项公式为1122n n n a a ++-=,且12a =,若函数{}n a 的前n 项和为n S ,则33S =( ) A .3821+B .3922+C .3822+D .392第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b ,其中3=a ,2=b ,且()+⊥a b a ,则向量a ,b 的夹角为______.14.已知曲线cos sin y a x x =+在π,12⎛⎫⎪⎝⎭处的切线方程为π102x y -+-=,则实数a =______.15.下列命题中,正确的命题序号是__________.(请填上所有正确的序号)①已知a ∈R ,两直线1:1l ax y +=,2:2l x ay a +=,则“1a =-”是“12l l ∥”的充分条件;②“0x ∀≥,22x x >”的否定是“00x ∃≥,0202x x <”;③“1sin 2α=”是“π2π6k α=+,k ∈Z ”的必要条件; ④已知0a >,0b >,则“1ab >”的充要条件是“1a b>”16.已知三角形PBD 所在平面与矩形ABCD 所在平面互相垂直,2PD BD ==,120BDP ∠=︒,若点P 、A 、B 、C 、D 都在同一球面上,则此球的表面积等于_________. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,已知cos cos cos 2cos sin C A B A B +=, (1)求tan A ;(2)若25b =,AB 边上的中线17CD =,求ABC △的面积.18.(12分)在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,且2AC AD CD DE ====,1AB =.(1)请在线段CE 上找到点F 的位置,使得恰有直线BF ⊥平面CDE ,并证明; (2)在(1)的条件下,求多面体ABCDF 的体积.19.(12分)近年来,随着我国汽车消费水平的提高,二手车行业得到迅猛发展,某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在(]8,16”为事件A ,试估计A 的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中x (单位:年)表示二手车的使用时间,y (单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用e a bx y +=作为二手车平均交易价格y 关于其使用年限x 的回归方程,相关数据如下表(表中ln i i Y y =,101110i i Y Y ==∑);x yY101i ii x y =∑101i i i x Y =∑1021ii x=∑5.5 8.7 1.9 301.4 79.75 385①根据回归方程类型及表中数据,建立y 关于x 的回归方程;②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格4%的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格10%的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.附注:①对于一组数据()11,u v ,()22,u v ,...,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为1221ˆni i i nii u v nuvunuβ==-=-∑∑,ˆˆv u αβ=-, ②参考数据: 2.95e 19.1≈, 1.75e 5.75≈,0.55e 1.73≈,0.65e 0.52-≈, 1.85e 0.16-≈.20.(12分)已知M 是直线:1l x =-上的动点,点F 的坐标是(1,0),过M 的直线'l 与l 垂直,并且'l 与线段MF 的垂直平分线相交于点N . (1)求点N 的轨迹C 的方程;(2)设曲线N 上的动点A 关于x 轴的对称点为'A ,点P 的坐标为(2,0),直线AP 与曲线C 的另一个交点为B (B 与'A 不重合),是否存在一个定点T ,使得T 、A '、B 三点共线?若存在,求出点T 的坐标;若不存在,请说明理由.21.(12分)已知a ∈R ,函数()e x f x ax =-(e 2.71828...≈是自然对数的底数)(1)求函数()f x 的单调区间;(2)若函数()()()e 22ln x F xf x ax x a =--++在区间10,2⎛⎫⎪⎝⎭内无零点,求a 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(0a b >>,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆.已知曲线1C上的点1,2M ⎛ ⎝⎭对应的参数π3ϕ=,射线π3θ=与曲线2C 交于点π1,3D ⎛⎫ ⎪⎝⎭(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)若点()1,A ρθ,2π,2B ρθ⎛⎫+ ⎪⎝⎭在曲线1C 上,求221211ρρ+的值.23.(10分)【选修4-5:不等式选讲】 已知函数()34f x x x =-++. (1)求()()4f x f ≥的解集;(2)设函数()()()3g x k x k =-∈R ,若()()f x g x >对x ∀∈R 成立,求实数k 的取值范围.高三文科数学(二)答案一、选择题.1.【答案】A2.【答案】C3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】A11.【答案】A12.【答案】B二、填空题.13.【答案】5π614.【答案】1-15.【答案】①③④16.【答案】16π三、解答题17.【答案】(1)tan2A=;(2)当2c=时,1sin42ABCS bc A==△;当6c=时,12ABCS=△.【解析】(1)由已知得()cos cos cos cosπcos cosC A B A B A B+=-++⎡⎤⎣⎦()cos cos cos sin sinA B A B A B=-++=,所以sin sin2cos sinA B A B=,因为在ABC△中,sin0B≠,所以sin2cosA A=,则tan2A=.(2)由(1)得,5cos5A=,25sin5A=,在ACD△中,2222cos22c cCD b b A⎛⎫=+-⋅⋅⋅⎪⎝⎭,代入条件得28120c c-+=,解得2c=或6,当2c=时,1sin42ABCS bc A==△;当6c=时,12ABCS=△.18.【答案】(1)见解析;(2)23.【解析】(1)F为线段CE的中点.证明如下:由已知AB⊥平面ACD,DE⊥平面ACD,∴AB ED∥,设H是线段CD的中点,连接FH,则12FH DE∥,且12FH DE=,∵12AB DE∥,且12AB DE=,∴四边形ABFE是平行四边形,∴BF AH∥,∵AH CD⊥,AH DE⊥,CD DE D=I,∴AH⊥平面CDE,∴BF⊥平面CDE.(2)∵ABCDF A BCD F BCD B ACD B CDFV V V V V----=+=+11332333ACD CDFS AB S AH=⨯⨯+⨯⨯=+=△△,∴多面体ABCDF的体积为23.19.【答案】(1)0.40;(2)0.29万元.【解析】(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在(]8,12的频率为0.0740.28⨯=,在(]12,16的频率为0.0340.12⨯=,所以()0.280.120.40P A=+=.(2)①由e a bxy+=得ln y a bx=+,即Y关于x的线性回归方程为ˆY a bx=+因为1011022211079.7510 5.5 1.9ˆ0.338510 5.510i i i i i x Y x Ybx x==-⋅-⨯⨯===--⨯-∑∑, ()ˆˆ 1.90.3 5.5 3.55aY bx =-=--⨯=, 所以Y 关于x 的线性回归方程为ˆ 3.550.3Y x =-, 即y 关于x 的回归方程为 3.550.3ˆe x y-=; ②根据①中的回归方程 3.550.3ˆe x y-=和图1,对成交的二手车可预测: 使用时间在(]0,4的平均成交价格为 3.550.32 2.95e e 19.1-⨯=≈,对应的频率为0.2; 使用时间在(]4,8的平均成交价格为 3.550.36 1.75e e 5.75-⨯=≈,对应的频率为0.36; 使用时间在(]8,12的平均成交价格为 3.550.3100.55e e 1.73-⨯=≈,对应的频率为0.28; 使用时间在(]12,16的平均成交价格为 3.550.3140.65e e 0.52-⨯-=≈,对应的频率为0.12; 使用时间在(]16,20的平均成交价格为 3.550.318 1.85e e 0.16-⨯-=≈,对应的频率为0.04; 所以该汽车交易市场对于成交的每辆车可获得的平均佣金为:()0.219.10.36 5.754%⨯+⨯⨯()0.28 1.730.120.520.040.1610%+⨯+⨯+⨯⨯0.290920.29=≈万元.20.【答案】(1)24y x =;(2)见解析.【解析】(1)由题意可知:NM NF =,即曲线C 为抛物线,焦点坐标为(1,0)F , 准线方程为:1l x =-,∴点N 的轨迹C 的方程24y x =.(2)设2,4a A a ⎛⎫ ⎪⎝⎭,则2,4a A a ⎛⎫'- ⎪⎝⎭,直线AB 的斜率224824AP a ak a a ==--, 直线AB 的方程()2428ay x a =--,由()224428y xay x a ⎧=⎪⎨=-⎪-⎩,整理得:()22880ay a y a ---=, 设()22,B x y ,则28a y ⋅=-,则28y a =-,2216x a =,则2168,B a a ⎛⎫- ⎪⎝⎭,又2,4a A a ⎛⎫'- ⎪⎝⎭'222841684A Baa a k a a a -+==-+-,∴A B '的方程为22484a a y a x a ⎛⎫+=-- ⎪+⎝⎭, 令0y =,则2x =-,直线A B '与x 轴交于定点()2,0-, 因此存在定点()2,0-,使得T ,A ',B 三点共线.21.【答案】(1)见解析;(2)4ln 2.【解析】(1)∵()e x f x ax =-,∴()e x f x a '=-,当0a ≤时,在()0f x '>上R 恒成立,()f x 增区间为(),-∞+∞,无减区间; 当0a >时,令()0f x '=得ln x a =,()f x 的增区间为()ln ,a +∞,减区间为(),ln a -∞.(2)函数()()()e 22ln 2ln x F x f x ax x a ax x a =--++=--,10,2x ⎛⎫∈ ⎪⎝⎭,∴()22ax F x a x x-'=-=, ①当0a ≤时,()0F x '<在10,2⎛⎫ ⎪⎝⎭上恒成立,函数()F x 在区间10,2⎛⎫⎪⎝⎭上单调递减,则()112ln ln 402222aa F x F a ⎛⎫>=--=-> ⎪⎝⎭,∴0a ≤时,函数()F x 在区间10,2⎛⎫⎪⎝⎭上无零点;②当0a >时,令()'0F x =得,2x a= 令()'0F x >,得2x a >,令()'0F x <,得20x a<<, 因此,函数()F x 的单调递增区间是2,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间是20,a ⎛⎫⎪⎝⎭.(i )当212a ≥,即时04a <≤, 函数()F x 的单调递减区间是10,2⎛⎫ ⎪⎝⎭,∴()112ln ln 42222aa F x F a ⎛⎫>=--=- ⎪⎝⎭,要使函数()F x 在区间10,2⎛⎫⎪⎝⎭内无零点,则ln 402a -≥,得4ln 2a ≤;(ii )当212a <,即4a >时, 函数()F x 的单调递减区间是20,a ⎛⎫ ⎪⎝⎭,单调递增区间是21,2a ⎛⎫⎪⎝⎭,∴()min 2222ln 2ln 42ln F x F a a a a a ⎛⎫==--=-+- ⎪⎝⎭,设()2ln 42ln g a a a =-+-,∴()2210ag a a a-'=-=<,∴()g a 在()4,+∞上单调递减,∴()()()g 42ln 42ln 44ln 422ln 2lne 0g a <=-+-=-=-<, 而当120e a x a <=<时,()0e aaF x a =+>, ∴函数()F x 在区间10,2⎛⎫⎪⎝⎭内有零点,不合题意.综上,要使函数()()()e 22ln x F x f x ax x a =--++在区间10,2⎛⎫⎪⎝⎭内无零点,则a 的最大值为4ln 2. 22.【答案】(1)见解析;(2)54. 【解析】(1)将31,M ⎛⎫ ⎪ ⎪⎝⎭及对应的参数π3ϕ=,代入cos sin x a y b ϕϕ=⎧⎨=⎩,得π1cos 33πsin 3a b ⎧=⎪⎪⎨⎪=, 即21a b =⎧⎨=⎩,∴曲线1C 的普通方程为2214x y +=.设圆2C 的半径为R ,由题意可得,圆2C 的极坐标方程为2cos R ρθ=.将点π1,3D ⎛⎫⎪⎝⎭代入2cos R ρθ=,得π12cos 3R =,即1R =,∴曲线2C 的极坐标方程为2cos ρθ=,∴曲线2C 的直角坐标方程为()2211x y -+=.(2)∵曲线1C 的普通方程为2214x y +=,点()1,A ρθ,2π,2B ρθ⎛⎫+ ⎪⎝⎭在曲线1C 上,∴222211cos sin 14ρθρθ+=,222222sin cos 14ρθρθ+=,∴22221211cos sin 4θθρρ⎛⎫+=+ ⎪⎝⎭22sin 5cos 44θθ⎛⎫++= ⎪⎝⎭. 23.【答案】(1){5x x ≤-或}4x ≥;(2)12k -<≤. 【解析】(1)()34f x x x =-++, ∴()()4f x f ≥,即349x x -++≥,∴4349x x x ≤-⎧⎨---≥⎩①或43349x x x -<<⎧⎨-++≥⎩②或3349x x x ≥⎧⎨-++≥⎩③, 解不等式①:5x ≤-;②:无解;③:4x ≥, 所以()()4f x f ≥的解集为{5x x ≤-或}4x ≥.(2)()()f x g x >即()34f x x x =-++的图象恒在()()3g x k x =-,k ∈R 图象的上方,可以作出()21,4347,4321,3x x f x x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩的图象,而()()3g x k x =-,k ∈R 图象为恒过定点()3,0P ,且斜率k 变化的一条直线, 作出函数()y f x =,()y g x =图象如图,其中2PB k =,可得()4,7A -,∴1PA k =-,由图可知,要使得()f x 的图象恒在()g x 图象的上方, 实数k 的取值范围为12k -<≤.。
2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。
【详解】,解得,所以,故选D。
【点睛】本道题考查了等差数列的性质,难度中等。
(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。
2019年广东省广州市高考数学一模试卷(理科)-解析版
2019年广东省广州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|x2-2x<0},B={x|2x>1},则()A. B. C. D.2.已知a为实数,若复数(a+i)(1-2i)为纯虚数,则a=()A. B. C. D. 23.已知双曲线:的一条渐近线过圆P:(x-2)2+(y+4)2=1的圆心,则C的离心率为()A. B. C. D. 34.刘徽是我因魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法,如图所示,圆内接正十二边形的中心为圆心O,圆O的半径为2,现随机向圆O内段放a粒豆子,其中有b粒豆子落在正十二边形内(a,b∈N*,b<a),则圆固率的近似值为()A. B. C. D.5.若等边三角形ABC的边长为1,点M满足,则=()A. B. 2 C. D. 36.设S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m-1-a m2+a m+1=1,S2m-1=11,则m=()A. 11B. 10C. 6D. 57.如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()A.B.C.D.8.(2-x3)(x+a)5的展开式的各项系数和为32,则该展开式中x4的系数是()A. 5B. 10C. 15D. 209.已知函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,且在,上单调递减,则ω的最大值是()A. B. C. D. 210.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.B.C.D.11.已知以F为焦点的抛物线C:y2=4x上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是()A. 2B.C.D. 412.已知函数,>,,的图象上存在关于直线x=1对称的不同两点,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.设S n是等比数列{a n}的前n项和,若S3=6,S6=54,则a1=______.14.若函数的图象在点(1,f(1))处的切线过点(2,4),则a=______.15.已知关于x,y的不等式组,表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,则m的取值范围是______.16.已知直四棱柱ABCD-A1B1C1D1,的所有棱长都是1,∠ABC=60°,AC∩BD=O,A1C1∩B1D1=O1,点H在线段OB1上,OH=3HB1,点M是线段BD上的动点,则三棱锥M-C1O1H的体积的最小值为______.三、解答题(本大题共7小题,共82.0分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知c cos B=(3a-b)cos C.(1)求sin C的值;(2)若,b-a=2,求△ABC的面积.18.如图,在三棱锥A-BCD中,△ABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.19.某场以分期付款方式销售某种品,根据以往资料統计,顾客购买该高品选择分期付款的期数ξ的分布列为(1)求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;(2)商场销售一件该商品,若顾客选择分2期付款,则商场获得的利润为200元;若顾客选择分3期付款,则商场获得的利润为250元;若顾客选择分4期付款,则商场获得的利润为300元.商场销售两件该商品所获得的利润记为X(单位:元)(1)求X的分布列;(2)若P(X≤500)≥0.8,求X的数学期望EX的最大值.20.已知椭圆:>>的两个焦点和两个顶点在图O:x2+y2=1上.(1)求椭圆C的方程(2)若点F是C的左焦点,过点P(m,0)(m≥1)作圆O的切线l,l交C于A,B两点.求△ABF 的面积的最大值.21.已知函数f(x)=e2x-ax2,a∈R.(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若f(x)在(0,+∞)上存在极大值M,证明:<.22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为(a∈R).(1)写出曲线C1的普通方程和直线C2的直角坐标方程;(2)若直线C2与曲线C1有两个不同交点,求a的取值范围.23.已知函数f(x)=|x+a|-|2x-1|.(1)当a=1时,求不等式f(x)>0的解集;(2)若a>0,不等式f(x)<1对x∈R都成立,求a的取值范围.答案和解析1.【答案】D【解析】解:集合A={x|x2-2x<0}={x|0<x<2},集合B={x|2x>1}={x|x>0},A、A∩B={x|0<x<2},故本选项错误;B、A B={x|x>0},故本选项错误;C、A B,故本选项错误;D、A B,故本选项正确;故选:D.首先化简集合,再求交集,并集即可.本题主要考查集合的基本运算,比较基础.2.【答案】A【解析】解:(a+i)(1-2i)=a+2+(1-2a)i,∵复数是纯虚数,∴a+2=0且1-2a≠0,得a=-2且a≠,即a=-2,故选:A.根据复数的运算法则进行化简,结合复数是纯虚数,进行求解即可.本题主要考查复数的运算以及复数的概念,根据复数是纯虚数建立条件关系是解决本题的关键.3.【答案】C【解析】解:圆P:(x-2)2+(y+4)2=1的圆心(2,-4),双曲线的一条渐近线为:y=bx,双曲线的一条渐近线过圆P:(x-2)2+(y+4)2=1的圆心,可得2b=4,所以b=2,a=1,则c=,则C的离心率为:.故选:C.求出圆心坐标,代入渐近线方程没去成b,然后求解双曲线的离心率.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】C【解析】解:由几何概型中的面积型可得:=,所以=,即π=,故选:C.由正十二边形的面积与圆的面积公式,结合几何概型中的面积型得:=,所以=,即π=,得解本题考查了正十二边形的面积及几何概型中的面积型,属中档题5.【答案】D【解析】解:由题意,可根据平行四边形法则画出如下图形:由图可知:=,∴===1•2•+1•2•1=3.故选:D.本题可根据平行四边形法则画出图形找到M点的位置,然后根据两个向量的数量积的性质进行计算.本题主要考查两个向量的数量积的计算,属基础题.6.【答案】C【解析】解:S n是等差数列{a n}的前n项和,若m为大于1的正整数,且a m-1-a m2+a m+1=1,则:,解得:a m=1.S2m-1===11,解得:m=6故选:C.直接利用等差数列的性质的应用和等差数列的前n项和公式的应用求出结果.本题考查的知识要点:等差数列的通项公式的性质的应用,等差数列的前n项和公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】B【解析】解:函数h=f(t)是关于t的减函数,故排除C,D,则一开始,h随着时间的变化,而变化变慢,超过一半时,h随着时间的变化,而变化变快,故对应的图象为B,故选:B.根据时间和h的对应关系分别进行排除即可.本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.8.【答案】A【解析】解:∵(2-x3)(x+a)5的展开式的各项系数和为32,则(2-1)(1+a)5=32,∴a=1,该展开式中x4的系数是2••a-1••a4=10a-5a4=5,故选:A.令x=1,可得展开式的各项系数和,再根据展开式的各项系数和为32,求得a的值,再利用通项公式可得该展开式中x4的系数.本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,属于基础题.9.【答案】C【解析】解:函数f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)是奇函数,则:φ=.所以:f(x)=cos(ωx+),令:(k∈Z),解得:(k∈Z),由于函数在上单调递减,故:,当k=0时,整理得:,故:,所以最大值为.故选:C.直接利用函数的奇偶性和单调性,建立不等式组,进一步求出最大值.本题考查的知识要点:函数的奇偶性和单调性的应用,不等式组的解法的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.【答案】B【解析】解:由题意可知:几何体是一个圆柱与一个的球的组合体,球的半径为:1,圆柱的高为2,可得:该几何体的表面积为:+2×π×12+2π×2=7π.故选:B.画出几何体的直观图,利用三视图的数据求解表面积即可.本题考查三视图求解几何体的表面积,可知转化思想以及计算能力.11.【答案】B【解析】解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=-1设A(x1,y1),B(x2,y2),则∵|AF|=λ|BF|,∴x1+1=λ(x2+1),∴x1=λx2+λ-1∵|y1|=λ|y2|,∴x1=λ2x2,当λ=1时,弦AB的中点到C的准线的距离2.当λ≠1时,x1=λ,x2=,|AB|=(x1+1)+(x2+1)=.∵,∴(λ++2)max=.则弦AB的中点到C的准线的距离d=,d最大值是.∵,∴弦AB的中点到C的准线的距离的最大值是.故选:B.根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义得到中点到准线的距离,属于中档题..12.【答案】A【解析】解:当x>1时,f(x)==x+,设f(x)在(1,+∞)上的图象关于x=1的对称图象为g(x),则g(x)=f(2-x)=2-x+(x<1),由题意可知f(x)与g(x)在(-∞,1)上有公共点.∵g′(x)=-1+<0,∴g(x)在(-∞,1)上单调递减,又f(x)=ln(x+a)在(-∞,1)上单调递增,∴g(1)<f(1),即2<ln(1+a),解得a>e2-1.故选:A.求出f(x)关于直线x=1对称的函数g(x),则g(x)与f(x)在(-∞,1)上有公共解,根据两函数的单调性列出不等式即可得出a的范围.本题考查了函数零点与单调性的关系,属于中档题.13.【答案】【解析】解:∵S3==6,S6==54,∴=1+q3=9,解得q3=8,则q=2,∴=6,解得a1=故答案为:先利用等比数列的求和公式分别表示出S3及S6,代入已知的等式,两者相除并利用平方差公式化简后,得到关于q的方程,求出方程的解得到q的值即可求出首项此题考查了等比数列的性质,以及等比数列的前n项和公式,熟练掌握公式是解本题的关键.14.【答案】2【解析】解:函数的导数为:f′(x)=a+,f′(1)=a+3,而f(1)=a-3,切线方程为:y-a+3=(a+3)(x-1),因为切线方程经过(2,4),所以4-a+3=(a+3)(2-1),解得a=2.故答案为:2.求出函数的导数,利用切线的方程经过的点求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.【答案】( ,]【解析】解:作出x,y的不等式组对应的平面如图:交点C的坐标为(-m,-2),直线x-2y=2的斜率为,斜截式方程为y=x-1,要使平面区域内存在点P(x0,y0)满足x0-2y0=2,则点C(-m,-2)必在直线x-2y=2的下方,即-2≤-m-1,解得m≤2,并且A在直线的上方;A(-m,1-2m),可得1-2m≥-1,解得m,故m的取值范围是:(-∞,].故答案为:(-∞,].作出不等式组对应的平面区域,要使平面区域内存在点点P(x0,y0)满足x0-2y0=2,则平面区域内必存在一个C点在直线x-2y=2的下方,A在直线是上方,由图象可得m的取值范围.本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.16.【答案】【解析】解:因为直四棱柱ABCD-A1B1C1D1的底面是菱形,∠ABC=60°,边长为1,∴O1C1⊥平面BB1D1D,且O1C1=,O1B1=,∴C1到平面BB1D1D的距离为O1C1=,∵OH=3HB1,点M是线段BD上的动点,∴当M在B处时△O1MH的面积取得最小值.连接O1B,则O1B=OB1==,∴B1到O1B的距离d===,∵OH=3HB1,∴H到直线O1B的距离为d=.∴S ===,∴V =S•O1C1==.故答案为:.当M与B重合时△O1HM的面积最小,故三棱锥M-C1O1H的体积最小,求出△O1BH的面积,代入棱锥的体积公式计算即可.考查四面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查数形结合思想,是中档题.17.【答案】(本题满分为12分)解:(1)∵c cos B=(3a-b)cos C,∴由正弦定理可知,sin C cos B=3sin A cos C-sin B cos C,…1分即sin C cos B+cos C sin B=3sin A cos C,∴sin(C+B)=3sin A cos C,…2分∵A+B+C=π,∴sin A=3sin A cos C,…3分∵sin A≠0,∴cos C=,…4分∵0<C<π,∴sin C==;…6分(2)∵,cos C=,∴由余弦定理:c2=a2+b2-2ab cos C,可得:24=a2+b2-ab,…8分∴(a-b)2+ab=24,…9分∵b-a=2,∴解得:ab=15,…10分∴S△ABC=ab sin C==5…12分【解析】(1)已知等式利用正弦定理化简,再利用诱导公式变形,求出cosC的值,利用同角三角函数基本关系式可求sinC的值;(2)利用余弦定理及已知可求ab的值,利用三角形的面积公式即可计算得解.此题考查正弦、余弦定理的综合应用,涉及三角函数中的恒等变换应用,熟练掌握定理是解本题的关键,属于基础题.18.【答案】证明:(1)∵△ABC是等边三角形,∠BAD=∠BCD=90°,∴Rt△ABD=Rt△BCD,∴AD=CD,∵点P是AC的中点,则PD⊥AC,PB⊥AC,∵PD∩PB=P,∴AC⊥平面PBD,∵AC⊂平面ACD,∴平面ACD⊥平面BDP.解:(2)作CE⊥BD,垂足为E,连结AE,∵Rt△ABD≌Rt△BCD,∴AE⊥BD,AE=CE,∠AEC为二面角A-BD-C的平面角,由已知二面角A-BD-C为120°,∴∠AEC=120°,在等腰△AEC中,由余弦定理得AC=,∵△ABC是等边三角形,∴AC=AB,∴AB=,在Rt△ABD中,,∴BD=,∵BD=,∴AD=,∵BD2=AB2+AD2,∴AB=2,∴AE=,,由上述可知BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO是直线AD与平面BCD所成角,在Rt△AEO中,∠AEO=60°,∴AO=,AE=1,sin,∴直线AD与平面BCD所成角的正弦值为.【解析】(1)推导出AD=CD,PD⊥AC,PB⊥AC,从而AC⊥平面PBD,由此能证明平面ACD⊥平面BDP.(2)作CE⊥BD,垂足为E,连结AE,则AE⊥BD,AE=CE,∠AEC为二面角A-BD-C的平面角,由二面角A-BD-C为120°,得∠AEC=120°,由余弦定理得AC=,推导出BD⊥平面AEC,则平面AEC⊥平面BCD,过点A作AO⊥CE,垂足为O,则AO⊥平面BCD,连结OD,则∠AEO 是直线AD与平面BCD所成角,由此能求出直线AD与平面BCD所成角的正弦值.本题考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】角:(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),则P(η=2)=,∴购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.(2)(i)依题意X的取值分别为400,450,500,550,600,P(X=400)=0.4×0.4=0.16,P(X=450)=2×0.4a=0.8a,P(X=500)=2×0.4b+a2=0.8b+a2,P(X=550)=2ab,P(X=600)=b2,(2)P(X≤500)=P(X+400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得a+b=0.6,∴b=0.6-a,∵P(X≤500)≥0.8,∴0.16+0.48+a2≥0.8,解得a≥0.4或a≤-0.4,∵a>0,∴a≥0.4,∵b>0,∴0.6-a>0,解得a<0.6,∴a∈[0.4,0.6),E(X)=400×0.16+450×0.8a+500(0.8b+a2)+1100ab+600b2=520-100a,当a=0.4时,E(X)的最大值为480,∴X的数学期望E(X)的最大值为480.【解析】(1)设购买该商品的3位顾客中,选择分2期付款的人数为η,依题意得η~B(3,0.4),由此能求出购买该商品的3位顾客中,恰有2位选择分2期付款的概率.(2)(i)依题意X的取值分别为400,450,500,550,600,分别求出相应的概率,由此能求出X的分布列.(2)P(X≤500)=P(X+400)+P(X=450)+P(X=500)=0.16+0.8(a+b)+a2,根据0.4+a+b=1,得b=0.6-a,由P(X≤500)≥0.8,得a≥0.4,由b>0,得a<0.6,由此能求出X的数学期望E(X)的最大值.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查二项分布等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)由椭圆:>>可知焦点在x轴上,∵圆O:x2+y2=1与x轴的两个交点坐标为(-1,0),(1,0),与y轴的两个交点的坐标分别为(0,1),(0,-1),根据题意可得b=c=1,故a2=b2+c2=2,故椭圆方程为+y2=1(2)设过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,则=1,即m2=t2+1设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2-2=0,则△=(2tm)2-4(t2+2)(m2-2)=8>0,∴y1+y2=-,y1y2=,∴|y1-y2|===,∴△ABF的面积S=|PF|•|y1-y2|=,令f(m)=,m≥1∴f′(m)=,当m≥1时,f′(m)≤0,∴f(m)在[1,+∞)上单调递减,∴f(m)≤f(1)=,故△ABF的面积的最大值为【解析】(1)根据根据题意可得b=c=1,故a2=b2+c2=2,即可求出椭圆方程,(2)过点P(m,0)(m≥1)作圆O的切线l的方程为x=ty+m,可得m2=t2+1,设A(x1,y1),B(x2,y2),由,消x可得(t2+2)y2+2tmy+m2-2=0,根据韦达定理和三角形面积即可表示出S=,构造函数,利用导数求出函数的最值即可求出面积的最大值本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、直线与圆相切的性质、韦达定理、三角形面积计算公式、导数和函数的单调性,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)函数的导数f′(x)=2e2x-2ax,若f(x)在(0,+∞)上单调递增,即f′(x)≥0恒成立,即2e2x-2ax≥0,得a≤在(0,+∞)上恒成立,设h(x)=,则h′(x)==,当0<x<时,h′(x)<0,此时函数为减函数,由x>时,h′(x)>0,此时函数为增函数,即当x=时,函数h(x)取得极小值同时也是最小值,h()=2e,则a≤2e,即实数a的取值范围是(-∞,2e].(2)由(1)知,当a≤2e时,f(x)在(0,+∞)上单调递增,则不存在极大值,当a>2e时,<ln,ln a>ln,又f′(0)=2>0,f′()=2e-a<0,f′(ln a)=2e2ln a-2a lna=2a(a-ln a)>0,(易证明a-ln a>0),故存在x1∈(0,),使得f′(x1)==0,存在x2∈(,ln a),使得f′(x2)=0,则x∈(0,x1)时,f′(x)>0,x∈(x1,x2)时,f′(x)<0,x∈(x2,+∞)时,f′(x)>0,故f(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,即当x=x1时,f(x)取得极大值,即M=,由0<x1<时,得1-x1>0,x1≠1-x1,由2-2ax1=0,得=ax1,故M==ax1-ax12=ax1(1-x1)<a•()2=,即<成立.【解析】(1)求函数的导数,利用函数的单调性转化为f′(x)≥0恒成立进行求解.(2)求函数的导数,结合函数极大值的定义,讨论a范围,进行证明即可.本题主要考查导数的应用,结合函数单调性,极值和导数的关系转化为导数问题是解决本题的关键.考查学生的运算和推导能力,综合性较强,难度较大.22.【答案】解:(1)曲线C1的普通方程为y=1-x2(-1≤x≤1),把x=ρcosθ,y=ρsinθ代入ρ(cosθ-a sinθ)=,得直线C2的直角坐标方程为y-ax=,即ax-y+=0,(2)由直线C2:ax-y+=0,知C2恒过点M(0,),由y=1-x2(-1≤x≤1),当时,得x =±1,所以曲线C1过点P(-1,0),Q(1,0),则直线MP的斜率为k1==,直线MQ的斜率k2==-,因为直线C2的斜率为a,且直线C2与曲线C1有两个不同的交点,所以k2≤a≤k1,即-,所以a的取值范围为[-,].【解析】(1)利用平方关系消去参数t可得C1的普通方程,利用x=ρcosθ,y=ρsinθ可得C2的直角坐标方程;(2)根据直线的斜率可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)函数f(x)=|x+1|-|2x-1|,f(x)>0即为|x+1|>|2x-1|,可得(x+1+2x-1)(x+1-2x+1)>0,即3x(x-2)<0,解得0<x<2,则原不等式的解集为(0,2);(2)若a>0,不等式f(x)<1对x∈R都成立,即有1>f(x)max,由f(x)=|x+a|-|2x-1|=|x+a|-|x-|-|x-|≤|x+a-x+|-0=|a+|,可得f(x)的最大值为|a+|=a+,(a>0),则a+<1,解得0<a<.【解析】(1)运用两边平方和平方差公式,可得不等式的解集;(2)由题意可得1>f(x)max,由绝对值不等式的性质可得f(x)的最大值,解不等式可得所求范围.本题考查绝对值不等式的解法和不等式恒成立问题的运用,考查运算能力,属于基础题.。
2019年高考数学(理科)模拟试卷(一)
2019年高考数学(理科)模拟试卷(一) 2019年高考数学(理科)模拟试卷(一)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=lg(3-2x)},B={x|x²≤4},则A∪B=()A。
{x|-2≤x<2}B。
{x|x<2}C。
{x|-2<x<2}D。
{x|x≤2}2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A。
(-∞,1)B。
(-∞,-1)C。
(1,+∞)D。
(-1,+∞)3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A。
6斤B。
9斤C。
9.5斤D。
12斤4.某三棱锥的三视图如图M1-1,则该三棱锥的体积为()A。
60B。
30C。
20D。
105.设x∈R,[x]表示不超过x的最大整数。
若存在实数t,使得[t]=1,[t²]=2,…,[tn]=n同时成立,则正整数n的最大值是()A。
3B。
4C。
5D。
66.执行两次如图M1-2所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次、第二次输出的a 值分别为()A。
0,0B。
1,1C。
0,1D。
1,07.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A。
10B。
11C。
12D。
138.若x,y满足约束条件x+y-3≥0,x-2y≤0,则x≥()A。
[0,6]B。
[0,4]C。
[6,+∞)D。
[4,+∞)13.首先求出向量a和b的夹角,由向量点乘公式可得cosθ = (a·b)/(|a||b|) = 9/√20,其中θ为夹角。
广东省2019年高考数学试卷(理科)以及答案解析
绝密★启用前广东省2019年高考理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。
广东省深圳市2019届高三第二次(4月)调研考试数学理试题(WORD版)
深圳市2019年高三年级第二次调研考试数学理 2019.4一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|40},M x x N x x =>=-≥则M N =U ( A ).A. (,2](0,)-∞-+∞UB. (,2][2,)-∞-+∞UC. [3,)+∞D. (0,)+∞2.在复平面内,复数i(1i)12iz +=-所对应的点位于( C ). A .第一象限 B .第二象限 C .第三象限 D .第四象限3.2019年是中国成立70周年,也是全面建成小康社会的关键之年.为了迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.下面的茎叶图是参赛两组选手答题得分情况,则下列说法正确的是( D ).A.甲组选手得分的平均数小于乙组选手的平均数B.甲组选手得分的中位数小于乙组选手的中位数C.甲组选手得分的中位数等于乙组选手的中位数D.甲组选手得分的方差大于乙组选手的的方差4.已知等比数列{}n a 满足11,2a =且2434(1),a a a =-则5a =( A ). A. 8 B.16 C.32 D.64 5.已知函数22()(1)f x ax a x x =+-+是奇函数,则曲线()y f x =在1x =处的切线得倾斜角为( B ). A.π4 B.3π4 C.π3 D.2π3 6.在平行四边形ABCD 中,E 为CD 的中点,F 为AE 的中点,设,,AB a AD b ==u u u r r u u u r r则FB =uur ( D ). A.3142a b -+r r B.1324a b +r r C.1324a b -r r D.3142a b -r r 7. 如图所示,网格上小正方形的边长为1,粗实线和粗虚线画出的是某几何体的三视图,则该几何体的表面积为( A ). A.(842)π+ B. (942)π+ C.(882)π+ D. (982)π+8.十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?” 贝特朗用“随机半径”、 “随机端点”、 “随机中点”三种方法求解,所得结果均不相同.该悖论的矛头直击概率概念本身,这极大地促进了概率论基础的严格化.已知“随机端点”的方法如下:设A 为圆O 上一个定点,在圆周上随机取一点B,连接AB ,所得弦长AB 大于圆O 的内接等边三角形边长的概率.记该概率为p ,则p =( C ). A.15 B.14 C.13 D.129.已知函数()ln 1a f x x x=+-有且仅有一个零点,则实数a 的取值范围为( A ). A. (,0]{1}-∞U B. [0,1] C. (,0]{2}-∞U D. [0,2]10.设12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,点,A B 分别为椭圆C 的右顶点和下顶点,且点1F 关于直线AB 的对称点为M .若212MF F F ⊥,则椭圆C 的离心率为( C ). A.312- B.313- C.512- D.22 11.已知函数()3sin cos (0)f x x x =+>ωωω在区间ππ[,]43-上恰有一个最大值点和最小值点,则实数ω的取值范围为( B ). A.8[,7)3 B. C. 20[4,)3 D. 20(,7)312.如图,在四面体ABCD 中,2,3,5,,AB CD AC BD AD BC E F ======分别是 ,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( B ). A.6 B.62 C. 52 D. 54第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13-21题为必考题,每个考生都必须作答,第22-23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,满分20分.13.设实数,x y 满足23,12,4,x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩则1y x -的最大值为_______.14.已知双曲线2222:1,x y C a b-=且圆22:(2)1E x y -+=的圆心是双曲线C 的右焦点.若圆E 与双曲线C 的渐近线相切,则双曲线C 的方程为____________.15.精准扶贫是全国建成小康社会、实现中华民族伟大“中国梦”的重要保障.某单位拟组成4男3女共7人的扶贫工作队,派驻到3个扶贫地区A 、B 、C 进行精准扶贫工作.若每一个地区至少派驻1男1女两位工作人员,且男性甲必须派驻到A 地区,则不同的派驻方式有_____种.16.设n S 是数列{}n a 的前n 项和,且13,a =当2n ≥时,有1122n n n n n S S S S na --+-=, 则使得122019m S S S ≥L 成立的正整数m 的最小值为__________.三、解答题:本大题共7个小题,共70分,解答必须写出必要的文字说明、证明过程或演算步骤.17、(本小题满分12分)已知△ABC 中,AB =2BC ,AC =25,点D 在边AC 上,且AD =2CD ,∠ABD =2∠CBD 。
2019年高考理科数学试卷(广东卷)
2019 年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8 小题,每小题 5 分,满分40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M { 1,0,1}, N {0,1,2}, 则M NA.{ 1,0,1} B. { 1,0,1,2} C. { 1,0, 2} D. {0,1}2. 已知复数Z 满足(3 4i)z 25,则Z=A.3 4i B. 3 4i C. 3 4i D. 3 4iy x3. 若变量x, y 满足约束条件 1 2x y 且z x y 的最大值和最小值分别为M和m,则M-m=y 1A.8 B.7 C.6 D.54. 若实数k 满足0 k 9,则曲线2 2x y25 9 k1与曲线2 2x y25 k 91的A.离心率相等 B. 虚半轴长相等 C. 实半轴长相等 D.焦距相等5. 已知向量a 1,0, 1 , 则下列向量中与a成60 夹角的是A.(-1,1,0 ) B. (1,-1,0 ) C. (0,-1,1 ) D. (-1,0,1 )6、已知某地区中小学生人数和近视情况分别如图 1 和图 2 所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A、200,20B、100,20C、200,10D、100,107、若空间中四条两两不同的直线l1,l2,l3,l4 ,满足l1 l 2,l2 , l3,l3 l4 ,则下列结论一定正确的是A.l l B .l1 / /l 4 C .l1,l4 既不垂直也不平行D.l1,l4 的位置关系不确定1 48. 设集合A= x , x , x , x , x x i 1,0,1 , i 1,2,3,4,5 ,那么集合 A 中满足条件1 2 3 4 5“1x x x x x 3”的元素个数为1 2 3 4 5A.60 B90 C.120 D.130二、填空题:本大题共7 小题,考生作答 6 小题,每小题 5 分,满分30 分.(一)必做题(9~13 题)9.不等式x 1 x 2 5的解集为。
2019年高考数学真题试卷 理科数学 (全国 III 卷) (含答案)
2019年普通高等学校招生全国统一考试(全国III 卷)理科数学一、 选择题1.已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ( ) A. }1,0,1{- B. B.{0,1} C. C.}1,1{- D. D.}2,1,0{2.若i i z 2)1(=+,则=z ( )A.i --1B.i +-1C.i -1D.i +13.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.5.0 B.6.0 C.7.0 D.8.04.42)1)(21(x x ++的展开式中3x 的系数为( ) A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A. 16 B. 8 C. 4 D.26.已知曲线x x ae y xln +=在点)1(ae ,处的切线方程为b x y +=2,则( )A.e a =,1-=bB.e a =,1=bC.1-=e a ,1=bD.1-=e a ,1-=b7.函数3222x xx y -=+在[6,6]-的图像大致为( ) A.B.C.D.8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面⊥ECD 平面ABCD ,M 是线段ED 的中点,则( )A.EN BM =,且直线EN BM ,是相交直线B.EN BM ≠,且直线EN BM ,是相交直线C.EN BM =,且直线EN BM ,是异面直线D.EN BM ≠,且直线EN BM ,是异面直线9.执行右边的程序框图,如果输出ε为01.0,则输出s 的值等于( )A.4212-B.5212- C.6212-D.7212-10.双曲线C :22142x y -=的右焦点为F ,点P 为C 的一条渐近线的点,O 为坐标原点.若||||PO PF =则PFO ∆的面积为( )A: 324 B:322C: 22 D:3211.若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->>D.233231(2)(2)(log )4f f f -->>12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论:○1()f x 在()0,2π有且仅有3个极大值点 ○2()f x 在()0,2π有且仅有2个极小值点 ○3()f x 在0,10π⎛⎫⎪⎝⎭单调递增 ○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. ○1○4B.○2○3C.○1○2○3D.○1○3○4 二.填空题13.已知a r ,b r 为单位向量,且0a b ⋅=r r,若2c a =r r ,则cos ,a c =r r.答案:23解析:∵()22222459c a a b b =-=+-⋅=r r r r r ,∴3c =r,∵()2222a c a a a b ⋅=⋅=⋅=r r r r r r ,∴22cos ,133a c a c a c ⋅===⨯⋅r rr r r r . 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________.16.学生到工厂劳动实践,利用3D 打印技术制作模型。