材料力学笔记
材料力学笔记
材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。
相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比 可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变 在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ 纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ 上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI T dx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体 在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤ 等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl=ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长。
材料力学考研复习笔记
材料力学考研复习笔记第一章绪论及基本概念一、材料力学的任务构件正常工作要求:强度、刚度、稳定性;合理选材、降低消耗、节约资金、减轻自重;材料力学要合理解决以上两方面的矛盾。
二、基本假设连续性假设:变形后(正常工作状态下)材料的主要性质不变,仍满足几何相容条件;均匀性假设:可取相应的单元体代替整体;各向同性假设:可以用简单的函数表达所要研究的问题。
材料力学的力学模型应满足以上三个假设。
另外在初级材料力学阶段,还有小变形假设、弹性变形假设。
三、研究的基本方法力的研究:静力学方面的知识运动(变形)的研究:几何学方面力与运动的关系研究:物理学方面四、杆件变形的基本形式轴向拉伸和压缩、剪切变形、扭转变形、弯曲变形。
五、体会绪论是一本书最显层次的部分,要完整地涵盖整本书或学科的最主要内容,虽然看不出什么具体的东西,但是已经讲清楚了学科的各个方面,之后的任何一章都是以此为出发点的。
因此这是全书最重要的三个章节之一,这一章是通过给出该学科的宏观的概念来起作用的,这与第二章不同。
所以对材料力学的学习,建议要从绪论开始再从绪论结束,这样才能使自己的把握具有层次。
第二章轴向拉伸和压缩首先要说明一点,根据前面知识框架的叙述,本章是《材料力学》最重要的章节之一,希望引起读者的重视。
这一章通过最简单的变形形式(轴向拉压)的介绍,给出了材料力学的大部分“微观”概念,这些概念对于其他的变形来说是大同小异的,所以介绍其他几种变形的章节就没有最重要章节的身份。
鉴于本章的重要性,记述时比较详细,以后各种变形大致均可按照这一章的思路进行学习。
一、基本概念及关系1、外力内力(轴力(图))应力强度条件以上公式所涉及的概念也是材料力学各种基本变形所共有的,区别只是计算方法和具体的意义有所不同,但统统可以归为同一种概念。
箭头则表示有已知条件推出未知条件(所求)。
其中所用到的截面法也是材料力学中的重要方法,可以代表一定的材料力学的思想,也可以反映材料力学的精度要求。
材料力学笔记(第九章)
材料力学(土)笔记第九章 压杆稳定1.压杆稳定性的概念当轴向压缩杆件横截面上的正应力不超过材料的许用应力时,强度上保证了杆件的正常工作 而在实际结构中,受压杆件的横截面尺寸一般都较按强度条件算出为大,且其横截面的形状往往与梁的横截面形状相仿,提高压杆的承载能力,需提高压杆额弯曲刚度压杆是否变弯,与杆横截面的弯曲刚度有关压杆在轴向压力作用下除发生轴向压缩变形外,还发生附加的弯曲变形对压杆的承载力进行研究时,通常将压杆抽象为由均质材料制成、轴线为直线,且轴向压力作用线与压杆轴线重合的理想“中心受压直杆”的模型在这一力学模型中,由于不存在使压杆产生弯曲变形的初始因素因此,在轴向压力下就不可能发生弯曲现象 在分析中心受压直杆时,当压杆承受轴向压力后假想地在杆上施加一微小横向力,使杆发生弯曲变形,然后撤去横向力实验表明,当轴向力不大时,撤去横向力后,杆的轴线将恢复其原来的直线平衡状态 则压杆在直线形态下的平衡是稳定平衡当轴向力增大到一定的界限值时,撤去横向力后,杆的轴线将保持弯曲平衡状态,而不再恢复其原有的直线平衡形态,则压杆原来在直线形态下的平衡时不稳定平衡中心受压直杆在直线形态下的平衡,由稳定平衡转化为不稳定平衡时所受轴向压力的界限值,称为临界压力,或简称临界力,并用cr F 表示中心受压直杆在临界力cr F 的作用下,其直线形态的平衡开始丧失稳定性,简称为失稳 通常说压杆的稳定性及其在临界力cr F 作用下的失稳,是就中心受压直杆的力学模型而言的 对于实际的压杆,由于存在前述几种导致压杆受压时弯曲的因素,通常可用偏心受压直杆作为其力学模型,其平衡稳定性问题是在偏心压力作用下,杆的弯曲变形是否会出现急剧增大而丧失正常的承载能力,其失稳的概念与中心受压直杆的力学模型截然不同2.细长中心受压直杆临界力的欧拉公式细长中心受压直杆在临界力作用下,处于不稳定平衡的直线状态其材料仍处于理想的线弹性范围内,这类稳定问题成为线弹性稳定问题以两端球形铰支,长度为l 的等截面细长中心受压直杆为例中心受压直杆在临界力作用下将在微弯形态下维持平衡,此时压杆任一x 截面上的弯矩为()cr M x F ω=压力cr F 取为正值,挠度ω以沿y 轴正值方向者为正将弯矩方程代入公式,可得挠曲线的近似微分方程''()cr EI M x F ωω=-=-其中I 为压杆横截面的最小形心主惯性矩将上式均除以EI ,并令2cr F k EI= 则式子可以改写为二阶常系数线性微分方程''20k ωω+=其通解为sin cos A kx B kx ω=+式中,A 、B 和k 三个待定常数由挠度曲线的边界条件确定由0x =,0w =的边界条件,可得0B =由2l x =,ωδ=(δ为挠曲线中点的挠度)的边界条件,可得sin(/2)A kl δ= 最后又常数A 、B 及x l =,0ω=的边界条件,得 0sin 2cos(/2)sin(/2)kl kl kl δδ==上式仅在0δ=或cos(/2)0kl =时才能成立显然,若0δ=,则压杆的轴线并非微弯的挠曲线,欲使压杆在微弯形态下维持平衡,必须cos 02kl = 即得 22kl n π= (1,3,5,...)n = 其最小解为1n =时的解,于是kl π== 解得 22cr EI F l π=上式即两端铰支等截面细长中心受压直杆临界力cr F 的计算公式,通常称为欧拉公式 在kl π=的情况下,sin(/2)sin(/2)1kl π==,故由常数A 、B 可知,挠曲线方程为sin xl πωδ=即挠曲线为半波正弦曲线上述求解过程中,挠曲线中点得挠度δ是个无法确定的值即不论δ为任何微小值,上述平衡条件都能成立事实上这种随遇平衡状态不成立,δ之所以无法确定是因为推导过程中使用了挠曲线的近似微分方程3.不同杆端约束下细长压杆临界力的欧拉公式·压杆的长度因数不同杆端约束下细长中心受压直杆的临界力表达式,可通过类似方法来推导由表可以看出,中心受压直杆的临界力cr 受到杆端约束情况的影响 杆端越是约强,杆的抗弯能力就越大,其临界力也就越高对于各种杆端约束情况,细长中心受压等直杆临界力的欧拉公式可写成同一的形式22()cr EI F l πμ= 式中,因数μ称为压杆的长度因数,与杆端的约束情况有关l μ称为原压杆的相当长度其物理意义可从表中各种杆端约束下细长压杆失稳时挠曲线形状的比拟来说明: 由于压杆失稳时挠曲线上拐点处的弯矩为零故可设想拐点处有一铰,而将压杆在挠曲线两拐点渐的一段看作两端铰支压杆利用两端铰支压杆临界力的欧拉公式得到原支承条件下压杆的临界力cr F这两拐点之间的长度,即为原压杆的相当长度ul即相当长度为各支承条件下的细长压杆失稳时,挠曲线中相当于半波正弦曲线的一段长度 细长压杆临界力的欧拉公式中,I 是横截面对某一形心主惯性轴的惯性矩若杆端在各个方向的约束情况相同,则I 应取最小的形心主惯性矩若杆端在不同的方向的约束情况不同,则I 应取挠曲时横截面对其中性轴的惯性矩4.欧拉公式的应用范围·临界应力总图假设材料处于线弹性范围内即压杆在临界力cr F 作用下的应力不得超过材料的比例极限p σ压杆临界力的欧拉公式有其一定的应用范围4.1 欧拉公式的应用范围当压杆受临界力cr F 作用而在直线平衡形态下维持不稳定平衡时横截面上的压应力可按公式F A σ=计算 于是,各种支承情况下压杆的横截面上的应力为2222cr cr F EI E ππσ=== cr σ称为临界应力cr F 为压杆的相当长度 两者的比值(/)l i μ,记为λ 其值越大,相应的cr σ就越小,即压杆越容易失稳l iμλ= 则临界力的式子可改写为22cr E πσλ= 欧拉公式仅适用于crp σσ≤的范围内则欧拉公式的应用范围可表示为22cr p E πσσλ=≤ 或写作p λπλ≥== 式中,p λ为能应用欧拉公式的压杆柔度的界限值通常称p λλ≥的压杆为大柔度压杆,或细长压杆当压杆的柔度p λλ<时,不能应用欧拉公式,通常称其为小柔度压杆这一界限值p λ的大小取决于压杆材料的力学性能将压杆临界应力cr σ与压杆柔度λ间的关系式用曲线表示称为欧拉临界应力曲线,实线部分是适用范围内的曲线,虚线部分无意义4.2 折减弹性模量理论4.3 压杆的临界应力总图中心受压直杆的临界应力的计算与压杆的柔度有关对于大柔度杆,临界应力可按欧拉公式计算对于小柔度杆,临界力的计算有很多,折减弹性模量理论仅是其中之一在不同λ范围内,压杆的临界应力与柔度间的关系图线称为压杆的临界应力总图5.实际压杆的稳定因数实际压杆可能存在引起截面上的残余应力等的不利因素,将降低压杆的临界应力 压杆的临界应力总是随压杆的柔度而改变柔度越大,临界应力值越低设计压杆时所用的许用应力也随压杆的柔度的增大而减小在压杆设计中,将压杆的稳定许用应力[]st σ写作材料的强度许用应力[]σ乘以一个随压杆柔度λ而改变的稳定因数()ϕϕλ=,即[][][][]crcr st st st n n σσσσϕσσ===,[]cr st n σϕσ= 以反映压杆的稳定许用应力随压杆柔度改变的这一特点在稳定因数()ϕϕλ=中,也考虑了压杆的稳定安全因数st n 随压杆柔度而改变的因素6.压杆的稳定计算·压杆的合理截面 压杆的稳定条件可表达为[]F A ϕσ≤,通常改写为[]F Aσϕ≤ 式中,F 为压杆承受的轴向压力;ϕ为压杆的稳定因数;A 为压杆的横截面面积 稳定计算中不必考虑截面局部削弱的影响,以毛面积进行计算在强度计算中,应按局部局部被削弱的净面积进行计算,[]σ为压杆材料的许用应力 在稳定计算中,若已知压杆的材料、杆长和杆端约束条件,而需选择压杆的截面尺寸时 由于压杆的稳定因数ϕ(或柔度λ)受截面形状和大小的影响,通常采用试算法 压杆的合理截面,由于压杆的稳定性与其柔度有关,柔度与截面的最小惯性半径i 成反比 对于各个方向的杆端约束条件相同的压杆,要求截面对两形心主惯性轴的惯性半径相等y z i i =(即y z I I =),且尽可能增大截面的i 值 例如,方形截面压杆比较合理,空心圆截面的压杆比较合理压杆多采用空心截面或型钢组合截面对于各个方向的杆端约束条件不同的压杆,为充分发挥材料的作用要求截面对两形心主惯性轴i 值不同,以使两个方向的柔度大致相等,即y z λλ≈。
材料力学笔记
第一章 绪论1.构件要求:1)强度要求:抵抗破坏;2)刚度要求:抵抗变形;3)保持原有平衡形态。
2.基本假设:1)连续性假设;2)均匀性假设;3)各向同性假设。
第二章 拉伸、压缩与剪切1.斜截面应力:p α=σcos α2.1)正应力:σα=σcos2α;2)切应力:τα=(σ/2)sin2α3.比例极限:σp ;弹性极限:σe ;屈服极限:σs ;强度极限:σb 。
4.强度指标:屈服极限、强度极限。
5.表面出现45º倾角的条纹原因:由于材料内部相对滑移而形成滑移线,因为拉伸时在与杆轴线45º倾角的斜截面上,切应力为最大值。
6.缩颈现象原因:由于在缩颈部分横截面面积迅速减小,使试样继续伸长所需要的拉力也相应减小。
7.伸长率:δ=((l 1-l)/l)*100%。
8.断面收缩率:ψ=((A-A 1)/A )*100%。
9.各类碳素钢中,随着含碳量的增加,屈服极限和强度极限都相应地提高,但伸长率却减小。
10.伸长量:△l=Fl/EA (EA 为抗拉压刚度)。
11.泊松比:1)μ=|ε'/ε|;2)ε’=-με。
12.1)切应力:τ=Fs/A ;2)挤压应力:σbs =F/A bs 。
第三章 扭转1.外力偶矩:{M e }N·m=9549({P}kW/{n}r/min )。
2.纯剪切外加扭转力偶:M e =2πr δτr 。
3.切应变:γ=r φ/l 。
4.切应力:τρ=G γρ=G ρ(d φ/dx )=T ρ/I p 。
5.切变模量:G=E/2(1+μ)。
6.扭矩:T=⎰A ρτρdA=G (d φ/dx )⎰A ρ2dA=GIp (d φ/dx )。
7.极惯性矩:I p =⎰A ρ2dA (m 4)。
8.抗扭截面系数:W t =I p /R (m 3)。
9.最大切应力:τmax =T/W t 。
10.实心轴:I p =πR 4/2=πD 4/32; W t =πR 3/2=πD 3/16。
材料力学笔记(附录)
材料力学(土)笔记附录I 截面的几何性质1.截面的静矩和形心位置设任意形状的截面,其截面面积为A ,从截面中坐标为(,)x y 处取一面积元素dA 则xdA 和ydA 分别称为该面积元素dA 对于y 轴和x 轴的静矩或一次矩y AS xdA =⎰定义为该截面对y 轴的静矩x AS ydA =⎰定义为该截面对x 轴的静矩上述积分应遍及整个截面面积A截面的静矩是对一定的轴而言的,同一截面对不同坐标轴的静矩不同 静矩可能为正值也可能为负值,也可能等于零,常用单位为m ³或mm ³ 由理论力学可知,在Oxy 坐标系中,均质等厚度薄板的重心坐标为y AxdA S x AA==⎰,xAydA S y AA==⎰ 均质薄板的重心与该薄板平面图形的形心是重合的上式可计算形心坐标,在知道截面对y 轴和x 轴的静矩以后,即课的截面形心坐标 将上式改写为y S Ax =,x S Ay =则在已知截面的面积A 及其形心的坐标x 、y 时 就可求得截面对y 轴和x 轴的静矩,由上式可看出,截面对通过其形心的轴的静矩恒等于零反之,若截面对于某一轴的静矩等于零,则该轴必通过截面的形心当截面由若干简单图形组成时,由于简单图形的面积及其形心位置均为已知由静矩定义可知,截面各组成部分对某一轴的静矩之代数和等于该截面对同一轴的静矩 即得整个截面的静矩为1n y i i i S A x ==∑,1nx i i i S A y ==∑式中,i A 和i x 、i y 分别代表任一简单图形的面积及其形心的坐标n 为组成截面的简单图形个数可得组合截面的星系坐标为11ni ii nii A xx A===∑∑,11ni ii nii A yy A===∑∑2.极惯性矩·惯性矩·惯性积设一面积为A 的任意形状截面,从截面坐标为(,)x y 处取一面积元素dA 则dA 与其至坐标原点距离平方的乘积2dA ρ 称为面积元素对O 点的极惯性矩或截面二次极矩2p AI dA ρ=⎰定义为整个截面对O 点的极惯性矩上述积分应遍及整个截面面积A ,极惯性矩的数值恒为正,单位为4m 或4mm面积元素dA 与其至y 或x 轴距离平方的乘积2x dA 或2y dA 分别称为该面积元素对y 轴或x 轴的惯性矩或截面二次轴距22y Ax A I x dA I y dA ⎫=⎪⎬=⎪⎭⎰⎰ 分别定义为整个截面对y 轴或x 轴的惯性矩 上述积分遍及整个截面的面积A222x y ρ=+,故有222()p y x AAI dA x y dA I I ρ==+=+⎰⎰任意截面对一点的极惯性矩,等于截面对以该点为原点的任意两正交坐标轴的惯性矩之和面积元素dA 与分别至y 轴和x 轴距离的乘积xydA ,称为该面积元素对两坐标轴的惯性积 定义为整个截面对x 、y 两坐标轴的惯性积,其积分也应遍及整个截面的面积 从上述定义可见,同一截面对于不同坐标轴的惯性矩或惯性积一般是不同的 惯性矩的数值恒为正值,而惯性积可能为正值也可能为负值,也可能等于零 若x 、y 两坐标轴有一为截面的对称轴,则其惯性积恒等于零因在对称轴两侧,处于对称位置的两面积元素dA 的惯性积xydA ,数值相等而正负号相反 致使整个截面的惯性积必等于零,惯性矩和惯性积的单位相同在某些应用中,将惯性矩表示为截面面积A 与某一长度平方的乘积,即2y y I i A =,2x xI i A = 式中,y i 和x i 分别称为截面对y 轴和x 轴的惯性半径,其单位为m 或mm 当已知截面面积A 和惯性矩y I 和x I 时,惯性半径即可从下式求得y i =x i =3.惯性矩和惯性积的平行移轴公式·组合截面的惯性矩和惯性积 3.1 惯性矩和惯性积的平行移轴公式 面积为A 的任意形状的截面截面对任意的x 、y 两坐标轴的惯性矩和惯性积分别为x I 、y I 和xy I 通过截面的形心C 有分别与x 、y 轴平行的C x 、C y 轴称为形心轴 截面对形心轴的惯性矩和惯性积分别为xC I 、yC I 和xCyC I截面上任一面积元素dA 在两坐标系内的坐标(,)x y 与(,)C C x y 间的关系为C x x b =+,C y y a =+式中,a 、b 是截面形心在Oxy 坐标系内的坐标值,即两平行坐标系间的间距 将其代入可得2222()2x C C C AAAAAI y dA y a dA y dA a y dA a dA ==+=++⎰⎰⎰⎰⎰根据惯性矩和静矩的定义,上式右端的各项积分分别为2C xC Ay dA I =⎰,C xC Ay dA S =⎰,AdA A =⎰其中xC S 为截面形心轴C x 的静矩,恒等于零,则原式子可写为2x xC I I a A =+,同理2y yC I I b A =+,xy xCyC I I abA =+a 、b 有正负号,可由截面形心所在的象限来确定,上式称为平行移轴公式应用上式即可根据截面对形心轴的惯性矩或惯性积,计算截面对于形心轴平行的坐标轴的惯性矩惯性矩或惯性积,或进行相反运算3.2 组合截面的惯性矩及惯性积组合截面对某坐标的惯性矩(或惯性积)就等于其各组成部分对同一坐标轴的惯性矩(或惯性积)之和,若截面是由n 个部分组成,则组合截面对x 、y 两轴的惯性矩和惯性积为1n x xi i I I ==∑,1n y yi i I I ==∑,1nxy xyi i I I ==∑式子中,xi I 、yi I 、xyi I 分别为组合截面中组成部分i 对x 、y 两轴的惯性矩和惯性积4.惯性矩和惯性积的转轴公式·截面的主惯性轴和主惯性矩 4.1 惯性矩和惯性积的转轴公式 设一面积为A 的任意形状截面截面对通过其上任意一点O 的两坐标轴x 、y 的惯性矩和惯性积分别为x I 、y I 和xy I 若坐标轴x 、y 绕O 点旋转α角(α角以逆时针转向为正)至1x 、1y 则该截面对新坐标轴1x 、1y 的惯性矩和惯性积分别为1x I 、1y I 和11x y I 截面上任一面积元素dA 在新、老两坐标系内的坐标11(,)x y 与(,)x y 的关系为1cos sin x x y αα=+ 1cos sin y y x αα=-经过展开逐项积分可得,该截面对坐标轴1x 的惯性矩1x I22221cos sin 2sin cos x AAAI y dA x dA xydA αααα=+-⎰⎰⎰根据惯性矩和惯性积的定义,右端的各项积分分别为2x Ay dA I =⎰,2y Ax dA I =⎰,xy AxydA I =⎰将其代入,即得1cos 2sin 222x y x y x xy I I I I I I αα+-=+- 1cos 2sin 222x yx yy xy I I I I I I αα+-=-+11sin 2cos 22x yx y xy I I I I αα-=+以上三式就是惯性矩和惯性积的转轴公式11x y x y I I I I +=+上式表明,截面对于通过同一点的任意一对相互垂直的坐标轴的两惯性矩之和为一常数 并等于截面对该坐标原点的极惯性矩4.2 截面的主惯性主和主惯性矩当坐标轴旋转时,惯性积11x y I 将随着α角作周期性变化,且有正有负 必有一特定的角度0α,使得截面对该坐标轴0x 、0y 的惯性积等于零 截面对其惯性积等于零的一对坐标轴,称为主惯性轴 截面对于主惯性轴的惯性矩,称为主惯性矩当一对主惯性轴的交点与截面的形心重合时,则称为形心主惯性轴 截面对于形心主惯性轴的惯性矩,称为形心主惯性矩设0α角为主惯性轴与原坐标轴之间的夹角 则将0α角代入惯性积的转轴公式并令其等于零,即00sin 2cos 202x yxy I I I αα-+=移项后得02tan 2xy x yI I I α-=-由上式解得的0α的值,即为梁主惯性轴中0x 轴的位置将所得的0α值代入,即得截面的主惯性矩0cos 2I I α-==02sin 2I α-==经化简后即得主惯性矩的计算公式0022x yx x y y I I I I I I +=+=惯性矩1x I 、1y I 都是α角的正弦和余弦函数,α角在0°到360°内变化 因此1x I 、1y I 必有极值由于对通过同一点的任意一对坐标轴的两惯性矩之和为一常数因此其中一个将为极大值,另一个则为极小值,由10x dI d α=和10y dI d α= 解得时惯性矩取得极值的坐标轴的位置的表达式,与上式完全一致可知,截面对通过任一点的主惯性轴的主惯性矩的值也就是通过该点所有轴的惯性矩中的极大值max I 和极小值min I在通过截面形心的一对坐标轴中,若有一个为对称轴,则该对坐标轴就是形心主惯性轴 因为截面对于包括对称轴在内的一对坐标轴的惯性积等于零 在计算组合截面的形心主观性轴是,首先应确定其形心位置 然后通过形心选择一对便于计算惯性矩和惯性积的坐标轴 算出组合截面对这一对坐标轴的惯性矩和惯性积最后利用主惯性矩的计算公式即可确定形心主惯性轴的位置和形心主惯性矩的数值 若组合截面具有对称轴,则包含对称轴的一对相互垂直的形心轴就是形心主惯性轴。
材料力学笔记
J1任务1作用在建筑物上的外力通常称为荷载;2在建筑物中承受荷载而起骨架作用的部分称为结构;3衡量构件承载能力的三因素是强度、刚度、稳定性;3.1强度是构件在荷载作用下抵抗破坏的能力;3.2刚度是构件在荷载作用下抵抗变形的能力;3.3稳定性是构件在荷载作用下抵抗失去原有平衡形式的能力;4材料力学的任务就是满足强度、刚度和稳定性要求的条件下,为设计即安全有经济的构件,提供必要的理论基础和计算方法。
C1J2变形固体的基本假设1材料力学所研究的对象为理想弹性体;1.1建筑构件是由在外力作用下会产生变形的固体材料所制成;1.2荷载作用下的变形按性质分为弹性变形和塑性变形(残余变形);1.3弹性变形是随荷载解除而消失的变形;1.4残余变形是荷载解除后而不能消失的变形;2变形固体的基本假设包括连续性、均匀性、各向同性和小变形假设;3材料力学的研究对象是连续的、均匀的、各向同性的变形固体,并把它们看作完全弹性体,其研究范围仅限于小变形的情况。
C1J3内力、截面法和应力1构件内部各部分间因相对位置改变而引起的相互作用力,称为内力。
材料力学里内力是指由于外力的作用而引起的上述相互作用力的改变量,称为附加内力,简称内力。
2构件中荷载任一截面上的内力是指截面上分布内力的合力;3假如要求得一截面上的内力,假想地用一个截面将构件截分为二,取其中一部分为研究对象,建立平衡方程以确定截面上的内力,称为截面法。
4构件某一截面上任一点分布内力集度称之为总应力;5通常把总应力F分解为垂直于截面的分量(正应力σ)和与截面相切的分量(切应力τ);6应力的量纲为N/m2,帕斯卡;106N/m2,兆帕;103N/m2,千帕;109N/m2,GPa;C1J4位移和应变1变形的大小是用位移和应变来度量的;2位移是指构件发生变形后,构件内部各质点及各截面空间位置的改变;2.1线位移是指构件内某点变形后移动的距离;2.2角位移是指构件内某一截面变形后转过的角度,或称转角;3线应变是指每单位长度的伸长或缩短的比值;4单元体直角的改变量为切应变τ,用弧度来度量。
材料力学(清华大学)-学习笔记
第一章1.工程上将承受拉伸的杆件统称为拉杆,简称杆rods;受压杆件称为压杆或柱column;承受扭转或主要承受扭转的杆件统称为轴shaft;承受弯曲的杆件统称为梁beam。
2.材料力学中对材料的基本假定:a)各向同性假定isotropy assumptionb)各向同性材料的均匀连续性假定homogenization and continuity assumption3.弹性体受力与变形特征:a)弹性体由变形引起的内力不能是任意的b)弹性体受力后发生的变形也不是任意的,而必须满足协调compatibility一致的要求c)弹性体受力后发生的变形与物性有关,这表明受力与变形之间存在确定的关系,称为物性关系4.刚体和弹性体都是工程构件在确定条件下的简化力学模型第二章1.绘制轴力图diagram of normal forces的方法与步骤如下:a)确定作用在杆件上的外载荷和约束力b)根据杆件上作用的载荷以及约束力,确定轴力图的分段点:在有集中力作用处即为轴力图的分段点;c)应用截面法,用假象截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负:产生拉伸变形的轴力为正,产生压缩变形的轴力为负;d)建立F N-x坐标系,将所求得的轴力值标在坐标系中,画出轴力图。
2.强度设计strength design 是指将杆件中的最大应力限制在允许的范围内,以保证杆件正常工作,不仅不发生强度失效,而且还要具有一定的安全裕度。
对于拉伸与压缩杆件,也就是杆件中的最大正应力满足:,这一表达式称为轴向载荷作用下杆件的强度设计准则criterion for strength design,又称强度条件。
其中称为许用应力allowable stress,与杆件的材料力学性能以及工程对杆件安全裕度的要求有关,由下式确定:,式中为材料的极限应力或危险应力critical stress,n为安全因数,对于不同的机器或结构,在相应的设计规范中都有不同的规定。
材料力学-整理笔记
材料力学第1章绪论1.1材料力学的任务构件应满足以下基本要求:强度,刚度,稳定性要求1.2材料力学的基本假设连续性,均匀性,各向同性假设1.3杆件的基本变形形式拉伸或压缩,剪切,扭转,弯曲1.4内力一截面法1.5应力平均应力-p:应力p:应力,切应力,正应力:1.6应变1.棱边长度的改变(原长为△x,变形后成为△x+△u)该点处沿x方向的线应变:2.棱边间夹角的改变切应变:y。
切应变的单位为rad第2章拉伸压缩与剪切2.1拉压杆的内力及应力2.1.1轴力、轴力图Fn=FFn即为横截面n—n上的内力。
由于F的作用线与杆轴线重合,故称为轴力。
规定拉伸的轴力为正,压缩为负。
2.1.2轴力图2.1.3拉压杆横截面上的应力轴向载荷作用下杆件是否破坏,不仅与轴力的大小有关,还与横截面面积有关。
正应力:。
拉应力为正,压应力为负。
2.1.4斜截面上的应力斜面上的全应力Pa:将全应力Pa分解为沿斜面法向的正应力和沿切向的切应力思考:a=0/45/90°时,正应力,切应力大小2.2拉压杆的变形2.2.1 轴向与横向变形轴向线应变为:。
以伸长为正,缩短为负。
横向线应变为:。
正负号与轴向线应变相反。
材料的泊松比u(量纲一):2.2.2 拉压胡克定律当应力o未超过某一极限值时,拉压杆的轴向变形与外力F及杆的原长l 成正比,与横截面面积A成反比。
引进比例常数E,则有胡克定律公式:E为材料的弹性模量,其量纲为ML^-1T^-2。
EA反映了杆件抵抗拉压变形的能力,称为杆件的抗拉(压)刚度。
由Fn/A=正应力,△l/l=线应力,故。
(在弹性范围内,正应力与线应变成正比。
)2.3金属拉压时的力学性能2.3.1低碳钢拉伸时的力学性质1.在拉伸过程中,标距l的伸长量与试件所受载荷F之间的关系曲线F—△l 称为拉伸曲线。
工程应力:将纵坐标值F除以原始的横截面面积A,即为正应力=F/A工程应变:将横坐标值除以原始的标距长度l,即为线应变=△l /l将拉伸曲线F—△l变为应力应变曲线(消除试件尺寸的影响)(1)弹性阶段Ob:弹性阶段的应力最高限称为材料的弹性极限(用符号6e表示)。
材料力学笔记(第一章)要点
材料力学(土)笔记第一章绪论及基本概念1.材料力学的任务1.1 对构件正常工作的要求①强度:在荷载作用下,构件应不至于破坏(断裂或失效)②刚度:在荷载作用下,构件产生的变形应不超过工程上允许的范围③稳定性:承受荷载的作用时,构件在其原有形态下的平衡应保持为稳定的平衡1.2 材料的力学性能材料的力学性能:在外力作用下材料变形与所受外力之间的关系,抵抗变形与破坏的能力2.材料力学发展概述3.可变形固体的性质及其基本假设可变形固体:固体在荷载作用下,物体尺寸和形状改变3.1 料的物质结构金属具有晶体结构,晶体是由排列成一定规则的原子所构成塑料有场链分子组成玻璃、陶瓷是由按某种规律排列的硅原子和氧原子所组成3.2 想化材料三个基本假设材料力学性能所反映的是无数个随机排列的基本组成部分力学性能的统计平均值对可变形固体制成的构件计算时,略去一些次要因素,抽象化为理想化的材料①连续性假设:认为物体在整个体积内连续地充满了物质而毫无空隙根据这一假设,可以在受力构件内任意一点处截取一体积单元进行研究几何相容条件:变形后的固体既不引起“空隙”,也不产生“挤入”现象②均匀性假设:物体内任意一点取出的体积单元,其力学性能都能代表整个物体的力学性能体积单元的尺寸随材料的组织结构不同而有所不同体积单元最小尺寸必须保证再起体积中包含足够多数量的基本组成部分以使其力学性能的统计平均值能保持一个恒定的量③各向同性假设:认为材料沿各个方向的力学性能是相同的木材和纤维增强层复合材料等,力学性能有着明显的方向性,按各向异性计算3.3 料的变形材料力学中,有些构件其变形与构件原始尺寸相比通常甚小,可略去不计与此相反,有些构件在受力变形后,必须按照其变形后的形状来计算弹性变形:在卸除荷载后能完全消失的那一部分变形塑性变形:再卸除载荷后不能完全消失的那一部分变形4.材料力学主要研究对象(杆件)的几何特征4.1 件的几何特征材料力学研究的主要构件从几何上多抽象为杆,大多数为直杆直杆:纵向(长度方向)尺寸远大于横向(垂直于长度方向)尺寸的构件横截面:沿垂直于直杆长度方向的截面轴线:所有横截面形心的连线变截面杆:横截面沿轴线变化的杆5.杆件变形的基本形式5.1 轴向拉伸或轴向压缩一对作用线与直杆轴线重合的外力F作用下直杆的主要变形是长度的改变简单桁架在荷载作用下,桁架中的杆件就发生轴向拉伸或轴向压缩5.2 剪切一对相距很近的大小相同,指向相反的横向外力F的作用下直杆的主要变形是横截面沿外力作用方向发生相对错动一般在剪切变形的同时,杆件还存在其他形式的变形5.3 扭转一对转向相反、作用面垂直于直杆轴线的外力偶(其矩为Me)作用下直杆的相邻横截面将绕轴线发生相对转动,杆件表面纵向线将变成螺旋线,轴线仍维持直线5.4 弯曲一对转向相反、作用面在杆件的纵向平面内的外力偶(其矩为Me)作用下,直杆的相邻横截面将绕垂直于杆轴线的轴发生相对转动变形后杆件轴线将弯成曲线这种变形形式称为纯弯曲梁在横向力作用下的变形将是弯曲和剪切的组合,通常称为横力弯曲。
材料力学笔记
作者简介:郭志明,现在就读天津大学固体力学专业绪论基本概念材料力学的任务:载荷,弹性变形,塑性变形设计构件需要满足以下三个方面的要求:强度,刚度,稳定性强度:构件抵抗破坏的能力刚度:构件抵抗变形的能力稳定性:构件维持其原有平衡形式的能力基本假设:连续均匀性,各项同性,小变形研究对象及变形形式:杆:构件的某一方向的尺寸远大于其他两个方面的尺寸平板,壳,块体变形形式:拉伸(压缩),剪切,扭转,弯曲基本概念内力:构件内部相邻两部分之间由此产生的相互作用截面法:假象切开,建立平衡方程,求截面内力第一章:轴向拉伸,压缩和剪切基本概念轴力:截面内力FN及FN’的作用线与轴线重合,称为内力轴力图:表示轴力随横截面位置的变化应力:轴力FN均匀分布在杆的横截面上FA圣维南原理斜截面上的应力:P cos拉压杆的变形:F NE l(弹性范围内)A lEA称为杆件的抗拉(压)刚度泊松比:弹性范围内。
横向应变和纵向应变之比的绝对值工程材料的力学性能:材料在外力作用下在强度和变形方面表现出的性能。
Eg:应力极限值,弹性模量,泊松比等。
力学性能决定于材料的成分和结构组织,与应力状态,温度和加载方式相关,力学性能,需要通过实验方法获得。
弹性变形:塑性变形:低碳钢拉伸实验四个阶段:弹性,屈服,强化,颈缩屈服:应力在应力-应变曲线上第一次出现下降,而后几乎不变,此时的应变却显著增加,这种现象叫做屈服冷作硬化:常温下经过塑性变形后材料强度提高,塑性降低的现象ln(1),l/l0(工程应变)真应力应变:t其他材料的拉伸实验温度,时间及加载速率对材料力学性能的影响蠕滑现象:松弛现象:冲击韧性:材料抵抗冲击载荷的能力(可以通过冲击实验测定)许用应力:对于某种材料,应力的增长是有限的,超过这一限度,材料就要破坏,应力可能达到的这个限度称为材料的极限应力。
通常把材料的极限应力/n作为许用应力[σ],[]u强度条件:杆内的最大工作应力max(FN)[]n uA n节点位移计算集中应力:由于试件截面尺寸急剧改变而引起的应力局部增大的现象应力集中系数:K max/n,σn是指同一截面上认为应力均匀分布时的应力值超静定问题:未知力的数目超过独立的平衡方程的数目,因此只由平衡方程不能求出全部未知力,这类问题成为超静定问题。
材料力学笔记
材料力学笔记第一章绪论材料应满足的基本要求:强度要求(抵抗破坏的能量),刚度要求(抵抗变形的能力),稳定性要求(保持原有平衡形态的能力)。
基本假设:连续性假设,均匀性假设、各向同性假设内力:物体内部各部分之间因相对位置改变而引起的相互作用。
垂直于截面的应用分量称为正应力sigma(σ),切于截面的应力称为切应力tau(τ);应变epsilon ε:研究对象某点沿某个方向的伸长或缩短值;切应变γ:研究对象在某个平面内角度的变化;材料变形的基本形式:拉伸或压缩;剪切;扭转第二章拉伸、压缩与剪切截面应力:σ=F NA ;斜截面正应力:σα=σcos2α;斜截面切应力:τα=12σsin2α低碳钢材料力学性能:弹性阶段,屈服阶段,强化阶段,局部变形阶段。
相关概念有比例极限σp,弹性极限σe,屈服极限σs,强度极限σb断裂和塑性变形统称为失效。
许用应力,对塑性材料[σ]=σsn s ; 对于脆性材料:[σ]=σbn b应力应变关系胡克定律:σ=Eε,Δl=FlEA,EA为杆件的抗拉或抗压刚度抽象拉伸或压缩的应变能,应变能密度:vε=σ22E(J/m3)剪切面切应力:τ=F sA ≤[τ];挤压应力:σbs=F NA bs≤[σbs ]第三章扭矩计算外力偶矩{M e}=9549Pn,P为功率,n为转速。
切应力互等定理:在相互垂直的两个平面上,切应力必然成对存在,且数值相等。
切应变: γ=rφlφ表示圆柱两端截面的相对转角,称为扭转角剪切胡克定律:切应变γ与切应力τ成正比τ=Gγ、剪切应变能密度:vε=τ22G(J/m3)圆柱扭转时最大切应力:τmax=TW ,T内力系对圆心的力矩T=∫ρτρdAA, W=I pRI p=∫ρ2dAA为极惯性矩(截面二次矩);W为抗扭截面系数扭转角φ=TlGI p,其中GI p为圆轴的抗扭刚度第四章弯曲内力受弯杆件的简化:简支梁,外伸梁,悬臂梁统称为静定梁 剪力和弯矩相关推论:(1) 在梁的某段内,若无载荷作用,q (x )=0,dFs(x)dx=q (x )=0,剪切图平行于x 轴的直线,M(x)是x 的一次函数,弯矩图是斜直线。
猴博士材料力学笔记pdf
猴博士材料力学笔记pdf
猴博士材料力学笔记
导言:
材料力学是研究材料在外力作用下的力学行为的学科。
它涉及力、应力、应变和物体的强度、刚度以及变形行为等方面的研究。
本笔记将从基本力学原理入手,逐步介绍材料力学的相关概念和理论。
第一章基本力学原理
1.1 物体的外力和内力
1.2 牛顿第一定律:惯性定律
1.3 牛顿第二定律:运动定律
1.4 牛顿第三定律:作用力与反作用力
第二章应力和应变
2.1 应力的定义与分类
2.2 应变的定义与分类
2.3 应力-应变关系
2.4 阿基米德原理在应力应变计算中的应用
第三章弹性力学
3.1 弹性力学的基本假设
3.2 胡克定律及其应用
3.3 弹性变形的表征及计算
3.4 弹性体的能量和能量方法
第四章塑性力学
4.1 塑性力学的基本概念
4.2 塑性变形的表征及计算
4.3 塑性力学中的流变学关系
4.4 塑性体的能量和能量方法
第五章断裂力学
5.1 断裂力学的基本概念
5.2 应力集中和应力分布
5.3 断裂韧性的计算方法
5.4 断裂失效的预测和分析
结语:
材料力学是现代工程学的基础学科之一,对于工程材料的设计、生产和应用都具有重要意义。
通过学习本笔记,我们可以对材料在力学作用下的力学行为有更深入的了解,为实际工程问题的解决提供理论指导。
注意:本笔记中不包含任何网址、超链接和电话信息。
若需要进一步了解相关内容,请参考相关教材或参与相关课程学习。
材料力学笔记
材料力学笔记材料力学是研究材料在外力作用下的力学性能以及材料的变形和破坏规律的学科。
它是材料科学与工程学的重要基础课程,也是工程技术中不可或缺的一部分。
在学习材料力学的过程中,我们需要掌握一些基本的概念和知识,这些知识将对我们理解材料的性能和行为起到关键作用。
首先,我们需要了解材料的力学性能。
材料的力学性能包括弹性模量、屈服强度、抗拉强度、抗压强度等指标。
弹性模量是衡量材料抵抗外力变形的能力,而屈服强度则是材料开始发生塑性变形的临界点。
抗拉强度和抗压强度则分别代表了材料在拉伸和压缩过程中的最大承受能力。
了解这些指标有助于我们评价材料的可靠性和适用性,从而在工程实践中做出合理的选择。
其次,我们需要掌握材料的变形规律。
材料在外力作用下会发生各种形式的变形,包括拉伸、压缩、剪切等。
这些变形会导致材料内部结构和性能的改变,进而影响材料的使用效果。
因此,我们需要通过学习材料力学,了解不同形式变形的规律和特点,以便在工程实践中对材料的变形进行合理控制,从而确保工程结构的安全可靠。
最后,我们需要了解材料的破坏规律。
材料在承受外力过程中,当外力超过其承受能力时,会发生破坏。
破坏形式包括断裂、屈曲、疲劳等,这些破坏形式对材料的使用寿命和安全性都会产生重要影响。
因此,我们需要通过学习材料力学,了解不同破坏形式的特点和规律,以便在工程实践中预测和控制材料的破坏,从而确保工程结构的长期稳定运行。
综上所述,材料力学是工程技术中不可或缺的一部分,它对我们理解材料的性能和行为起着关键作用。
通过学习材料力学,我们可以掌握材料的力学性能、变形规律和破坏规律,从而在工程实践中做出合理的选择和决策,确保工程结构的安全可靠。
希望大家能够认真对待材料力学的学习,将其理论知识与实际工程相结合,不断提高自己的专业水平,为工程技术的发展贡献自己的力量。
材料力学(清华大学)-学习笔记
第一章1.工程上将承受拉伸的杆件统称为拉杆,简称杆rods;受压杆件称为压杆或柱column;承受扭转或主要承受扭转的杆件统称为轴shaft;承受弯曲的杆件统称为梁beam。
2.材料力学中对材料的基本假定:a)各向同性假定isotropy assumptionb)各向同性材料的均匀连续性假定homogenization and continuity assumption3.弹性体受力与变形特征:a)弹性体由变形引起的内力不能是任意的b)弹性体受力后发生的变形也不是任意的,而必须满足协调compatibility一致的要求c)弹性体受力后发生的变形与物性有关,这表明受力与变形之间存在确定的关系,称为物性关系4.刚体和弹性体都是工程构件在确定条件下的简化力学模型第二章1.绘制轴力图diagram of normal forces的方法与步骤如下:a)确定作用在杆件上的外载荷和约束力b)根据杆件上作用的载荷以及约束力,确定轴力图的分段点:在有集中力作用处即为轴力图的分段点;c)应用截面法,用假象截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负:产生拉伸变形的轴力为正,产生压缩变形的轴力为负;d)建立F N-x坐标系,将所求得的轴力值标在坐标系中,画出轴力图。
2.强度设计strength design 是指将杆件中的最大应力限制在允许的范围内,以保证杆件正常工作,不仅不发生强度失效,而且还要具有一定的安全裕度。
对于拉伸与压缩杆件,也就是杆件中的最大正应力满足:,这一表达式称为轴向载荷作用下杆件的强度设计准则criterion for strength design,又称强度条件。
其中称为许用应力allowable stress,与杆件的材料力学性能以及工程对杆件安全裕度的要求有关,由下式确定:,式中为材料的极限应力或危险应力critical stress,n为安全因数,对于不同的机器或结构,在相应的设计规范中都有不同的规定。
材料力学笔记
材料力学笔记材料力学是研究材料在外力作用下的力学性质和变形规律的学科。
它是材料科学的基础学科之一,对于研究材料的强度、稳定性、变形和破坏等性能具有重要意义。
材料力学的研究对象包括金属、非金属材料和复合材料等。
材料力学的基本原理是“内力平衡原理”。
内力平衡原理是指材料内部各部分之间的力等于零的关系。
材料中的内力主要有两种:张力和剪切力。
张力是指材料内部两部分之间的拉伸力,剪切力是指材料内部两部分之间的剪切力。
根据内力平衡原理,材料中的内力可以通过受力分析来求解。
材料力学还涉及到杨氏弹性模量、屈服强度、断裂韧性等材料力学性质的研究。
杨氏弹性模量是描述材料在应力作用下的变形性能的参数。
屈服强度是指材料在受力后产生可观察的塑性变形的应力水平。
断裂韧性是指材料在断裂前能吸收的能量,即材料的抗断裂性能。
在材料力学中,还需要研究材料的变形规律和变形量的计算。
材料的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在外力作用下,材料能够发生可逆的变形,当外力消失时能恢复到原来的形状。
塑性变形是指在外力作用下,材料发生不可逆的变形,即使外力消失也不会恢复到原来的形状。
对于材料的变形量的计算,可以根据应力-应变关系进行求解。
应力是指单位面积上的受力,应变是指单位长度上的变形量。
在材料力学中,通常使用应力-应变曲线来描述材料的变形规律。
应力-应变曲线可以分为三个阶段:弹性阶段、屈服阶段和断裂阶段。
弹性阶段中,材料的应力随着应变线性增长;屈服阶段中,材料的应力保持不变,但是应变继续增长;断裂阶段中,材料出现明显的断裂破坏。
材料力学是对材料力学性质和变形规律进行研究的重要学科。
通过研究材料的力学性质,可以为材料的设计和应用提供理论依据。
材料力学笔记(材力II)
材料力学(土)笔记第一章 弯曲问题的进一步研究1.非对称纯弯曲梁的正应力当梁不具有纵向对称平面或者梁虽然具有纵向对称平面,但外力不作用在该平面内时梁将发生非对称弯曲这时对称弯曲的正应力公式将不再适用1.1 非对称纯弯曲梁正应力的普遍公式若梁的任意横截面上只有弯矩M (其值等于外力偶e M )取x 轴为梁的轴线,y ,z 轴为横截面上任意一对相互垂直的形心轴弯矩M 及其在y ,z 轴上的分量y M 和z M 均用矢量表示对于非对称弯曲,平面假设依然成立非对称弯曲梁横截面上任一点处正应力的普遍表达式为2()()y z yz z y yz y z yz M zI yI M yI zI I I I σ---=-上式称为广义弯曲正应力公式式中y I 、z I 和yz I 依次为横截面对y 轴和z 轴的惯性矩及对y ,z 轴的惯性积y 和z 代表横截面上任一点的坐标可解出中性轴与y 轴间的夹角θ为tan z y y yzy z z yz M I M I M I M I θ+=+横截面上的最大拉应力和最大压应力将分别发生在距中性轴最远的点处对于具有棱角的横截面,其最大拉、压应力必发生在距中性轴最远的截面棱角处对于周边为光滑曲线的横截面,可平行于中性轴作两直线分别与横截面周边相切于两点 该两点即为横截面上的最大拉、压应力点将其坐标(,)y z 分别代入广义弯曲正应力公式,即可得横截面上的最大拉应力(压应力) 由于梁危险截面上的最大拉应力,max t σ和最大压应力,max c σ点均处于单轴应力状态于是根据最大拉、压应力不得超过材料许用拉、压应力的强度条件即可进行非对称纯弯曲梁的强度计算1.2 广义弯曲正应力公式的讨论 不论梁是否有纵向对称平面,外力是否作用在纵向对称平面内,广义弯曲正应力公式都适用 即广义弯曲正应力公式包含了对称弯曲情况下的正应力计算公式①梁具有纵向对称平面,且外力作用在该对称平面内将0y M =、z M M =、0yz I =代入广义弯曲正应力公式,即得zM y I σ=- 上式即为对称弯曲情况下横截面上任一点处的正应力公式在对称弯曲中已知,梁的挠曲线必定是外力作用平面内的一条平面曲线这一类弯曲也称为平面弯曲②梁不具有纵向对称平面但外力作用在(或平行于)由梁的轴线与形心主惯性轴组成的形心主惯性平面内将0y M =,z M M =、0yz I =代入广义弯曲整理公式,同样可得上面的公式上式表明,只要外力作用在(或平行于)梁的形心主惯性平面内对称弯曲时的正应力哦给你时仍然适用可得tan θ=∞,90θ︒=,说明中性轴垂直于弯矩(即外力)所在平面即梁弯曲变形后的挠曲线也将是外力作用平面内的平面曲线,属于平面弯曲范畴③梁具有纵向对称平面,但外力的作用平面与纵向对称平面间有一夹角弯矩M 的矢量与y 轴间的夹角为ϕ,将cos y M M ϕ=、sin z M M ϕ=、0yz I =代入 cos sin y zM M z y I I ϕϕσ=- 此时横截面上任一点处的正应力,可视作两相互垂直平面内对称弯曲情况下正应力的叠加 在此情况下,确定中性轴与y 轴间夹角的公式化简为tan tan y y z y z zI I M M I I θϕ=⨯= 对于y z I I ≠,因而θϕ≠即中性轴不再垂直于弯矩(即外力)所在的平面梁弯曲变形后,其挠曲线不再外力作用的平面内,这类弯曲也称为斜弯曲2.两种材料的组合梁设梁由材料1与材料2组成其弹性模量分别为1E 和2E ,且12E E <,相应的横截面面积分别为1A 和2A梁在纵对称平面内承受纯弯曲,横截面上的弯矩为M 当梁的两种材料的接触部分紧密结合,在弯曲变形过程中无相对错动时,视作整体 平面假设与单轴应力状态假设依然成立取截面的对称轴和中性轴分别为y 轴和z 轴 由平面假设可知,横截面上各点处的纵向线应变沿截面高度呈线性规律变化任一点y 处的纵向线应变为yερ=式中,ρ为中性层的曲率半径当梁的材料均处于线弹性范围,由单轴应力状态下的胡克定律可得横截面上材料1与2部分的弯曲正应力分别为1122y E y E σρσρ⎫=⎪⎪⎬⎪=⎪⎭ 由横截面上正应力所构成的法向分布内力系的合成等于内力的静力学关系,即得1211220N A A dA dA F σσ+==⎰⎰121122A A y dA y dA M σσ+=⎰⎰ 与同一材料梁在对称弯曲时的推导相仿若将组合梁的截面变换为仅由材料1构成的截面,则仅需将横截面上材料2的宽度换为'21E b b E = 于是两种材料的组合梁可变换为同一材料的均质梁进行计算同一材料的截面相当于两种材料的实际截面,称为相当截面应用相当截面,按同一材料梁算出的横截面上的正应力σ于材料1部分,即为实际的应力材料2部分(变换宽度部分),必须将其乘以两材料弹性模量之比值21/E E ,才是实际应力上述按相当截面的计算方法,对于其他形状截面的两种材料组合梁也完全适用 只需将截面高度维持不变,将其宽度折算,即可得到相当于一种材料的相当截面在计算相当截面时,将原来的截面折算为哪一种材料的相当接面,对计算结果无影响3.开口薄壁截面梁的切应力·弯曲中心3.1 开口薄壁截面梁的切应力对于横向力作用下的非对称开口薄壁截面梁横向力必须作用在平行于形心主惯性平面的某一特定平面内 才能保证梁只发生平面弯曲而不扭转这以一特定平面,就是梁在形心主惯性平面内发生弯曲时横截面上剪力s F 所在的纵向平面 若横向力作用在平行于该特定平面的另一纵向平面内则梁不仅发生平面弯曲,还将发生扭转3.2开口薄壁截面的弯曲中心非对称薄壁截面梁,其横截面上剪力Sy F 和Sz F 的作用线教育A 点为使梁只发生弯曲而不扭转,梁很说那个横向外力所在的纵向平面就必须通过该交点A 这一交点称为截面的弯曲中心,或剪切中心 对于具有一根对称轴的截面,其弯曲中心都在截面的对称轴上则仅需确定其垂直于对称轴的剪力作用线,剪力作用线与对称轴的交点即为截面的弯曲中心 若截面具有两根对称轴,则两根对称轴的交点(即截面形心)即是弯曲中心对于由两个狭长矩形组成的截面,由于狭长矩形上的切应力方向平行于长边且数值沿厚度不变,故剪力作用线必与狭长矩形的中线重合,其弯曲中心应位于梁狭长矩形中心的交点弯曲中心的位置仅与横截面的几何特征有关因为弯曲中心仅决定于剪力作用线的位置,而与其方位及剪力的数值无关4.开口薄壁截面梁约束扭转的概念5.平面大曲率杆纯弯曲时的正应力第二章 考虑材料塑性的极限分析1.塑性变形·塑性极限分析的假设1.1塑性变形的特征塑性变形主要特征①塑性变形时不可逆的永久变形,一旦产生后,即使荷载卸除也不会消失产生塑性变形后再卸除荷载,往往会导致受力构件内的残余应力②应力超过弹性范围后,应力-应变呈非线性关系③塑性变形与加载的历程有关应力超过弹性范围后,卸载时的应力-应变关系基本上按平行于弹性阶段的直线呈线性关系 直至达到材料在反向时的屈服极限,这就是材料的卸载规律在考虑材料的塑性变形时,对于同一应力水平,不同加载过程对应的应变值不同只有明确了加载过程,才能得到应力、应变间的对应关系④金属材料的塑性变形远大于弹性变形量当应力超过弹性范围后,其总应变包含弹性应变和塑性应变通常所说的塑性变形,是指在常温下、与时间无关的不会消失的永久变形在高温下随承载持续时间而引起的塑性变形,称为蠕变1.2 塑性极限分析假设实际工程中,为简化计算,通常作如下假设①荷载为单调增加的静荷载,若多个荷载同时作用,则各个荷载按比例同时由零增至最终值 满足上述加载方式的荷载称为简单加载②结构(或构件)虽局部产生塑性变形,但其总体的变形仍然足够小因而其变形的几何相容条件仍保持为线性结构(或构件)由于大的塑性变形变为几何可变机构时,称结构(或构件)达到了极限状态 ③结构(或构件)达到极限状态之前,应始终保持为几何不变体系④材料具有屈服阶段,在塑性变形较小时,材料的应力-应变关系可理想化为理想塑性模型 其中,一种是不考虑弹性变形的影响,即材料在达到屈服极限之前,应变为零而在达到屈服极限之后,应力保持不变,应变持续增长,称为刚性-理想塑性模型另一种是考虑弹性变形的影响,即材料在屈服极限前,应力-应变关系保持为线性,并服从胡克定律,在达到屈服极限后,应力保持不变而应变可继续增长,称为弹性-理想塑性模型2.拉、压杆系的极限荷载对于静定的拉、压杆系,当其中受力最大的一杆的应力达到材料的屈服极限时结构就将产生大的塑性变形而达到极限状态因此,结构的极限荷载与弹性分析中最大应力达到屈服极限,使杆件开始屈服时荷载相同 对于一次超静定结构,当其中受力最大的杆件的应力达到材料的屈服极限而使该杆开始屈服时,由于超静定结构存在多余约束,结构并不会产生大的塑性变形 若继续增加荷载,则开始屈服的杆件,其应力保持不变(保持为屈服极限)其他杆的应力持续增长,直至其他某一杆内的应力也达到屈服极限时结构开始大的塑性变形变成几何可变机构,而使结构达到极限状态结构(或构件)开始出现塑性变形时的荷载,称为屈服荷载,记为s F使结构(或构件)处于极限状态的荷载,称为极限荷载,记为u F按弹性设计时,结构的破坏荷载为屈服荷载考虑材料塑性的极限分析时,结构的破坏荷载为极限荷载3.等直圆杆扭转时的极限扭矩设直径为d ,长度为l 的等直圆杆承受扭转外力偶矩e M 的作用圆杆的材料为弹性-理性塑性,其切应力τ与切应变γ的关系如正应力与应变的弹塑性关系 材料的弹性模量为G弹性阶段,最大切应力和相对扭转角分别为max 316e p M T W d τπ== max 2p l Tl GI Gdτϕ== 杆件开始产生塑性变形,横截面上的扭矩为屈服扭矩,其值为316s p s s d T W πττ==当几面各点处的切应力均达到s τ时,则横截面上各点处均将发生塑性变形整个截面进入完全塑性状态,这时不需要再增大外力偶矩,杆件将继续扭转变形引起大的塑性变形,即杆件达到极限状态极限状态的极限扭矩为u s AT dA ρτ=⎰ 3/220212d u s s s A d T dA d πρτπτρρτ===⎰⎰考虑材料的塑性时,增加了圆杆的承载能力若等直圆杆在达到极限扭矩u T 后,卸除荷载,即反向施加外力偶矩e u M T =则圆杆的横截面将有残余应力存在,残余应力有以下特征①卸载后圆杆横截面上的残余应力必自相平衡②残余应力的最大值为s τ,如在卸载后,继续翻向增大外力偶矩 当外力偶矩增大到23e s M T =-时,横截面周边处的切应力将达到s τ若继续增大外力偶矩,τ-γ关系将不再保持线性关系,不能用简单的线性叠加4.梁的极限弯矩·塑性铰4.1 纯弯曲梁的极限弯矩设一承受纯弯曲的矩形截面梁,材料可理想化为弹性-理想塑性模型且在拉伸和压缩时的弹性模量E 和屈服极限s σ均相同在线弹性范围内,梁横截面上任一点的正应力与该点到中性轴的距离成正比其中性轴为横截面的水平对称轴当梁横截面上的最大正应力达到材料的屈服极限时,梁开始发生塑性变形横截面上的弯矩为26s s s bh M W σσ==⨯ 梁的曲率为12s s E hσρ⎛⎫=⨯ ⎪⎝⎭ 若继续增大外力偶矩,则截面上的弯矩也随之增大并随着显影的增大,横截面上正应力达到s σ的区域将由其上、下边缘逐渐向中轴扩展 即线应变s εε=的点处的正应力达到s σ,而s εε>各点处的正应力均保持为s σ这时梁处于弹性-塑性阶段,梁虽已产生塑性变形,但其值不大,是有限的当整个横截面上各点处的正应力均达到s σ,则整个截面进入完全塑性状态梁将发生明显的塑性变形而达到极限状态梁横截面上受拉部分的面积为t A ,受压部分面积为c A ,t c A A =横截面上轴力N F 是确定中性轴的条件当梁达到极限状态时,中性轴将横截面分为两个面积相等的部分 对于具有水平对称轴的横截面,其中性轴与该对称轴重合对于无水平对称轴的横截面,其中性轴将与线弹性范围内工作时的中性轴位置不同 中性或走将随塑性区的增加而不断移动在极限状态下,横截面上法向内力元素所组成的力偶矩就是梁的极限弯矩u Mu s s M W σ=s t c W S S =+t S 和c S 分别为受拉部分的面积t A ,受压部分面积c A 对中性轴的静矩,均取正值式中,s W 称为塑性弯曲截面系数,对于由水平对称轴的横截面t c S S =,//u s s M M W W =4.2 横力弯曲梁的极限荷载·塑性铰对于在横向外力作用下的静定梁,考虑材料塑性时梁的极限荷载可根据最大弯矩所在截面的极限进行计算梁材料可理想化为弹性-理想塑性模型当梁上的最大弯矩小于屈服弯矩时,梁处于弹性状态当最大弯矩达到屈服弯矩时,危险截面上的最大正应力达到材料的屈服极限当荷载继续增加,跨中截面上的弯矩M 处于s u M M M <<范围时梁处于弹性-塑性状态,跨中截面上的塑性区逐渐向中性轴扩展最大正应力达到屈服极限的截面,则从跨中截面逐渐向两侧延伸当荷载增大到梁跨中截面上的弯矩达到极限弯矩时,截面全部进入塑性状态,弹性区消失 这时跨中截面两侧的两段梁,在极限弯矩不变的条件下,将绕截面的中性轴发生相对转动 由于截面达到完全塑性而引起的转动效应,犹如在该截面处安置了一个铰链,称为塑性铰 塑性铰时由于截面达到完全塑性所引起的铰链效应这时,截面上承受的弯矩即为极限弯矩塑性铰所在截面两侧两段梁的转动方向,恒与极限弯矩方向一致当梁卸载,即截面上的弯矩小于极限弯矩,塑性铰的效应随之消失第三章 能量法1.概述可变形固体在受外力作用而变形时,外力和内力均将做功对于弹性体,由于变形的可逆性,外力在相应的位以上所作的功在数值上就等于积蓄在物体内的应变能当外力撤除时,这种应变能将全部转换为其他形式的能量利用功和能的概念求解可变形固体的位移、变形和内力等的方法,统称能量法2.应变能·余能2.1 应变能 当杆件发生组合变形时,在线弹性、小变形条件下每一基本变形的内力对其他的节本变形并不做功故组合变形杆的应变能等于各基本变形应变能的总和若组合变形杆横截面上的内力包括轴力、扭矩和弯矩且三者均可表达为截面位置x 的函数,不计剪力影响,则组合变形等直圆杆应变能222()()()222N l l l p F x dx T x dx M x dx V EA GI EIε=++⎰⎰⎰ 式中积分应遍及全杆,若为非圆截面杆,则p I 应改为t I由于材料是弹性体,略去加载和卸载过程中的能量损耗外力所作的功在数值上就等于积蓄在杆内的应变能,即10V W Fd ε∆==∆⎰ 在拉杆加载过程中,单元体上外力所作的功等于积蓄在单元体内的应变能10v W d εεσε==⎰ VV dV v dV v V v AL εεεεε====⎰⎰ 对于杆件内各点处的应变能密度v ε随该点的坐标而改变的情况,应先求出应变能密度,再积分计算整个梁内所积蓄的应变能在扭转时,整个轴内所积蓄的应变能同理计算,但σ和ε要换成τ和γ应变能具有如下特征①应变能恒为正的标量,与坐标系的选取无关在杆系的不同杆件或不同杆段,可独立选取坐标 ②应变能仅与荷载的最终值有关,与加载顺序无关③在线弹性范围内,应变能为内力(或位移)的二次齐次函数,力的叠加原理不再适用2.2 余能另一个能量参数称为余能,是仿照外力功的表达式计算另一积分积分是F -∆曲线与纵坐标轴间的面积,与外力功之和正好等于矩形面积11F ∆,称为余功 用c W 表示,即10F c W dF =∆⎰ 将余功相应的能称为余能,并用c V 表示,余功和余能在数值上相等,即10F c c V W dF ==∆⎰ 几何线性问题中,同样可仿照应变能密度来计算应变能的方式c c V V v dV =⎰,10c vd σεσ=⎰ 余能有以下特征①余能(或余能密度)仅具有与应变能(或应变能密度)相同的量纲,并无具体的物理意义 ②线弹性材料的几何线性问题中,由于荷载与位移(或应力与应变)间的线性关系 因而余能(或余能密度)在数值上等于应变能(或应变能密度),但两者迥然不同3.卡氏定理3.1 卡氏第一定理卡斯蒂利亚诺导出了计算弹性杆件的力和位移的两个定理通常称为卡氏第一定理和卡氏第二定理设梁的材料为非线性弹性,梁上有n 个集中荷载作用与这些集中荷载相对应的最后位移分别为1∆、2∆、...、n ∆假定这些荷载咱比例同时由零增至其最终值1F 、2F 、...、n F (即为简单加载) 于是外力所作的总功就等于每个集中荷载在加载过程中所作功的总和,则01in i i i V W f d εδ∆===∑⎰式中,i f 和i δ为加载过程中荷载以及位移的瞬时值,右端每一积分均为位移i ∆的函数 设与第i 个荷载相应的位移有一微小增量i d ∆,则梁内应变能的变化dV εi i V dV d εε∂=∆∂∆ 其中,iV ε∂∂∆代表应变能对于位移i ∆的变化率 因为仅与第i 个荷载相应的位移有一微小增量,而与其余各荷载相应的位移均保持不变 因此对于位移的微小增量i d ∆,仅i F 作了外力功,则外力功的变化为i i dW Fd =∆由于外力功在数值上等于应变能,故有dV dW ε=整理可以得到i iV F ε∂=∂∆ 上式表明:弹性杆件的应变能对于杆件上某一位移之变化率,等于改为以相应的荷载 称为卡氏第一定理卡氏第一定理适用于一切受力状态下线性或非线性的弹性杆件式中,i F 代表作用在杆件上的广义力,可以代表一个力、一个力偶、一对力或一对力偶 i ∆则为与之相应的广义位移,可以是一个线位移、一个角位移、相对线位移或相对角位移 在运用卡氏第一定理时,必须将应变能表达成给定位移的函数形式这样才可能求其对给定位移的变化率3.2 卡氏第二定理受n 个集中荷载1F 、2F 、...、n F 作用的梁,材料为非线弹性与各荷载相应的最终位移分别为1∆、2∆、...、n ∆,按简单方式加载外力的总余功等于每一集中荷载的余功之总和,梁内的余能为01in F c c i i i V W df δ===∑⎰式中, i f 和i δ分别为加载过程中荷载及位移的瞬时值上式表明,梁内的余能时作用在梁上一系列荷载i F 的函数同卡氏第一定理,可得c i iV F ∂∆=∂ 上式表明:弹性杆件的余能c V 对于杆件上某一荷载之变化率,等于与该荷载相应的位移 称为余能定理,余能定理适用于一切受力状态下线性或非线性弹性杆件式中,i F 代表广义力,而i ∆代表与之相应的广义位移在弹性杆件或杆系中,由于力与位移成正比,杆内得应变能在数值上等于余能因此对于线弹性杆件或杆系,可用应变能代替余能,从而得到i iV F ε∂∆=∂ 上式表明:线弹性杆件或杆系的应变能对于作用在该杆件或杆系上的某一荷载值变化率,等于该荷载相应的位移,称为卡氏第二定理卡氏第二定理时余能定理在线弹性情况下的特例,仍然适用于任意受力形式下的线弹性杆 卡氏第一定理和余能定理适用于线弹性或非线弹性体,而卡氏第二定理仅适用于线弹性体4.用能量法解超静定系统利用能量法所得力-位移间的物理关系,就可求解超静定问题的范围扩展到任意荷载作用下、线弹性杆系、刚架或曲杆等超静定问题5.虚位移原理及单位力法第五章 应变分析·电阻应变计法基础1.概述在实际工程中,有一些构件或由于形状不规则,或由于受情况、工作条件比较复杂 按其计算简图进行的理论计算结果,往往与实际情况有较大出入有时也用试验的方法来检验按计算简图进行理论分析所得结果的精确度通过实验来研究和了解结构或构件应力的方法,称为实验应力分析实验应力分析方法很多,较为常用的有电阻应变计法等 方法是以电阻应变片为传感元件,将其粘贴在被测构件的测点处,使其随同构件变形 将构件测点的应变转换为电阻应变片的电阻变化,便可确定测点处的应变并进而按胡克定律的得到其应力电阻应变计的特点是传感元件小,适应性强,测试精度高该方法有其局限性,即只能测量受力构件表面上各点处的应变在实际应变测量中,往往先测定测点处沿几个方向的线应变,然后确定该点处的最大线应变 进而确定该点处的最大正应力2.平面应力状态下的应变分析2.1 任意方向的应变推导平面应力状态下一点处在该平面内沿任意方向线应变和切应变的表达式规定α角逆时针转动为正先分别算出由各应变分量x ε、y ε、xy γ单独存在时的线应变αε和切应变αγ然后按照叠加原理求得同时存在时的线应变αε和切应变αγ,得到111()()cos 2sin 2222x y x y xy αεεεεεαγα=++-+1()sin 2cos 2222xy x y αγγεεαα-=-- 2.2 应变圆将线应变ε作为横坐标,将/2γ-作为纵坐标,即将纵坐标的正向取为铅垂向下便可绘出表示平面应力状态下一点处不同方向的应变变化规律的应变圆受力物体内一点处各方向应变的集合,称为一点处的应变状态在已知一点处的三个应变分量x ε、y ε、xy γ后,就可依照应力圆的作法作出应变圆 注意应边圆的纵坐标时/2γ,且正值的切应变在横坐标下方2.3 主应变的数值与方向 平面应力状态下,在平面内一点处也存在着两个相互垂直的主应变其相应的切应变均等于零,由应变圆可得两主应变的表达式为2211[()()]2x y x y xy εεεεεγ=++-+2221[()()]2x y x y xy εεεεεγ=+--+ 主应变1ε的方向与x 轴间所夹角度为0/22arctan arctan ()/2()xy xy x y x y γγαεεεε==--0α3.电阻应变计法的基本原理3.1 转换原理及电阻应变片导体在一定应变范围内,其电阻改变率/R R ∆与导体的弹性线应变/l l ∆成正比,即//s R R K l l∆=∆ 式中,常数s K 称为材料的灵敏系数因此可选取合适的导体制造成电阻应变片,粘贴在构件表面测点处使其随同构件变形,从而测定构件测点处的应变金属丝制造成应变片后,因金属丝回绕形状,基体和胶层等因素影响,应变片的灵敏因数为/R RK ε∆=式中,ε为沿应变片长度方向的线应变应变片的灵敏因数K 与制造应变片材料的灵敏因数s K 值不尽相同应变片的灵敏因数K 一般通过实验测定,常用应变片K 值为1.7~3.6 电阻应变片的基本参数为灵敏因数K 、电阻值R 、标距l 和宽度a由应变片测得的应变实际上式标距和宽度范围内的平均应变当需要测量一点处的应变时,应选取尽可能小的应变片当要测量不均匀材料的应变时,则须选用足够大的应变片,以得到测量范围内的平均应变值3.2 测量原理及电阻应变仪应变片随同构件变形而引起的电阻变化,可用四臂电桥(惠斯顿电桥)来测量电桥的四个桥臂的电阻分别为1R 、2R 、3R 和4R当对交结点A 、C 接上电压为AC U 的直流电源时,另一对角结点B 、D 的输出电压为 1144BD AB AD U U U I R I R =-=-由于112AC U I R R =+,434AC U I R R =+ 故得到 13241234()()BD ACR R R R U U R R R R -=++ 当电桥的输出电压BD U =0,即电桥平衡时,得1324R R R R =若电桥的四个桥臂均为粘贴在构件上的电阻应变片,且其初始电阻相等则在构件受力前,电桥保持平衡,BD U =0在构件受力后各应变片产生的电阻该变量分别为1R ∆、2R ∆、3R ∆和4R ∆考虑到i R ∆远小于R ,略去分子中i R ∆的高次向和分母中的i R ∆项即可得到电桥的输出电压为13244BD AC R R R R U U R∆+∆-∆-∆=⨯ 为了提高测量精度,实际应用的应变仪采用双电桥结构,把测量电桥和读数电桥串联起来 1R 、2R 、3R 和4R 是有应变片组成的测量电桥四个桥臂的电阻而'1R 、'2R 、'3R 和'4R 为由可调电阻组成的读数电桥四个桥臂的电阻 双电桥的总输出电压为'BD BDU U U =+。
材料力学笔记(惯性矩)
材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为Ix=Iy=bh³/12(B.3-4)(B。
3-5)³t(B.3—6)Ix=Iy=πR式中,d—实心圆直径和空心圆内径,D—空心圆外径,R-薄壁圆平均半径。
t-薄壁圆壁厚。
惯性矩I量纲为长度的四次方(mm4),恒为正。
和抗弯截面模量Wz二、截面抗弯刚度EIz(a)上式代表距中性层为y处的任一纵向“纤维"的正应变,式中的ρ对同一横截面来说是个常数, 所以正应变ε与y成正比(上缩下伸),与z无关。
式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。
(b)式(b)表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。
由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E也是常数,所以横截面上任一点处的正应力与y成正比(上压下拉)。
显然中性轴上的图7.2-4 弯曲正应力分布正应力为零,而距中性轴愈远,正应力愈大,发生在距中性轴最远的上下最大正应力σmax边缘(图7。
2-4)。
微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得.令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。
于是得出(7.2—1)上式确定了曲率的大小。
式中EIz称为截面抗弯刚度(stiffness in bending)。
到此为止,式(a)中的y和ρ已经确定。
联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。
当y=ymax时,得出最大正应力公式,即(7.2—3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方.表7.2—I列出了简单截面的Iz 和Wz计算公式.表中=d/D,R为薄壁圆平均半径。
表7。
2—1截面矩形实心圆空心圆薄壁圆IzWz三、平行轴间惯性矩的移轴公式图B 。
材料力学笔记(第四章)
材料力学笔记(第四章)材料力学(土)笔记第四章弯曲应力1.对称弯曲的概念及梁的计算简图1.1弯曲的概念在包含其轴线的纵向平面内,当等长直杆受到横向外力或垂直于杆轴线的外力耦合作用时,杆的轴线将变成曲线。
这种变形称为弯曲。
所有以弯曲为主要变形的钢筋在梁工程中通常称为梁,其截面具有对称轴。
如果梁上的所有横向外力或(和)力偶作用于包含对称轴的纵向平面(称为纵向对称平面),由于梁的几何、物理特性和外力与梁的纵向对称平面对称,变形梁的轴必须是纵向对称平面中的平面曲线。
这种弯曲叫做对称弯曲若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲1.2梁计算图梁的计算简图可用梁的轴线表示根据梁在荷载作用面上的约束,梁的支撑一般可简化为以下三种基本形式:① 固定端这种支座使梁的端截面既不能移动,也不能转动梁端截面上有三个约束。
因此,有三种支撑反应,即水平支撑反应frx、垂直支撑反应fry和支撑反应耦合力矩Mr② 固定铰链支架这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2个支反力,即水平支反力frx和铅垂支反力fry③ 活动铰链支架这种铰支座只限制梁在支座处沿垂直于支承面的支反力fr如果梁有1个固定端或1个固定铰链支架和1个活动铰链支架则其3个支反力可由平面力系的3个独立的平衡方程求出,这种梁称为静定梁工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁梁的支承反作用力的数量大于独立平衡方程的数量。
此时,只有平衡方程不能确定所有的支撑反应。
这种梁称为超静定梁梁在两支座间的部分称为跨,其长度称为梁的跨长常见的静定梁大多是单跨的2.梁的剪力、弯矩图和弯矩图2.1梁的剪力和弯矩为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力当作用在梁上的所有外力(包括荷载和支承反力)已知时,可使用截面法获得内梁的任何横截面M-M。
材料力学笔记整理
a. 数值上等于截面侧所有扭转外力偶矩代数和
分区 第二章 的第 3 页
方向:右手螺旋,外法线方向为正 6) 扭矩图
a. 数值上等于截面侧所有扭转外力偶矩代数和 b. 外力偶矩转向与正扭矩相反为正
3、平面弯曲梁的内力 a. 受力特征:外力垂直于轴线 b. 变形特征:轴线由直线变为曲线 c. 横向荷载 d. 梁:以弯曲变形为主 e. 平面弯曲: i. 对称弯曲 ii. 不对称弯曲 f. 梁的计算简图: i. 梁 ii. 荷载 iii. 支座 1) 滚动铰支座 2) 固定铰支座
分区 第二章 的第 4 页
1) 写平衡方程,求支座约束力 2) 列弯力,弯矩方程 3) 求各控制截面弯力/弯矩值 4) 画图
5、梁的平衡微分方程 1) 导出: 2) 平衡微分方程
q(x):荷载集度
a. 剪力图任一点切线斜率=该点荷载集度 b. 弯矩图任一点切线斜率=该点截面剪力 c. 弯矩图凸向=分布荷载作用方向 3) 推论: a. q(x)=C,剪力图为直线,弯矩图为二次曲线 b. 无载荷,剪力图为水平线,弯矩图为直线 c. 集中力作用点,剪力图突变,(等于集中力的大小),弯矩图有折点 d. 集中力偶,弯矩图突变(等于集中力偶大小),剪力图不变 e. 最大弯矩可能位置:
第一章:材料力学基本概念
一、基本概念 1. 材料力学研究对象是变形杆件,仅研究弹性体的变形 2. 构件 a. 杆件:长度远大于横向尺寸 i. 直杆 ii. 折杆/曲杆 iii. 等截面杆 iv. 变截面杆 b. 板(壳) c. 实体 3. 设计要求 a. 强度:构件抵抗破坏的能力 塑性变形 b. 刚度:构件抵抗变形的能力 弹性变形 c. 稳定性:在荷载作用下保持平衡形式不突然发生转变 4. 可变形固体(变形固体) a. 变形固体的变形: i. 弹性变形 ii. 塑性变形 iii. 只发生弹性变形——弹性体 b. 变形固体的假设 i. 连续性假设:组成固体的物质不留空隙地充满了固体的体积 ii. 均匀性假设:组成固体的物质在物体内均匀分布且在各处具有相同的力学性能 (有助于将小试样测得的力学性能作为材料的力学性能) iii. 各向同性假设:材料沿任何方向力学性能相同 iv. 小变形假设:变形远小于原始 5. 杆件内力与截面法 a. 附加内力(内力):外力引起,与变形同时产生,随外力变化而变化 b. 截面法:一分为二——确定内力——静力平衡 c. 力系的简化理论(内力)——内力主矢,内力主矩 d. 拉力为正,压力为负 6. 杆件变形基本形式 a. 轴向拉伸/压缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学笔记第一章绪论材料应满足的基本要求:强度要求(抵抗破坏的能量),刚度要求(抵抗变形的能力),稳定性要求(保持原有平衡形态的能力)。
基本假设:连续性假设,均匀性假设、各向同性假设内力:物体内部各部分之间因相对位置改变而引起的相互作用.垂直于截面的应用分量称为正应力sigma(σ),切于截面的应力称为切应力tau(τ);应变epsilon ε:研究对象某点沿某个方向的伸长或缩短值;切应变γ:研究对象在某个平面内角度的变化;材料变形的基本形式:拉伸或压缩;剪切;扭转第二章拉伸、压缩与剪切截面应力:σ=F NA ;斜截面正应力:σα=σcos2α;斜截面切应力:τα=12σsin2α低碳钢材料力学性能:弹性阶段,屈服阶段,强化阶段,局部变形阶段。
相关概念有比例极限σp,弹性极限σe,屈服极限σs,强度极限σb断裂和塑性变形统称为失效。
许用应力,对塑性材料[σ]=σsn s ; 对于脆性材料:[σ]=σbn b应力应变关系胡克定律:σ=Eε,Δl=FlEA,EA为杆件的抗拉或抗压刚度抽象拉伸或压缩的应变能,应变能密度:vε=σ22E(J/m3)剪切面切应力:τ=F sA ≤[τ];挤压应力:σbs=F NA bs≤[σbs ]第三章扭矩计算外力偶矩{M e}=9549Pn,P为功率,n为转速。
切应力互等定理:在相互垂直的两个平面上,切应力必然成对存在,且数值相等。
切应变:γ=rφlφ表示圆柱两端截面的相对转角,称为扭转角剪切胡克定律:切应变γ与切应力τ成正比τ=Gγ、剪切应变能密度:vε=τ22G(J/m3)圆柱扭转时最大切应力:τmax=TW ,T内力系对圆心的力矩T=∫ρτρdAA, W=I pRI p=∫ρ2dAA为极惯性矩(截面二次矩);W为抗扭截面系数扭转角φ=TlGI p,其中GI p为圆轴的抗扭刚度第四章弯曲内力受弯杆件的简化:简支梁,外伸梁,悬臂梁统称为静定梁 剪力和弯矩相关推论:(1) 在梁的某段内,若无载荷作用,q (x )=0,dFs(x)dx=q (x )=0,剪切图平行于x 轴的直线,M(x)是x 的一次函数,弯矩图是斜直线。
(2) 若作用的是均匀载荷,q (x )=常数,M (x )是x 的二次函数,剪切图斜率为q (x )的斜线;弯矩图是抛物线,若q (x )<0, 弯矩图向上凸,否则向下凸。
(3) 若某截面上F s (x)=0,则弯矩的极值发生于剪力为0的截面上;在集中力作用的左右两侧 ,弯矩图的斜率也发生突然变化(4) 在两个截面上剪力之差等于两截面载荷图的面积;两个截面的弯矩之差,等于两截面间剪力图的面积。
实质上反映了载荷、剪力与弯矩之间的积分关系.第五章 弯曲应力纯弯曲的正应力σ=Eε=E yρ,其中y 为距中性层的距离,ρ为中性层的曲率半径1ρ=M EI z, θ=Ml EI z,EI z 为梁的抗弯曲刚度,1ρ为梁轴线变形后的曲率σ=My I z,I z =∫y 2dA 为横截面对中性轴的惯性矩。
σ=M max y maxI z=MW , W =I zymax,W 称为抗弯截面系数矩形截面梁弯曲切应力τ=F s S z∗I z b,S z ∗=∫y1dA A1,横截面的部分面积A1对中性轴的静矩。
因为弯曲时梁截面上的点离中性轴越远,正应力越大,为充分利用材料,应尽量把材料放到离中性轴较远处(竹子为什么空心),所以一般将实心圆截面改成空心圆截面,相应的矩形截面则将中心轴附近的材料移到上下边缘处(工字钢);第六章 弯曲变形挠度 w =f(x)的坐标为x 的横截面形心沿y 方向的位移; 截面转角:梁的横截面对其原来位置转过的角度 tagθ=dw dx挠曲线的近似微分方程:d 2w dx 2=M EI积分法求弯曲变形得到转角方程为: θ=dw dx=∫MEI dx+Cw =∫∫MEI d x+C x +D叠加法求弯曲变形:在弯曲变形很小且材料服从胡克定律的情况下,挠曲线的微分方程式线性的,则两种载荷M F 和M q 的共同作用时弯矩M=M F +M q ,通过d 2wdx 2=MEI 可以推导出 EId 2w F dx 2=M F ,EId 2w q dx 2=M q , M= EId 2(w F +w q )dx 2第七章 应力和应变分析,强度理论在单元体中三个相互垂直的面上都无切应力,这种切应力为0的面称为主平面,主平面上的正应力称为住应力二向应力状态分析的解析法主要步骤: 1) 用式 02tan 2xyx yτασσ=-确定主平面2)用下两式分别确定最大(小)正应力与切应力max min 2x yσσσσ+⎫=⎬⎭,max min ττ⎫=⎬⎭最大和最小切应力所在平面与主平面夹角为450 ,及102παα=+二向应力状态分析图解法主要步骤: 1) 通过x σ、xy τ确定AD 点 2) 通过y σ、yx τ确定BD'点3) 连接AD,BD’点交于C 点(圆心),以CD 为半径,C 为圆心作圆确定应力圆其中D 点代表以x 为法线的面上的应力, D’代表代表以y 为法线的面上的应力.三向应力状态222223231213()()()()22n n l σσσσστσσσσ+--+=+--222231312321()()()()22n n m σσσσστσσσσ+--+=+-- 222221123131()()()()22n n n σσσσστσσσσ+--+=+--正应力与切应力的正值, 13max 1min 3min ,,2σσσσσστ-===广义胡克定律: 1[()]x x y z Eεσμσσ=-+ 1[()]y y y z Eεσμσσ=-+ 1[()]z z x y E εσμσσ=-+,,xy yz zx xy yz zx GGGττττττ===复杂应力状态的应变能密度:2221231223311(2())2v Eεσσσμσσσσσσ=++-++ 弹性常数G ,μ和E 之间关系: 2(1)EG μ=+四种常用强度理论最大拉应力强度理论: (1[]σσ≤);最大伸长线应变理论:(123()[]σμσσσ--≤) 最大切应力理论: 13[]σσσ-≤ 和畸变能密度理论:[]σ 其中第一、二强度理论比较适合于以断裂形式失效的材料; 以屈服形式失效的材料宜采用第三、四强度理论。
莫尔强度理论:13[][][]t c σσσσσ-≤,其中t σ、c σ分别为材料的抗拉和抗压许用应力。
第八章 组合变形由两种以上基本变形组合的情况称为组合变形,一般采用线性叠加原理进行计算。
在计算扭转与弯曲的组合时,长采用第三强度理论或第四强度理论来校核塑性材料的相关强度,相应的公式有第三强度理论[]σ≤ 第四强度理论]σ 其中W 为抗弯截面系数,M 为合成弯矩,T 为扭矩.第九章 压杆稳定计算压杆临界力的欧拉公式为22()cr EIF l πμ=,其中E 为弹性模量; I 为横截面的惯性矩;μ为长度因数,l 为压杆长度。
常见的几种约束条件下压杆的长度因数μ欧拉公式适用范围与经验公式:22()cr E πσλ=,其中柔度或长细比l i μλ=,只有临界应力cr σ小于比例极限p σ时,上述两个公式才适合欧拉公式,推演即可得1λλ≥=时才适合欧拉公式。
对于超过比例极限后的压杆失稳根据直线惯性经验公式 cr a b σλ=-秋季临界应力。
第十章 动载荷主要讨论了构件有加速度时的应力计算,冲击和振动的情况。
动应力与静应力的关系:d d st K σσ=, d σ为动应力,d K 为动荷因素,st σ为静应力. 对于受重力作用的动荷因素1d a K g=+。
拉伸、弯曲和扭转变形公式:Δl =Fl EA348Fl w EI=pMelGI ϕ=冲击载荷的1d K =T 为 冲击时的瞬时动能,P 为物体重量;若冲击是因P 从高为h处自由落下造成,则有1d K =对水平重庆,d F =,d st σ= 第十一章 交变应力随着时间周期性变化的应力称为交变应力。
最大应力:max σ 最大应力:min σ 平均应力:max min2m σσσ+=应力幅:max min2a σσσ-=最大最小应力比:minmaxr σσ=应力—寿命曲线S -N 曲线持久极限:只要应力不超过某一个极限,N 可以无限增长,即试样可以经历无限次循环而不发生疲劳,交变应力的这一极限称为疲劳极限或持久极限。
对称循环的持久极限计为1σ-,下标为—1表示对陈循环的循环特征为1r =-.影响持久极限的因素:构件外形:(11()()d k K σσσ--=),11()()d k K τττ--=称为有效应力集中因素。
其中1()d σ-和1()d τ-表示无应力集中的光滑试样的持久极限;1()d σ-和1()d τ-表示有应力集中,且尺寸与光滑试验相同的持久极限.构件尺寸的影响:11()dσσεσ--=,11()dττετ--=称为尺寸因素构件表面质量的影响:11()()dβσβσ--=称为表面质量因素.1()βσ-为其他加工情况时构建的持久极限。
综合上述三种因素,在对称循环下,构建的持久极限为01111,K K στστεβεβσσττ----==对称循环下构件疲劳强度计算: 011[]nσσ--=,01max1[]n σσσ--≤=,01maxn n σσσ-=≥称为构件的工作安全因数,则其应大于或等于规定的安全因数n ,则可以得到max1n n K σσσσσεβ-=≥,max1n n K τττττεβ-=≥。
所以在计算时,需要首先计算maxσ(maxτ),然后根据构件特征查出K 、ε和β,最后再进行校核。
不对称循环下构件疲劳强度计算实质上只需要对上述n σ、n τ进行修正01aa mn n K σσσσσψσεβ-=≥+,1amn n K ττττττψσεβ-=≥+弯扭组合交变应力的强度计算实质上只需要对上述n σ、n τ进行修正n n στ=≥ ,max1n K σσσσσεβ-=,max1n n K τττττεβ-=≥变幅交变应力(积累损伤理论,线性损伤理论)设变幅交变应力中,超过持久极限的应力是12,,...σσ。
如构件在稳定常幅应力1σ作用下寿命为1N ,便可认为按1σ每循环一次造成的损伤为11N ,循环1n 此后形成的损伤为11n N .同理可以得到在 23,,...σσ作用下的循环次数分别是23,...n n 则引起的损伤分别是11n N ,33n N 。
.。
,则损伤总和为:12112...ki i in n n N N N =++=∑提高强度的措施:减缓应力集中,降低表面粗糙度,增强表层强度常用力学概念:(1) 力偶:大小相等,方向相反.但不在同一直线上的一对平行力(2) 力矩: 是必须要针对某个点来说(3) 力偶矩: 力偶矩是两个等大反向平行不共线力的大小乘以两个力作用线之间的距离 转动惯量,又称惯性距、惯性矩(惯性力矩,易与力矩混淆):转动惯量是刚体转动时惯性的量度 21ni i i J m r ==∑,m i 表示刚体的某个质点的质量,r i 表示该质点到转轴的垂直距离,相应的惯性能:212E J ω=,其中类似于212E mv =,分析实际情况,J 的作用相当于牛顿运动平动分析中的质量m 的作用,都是一般不轻易变的量。