基因工程中常用的三种工具酶
基因工程的基本工具(A)
基因工程的基本工具(A)[知识梳理]实现这一精确的操作过程至少需要三种工具即准确切割DNA的“手术刀”——限制性核酸内切酶、将DNA片段再连接起来的“缝合针”——DNA连接酶、将体外重组好的DNA导入受体细胞的“运输工具”——(运)载体(一)、限制性核酸内切酶——“分子手术刀”1、又称限制酶或(限制性内切酶)2、主要是从原核生物中分离纯化出来的是原核生物的防御机制) 3*、一种限制酶只能识别一种特定的核苷酸序列,(大多数限制酶识别序列6个核苷酸组成)并在特定的切点(两个核苷酸之间的磷酸二酯键)上切割DNA分子(体现酶的专一性;注意与解旋酶的区别)4、切割产生的DNA片段末端通常有两种形式——错位切:产生黏性末端。
平切:产生平口末端。
例:1)GAA TTC(写出)CTTAAG2) CCCGGGGGGCCC(二)DNA连接酶——“分子缝合针”1、两种来源不同的DNA用同种限制酶切割后,末端可以相互黏合,这种只能使互补的碱基连接起来,脱氧核糖和磷酸交替连接而构成的DNA骨架上的缺口(磷酸二酯键),需要靠DNA连接酶来“缝合”。
2、根据酶的来源不同,可以将这些分为两类:一类:从大肠杆菌中分离得到的,称为E·coliDNA连接酶;只能将双链DNA另一类;从T4噬菌体中分离出来的,称T4DNA连接酶;既可以“缝合”双链DNA片段互补的黏性末端,又可以“缝合”平末端,但连接平末端之间的效率比较低。
(三)基因进入受体细胞的(运)载体——“分子运输车”1、通常利用质粒,质粒存在于许多细菌以及酶母菌等生物中。
质粒是独立于细菌(细胞)染色体外(即拟核DNA)之外,具有自我复制能力的双链环状DNA分子。
质粒上有决定固氮、抗药性、抗生素生成的基因(可作为标记基因)。
2、作为运载体的特点:1)、有一个到多个限制酶的切割位点;(供外源DNA片段(基因)插入其中)2)、能进行自我复制;(在细胞中自称复制,或整合到染色体DNA上,随染色体进行同步复制)。
基因工程的工具酶
03
应用领域:基 因工程、生物 制药、环境保
护等领域
04
发展趋势:定 向进化与优化 将成为工具酶 研究的重要方 向,推动基因 工程领域的发
展。
工具酶在合成生物学中的应用与前景
工具酶在合成生物学中的作用:作为构建基因电路的关键元件,实现对基因的精确调控 工具酶的发展趋势:更高效、更精确、更稳定的工具酶不断被开发出来 工具酶在生物制药中的应用前景:利用工具酶进行药物设计和生产,提高药物疗效和降低成本 工具酶在环境保护中的应用前景:利用工具酶进行污染治理和生态修复,保护生态环境和促进可持续发展
工具酶在基因治疗和生物医学中的未来发展
01
基因治疗:工具酶在基因编辑和基因治疗中的应用
02
生物医学:工具酶在疾病诊断和治疗中的应用
03
未来发展:工具酶在个性化医疗和精准医疗中的应用
04
展望:工具酶在基因治疗和生物医学领域的发展趋势和挑战
THANK YOU
YOUR LOGO
04
应用:基因工 程、DNA测序 、基因治疗等
领域
DNA连接酶
功能:连接 DNA片段,形 成重组DNA
特点:高效、 特异性强、稳 定性好
应用:基因克 隆、基因突变、 基因表达调控 等
类型:T4 DNA连接酶、 T7 DNA连接 酶等
聚合酶
01
功能:在基因工程中,聚合酶用于切割和连 接DNA,以实现基因的插入、删除和修改
工具酶:基因工程工具酶是指 在基因工程中用于切割、连接 和修饰DNA的酶
12
34
应用:在基因突变的研究中,
实例:例如,使用限制性内切
基因工程工具酶可以用来诱导
酶切割DNA,然后使用DNA连
基因工程基因工程工具酶
基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。
在基因工程的过程中,基因工程工具酶发挥着关键的作用。
本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。
一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。
它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。
1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。
它们通常识别的序列是4到8个碱基对长,具有一定的对称性。
一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。
1.3 应用限制性内切酶在基因工程中有着广泛的应用。
它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。
通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。
二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。
在基因工程中,连接酶通常被用于连接目标基因和载体。
2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。
它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。
2.3 应用连接酶在基因工程中的应用非常广泛。
它们可以用于构建重组DNA分子、进行目标基因的插入等。
通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。
三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。
在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。
3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。
它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。
3.3 应用修饰酶在基因工程中起着重要的作用。
它们可以用于DNA甲基化的分析、目标基因的修饰等。
基因工程常用的工具酶
四、影响限制酶活性的因素
DNA的纯度: 蛋白质、苯酚、氯仿、EDTA、SDS
增加限制酶用量 扩大酶催化反应体系 延长酶催化时间
DNA的甲基化程度:
反应温度:
DNA的分子结构:
酶缓冲液组成: 甘油浓度:
MgCl2: NaCl/KCl: Tris-HCl: β-巯基乙醇/二硫苏糖醇(DTT): 牛血清白蛋白(BSA):
连接方式
缺口DNA:
5’ 3’
OH P
3’
5’
平齐末端DNA:
5’ 3’
OH P P OH
3’ 5’
粘性末端DNA:
5’ 3’
3’ 5’
基因工程中常用的连接酶
T4噬菌体DNA连接酶(T4连接酶) 大肠杆菌DNA连接酶 热稳定性DNA连接酶
第三节 DNA聚合酶
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
HaeⅢ 的切割位点
5‘ … G A G G C C G A G … 3’ 3‘ … C T C C G G C T C … 5’
HaeⅢ的识别序列
大部分酶的切割位点在识别序列内部或两侧 部分限制酶能识别多种核苷酸序列
HindⅡ的识别序列 5‘ … G C G T Py Pu A C G A G … 3’ 3‘ … C G C A Pu Py T G C T C … 5’
与识别位点一致 Mg2+
低
高
EcoK、EcoB
Hind Ⅱ
同时存在 两个亚基 Ι 、Ⅱ之间 与识别位点不一 Mg2+、 SAM
低 EcoPΙ
二、限制酶的命名
命名原则
限制酶寄主微生物属名头字母(大写)和种名前两字母(小 写)表示寄主物种
基因工程原理
基因工程原理内容提要1.基因工程又称基因操作、重组DNA技术, 是P. Berg等于1972年创建的。
基因工程技术涉及的基本过程包括“切、连、转、选”。
该技术有两个基本的特点∶分子水平上的操作和细胞水平上的表达。
2.基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类。
3.限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类。
根据限制性内切核酸酶的作用特点,被分为三大类。
Ⅱ类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切, 作用时需要Mg++作辅助因子, 但不需要ATP和SAM。
第一个被分离的Ⅱ类酶是Hind Ⅱ。
4.连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA连接酶和RNA连接酶之分。
基因工程中使用的连接酶来自于原核生物,有两种类型的DNA连接酶∶连接酶和T4-DNA连接酶。
基因工程中使用的主要是T4DNA 连接酶,它是从T4噬菌体感染的中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。
5.载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型∶质粒DNA、病毒DNA、科斯质粒,在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。
6.DNA重组连接的方法大致分为四种: 粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。
粘性末端连接法是最常用的DNA连接方法,是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下, 连接成为一个杂合双链DNA。
平末端连接是指在T4 DNA连接酶的作用下, 将两个具有平末端的双链DNA分子连接成杂种DNA分子。
同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA的3'端各加上一段寡聚核苷酸, 制成人工粘性末端, 外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC), 然后在DNA连接酶的作用下, 连接成为重组的DNA。
基因工程的基本工具_基因工程的原理及技术_基因工程和蛋白质工程的应用-高中生物知识点
基因工程的基本工具_基因工程的原理及技术_基因工程和蛋白质工程的应用-高中生物知识点·基因工程基因工程三种工具原理及基因工程的四个步骤一、基因工程需要三个工具:1、剪刀:限制酶。
2、针线:DNA连接酶。
3、运输:运载体。
二、基因工程四个步骤:1、目的基因的获取。
2、基因表达载体的构建目的基因与运载体结合。
3、将目的基因导入受体细胞。
4、目的基因的检测与表达。
基因工程又称基因拼接技术和DNA重组技术。
是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
基因工程技术为基因的结构和功能的研究提供了有力的手段。
基因工程,又称基因操作,DNA重组技术,基因克隆,分子克隆等。
克隆就是来自同一祖先的相同副本或拷贝的集合,而获得同一拷贝的过程则称为克隆化,也就是无性繁殖。
蛋白质工程是研究蛋白质的结构及结构与功能的关系,然后人为地设计一个新蛋白质,并按这个设计的蛋白质结构去改变其基因结构,从而产生新的蛋白质。
1983年,美国生物学家厄尔默首先提出了“蛋白质工程”的概念,随即被广泛接受和采用。
蛋白质工程是以蛋白质结构与功能关系的知识为基础,通过周密的分子设计,把蛋白质改造为合乎人类需要的新的蛋白质。
人们利用分子遗传学的知识和对蛋白质结构的了解,在实验室条件下,设计出全新的优良蛋白质。
利用基因工程生产的胰岛素就是蛋白质工程的第一个成功范例。
由于蛋白质工程是在基因工程的基础上发展起来的,在技术方面有许多同基因工程技术相似的地方,因此人们也把蛋白质工程称为第二代基因工程。
蛋白质工程与基因工程的区别蛋白质工程就是根据蛋白质的精细结构与功能之间的关系,利用基因工程的手段,按照人类自身的需要,定向地改造天然的蛋白质,甚至创造新的、自然界本不存在的、具有优良特性的蛋白质分子。
蛋白质工程自诞生之日起,就与基因工程密不可分。
分子生物学第四章--基因工程常用工具酶
同裂酶:识别位点相同,酶的来源不同。
同尾酶:识别位点不同,切出片段有相同末端序列。
B.以切出片段末端性质不同可分,粘性末端和平末端。
粘性末端:(Cohesive Ends)两个突出末端可退火互补— — DNA是分子重组的基础
15
同裂酶
又称异源同工酶。指来源不同,但具有相同的识别 序列。 在切割DNA时,其切割点可以是相同的,产生平 头末端,称为同识同切; 切割点也可以是不同的,产生3ˊ或5ˊ粘性末端, 称为同识异切。
第四章 基因工程常用工具酶
1
Manipulating Genes
- Transferring Genes
Restriction Ligation Extract DNA
Transformation
Selection
Culturing
2
重组DNA实验中常见的主要工具酶
3
我们的基本目的是:把外源基因与载体 连接在一起形成重组DNA分子,最少需要以 下两类工具酶:
23
如果用一种限制酶,切割两种不同的DNA时,
产生相同的末端,混合后“退火”,这两种不同的
DNA分子彼此可以连接,形成重组DNA分子。
24
限制性内切酶的剪切方式
25
Yu Zheng, et al. Using shotgun sequence data to find active restriction enzyme genes. Nucleic Acids Res., 2009, 37: e1. Whole genome shotgun sequence analysis has become the standard method for beginning to determine a genome sequence. The preparation of the shotgun sequence clones is, in fact, a biological experiment. It determines which segments of the genome can be cloned into Escherichia coli and which cannot. By analyzing the complete set of sequences from such an experiment, it is possible to identify genes lethal to E. coli.
基因工程常用工具酶及应用
DNA 连接酶
36
DNA连接酶
连接的部位:磷酸二酯键(梯子的扶手), 不是氢键(梯子的踏板)。
37
三.RNA酶
主要功能 降解RNA 由于RNA酶分布广泛,如唾液、 皮肤分泌物中都含此酶,在涉及RNA 的实验中谨防RNA酶污染。
38
四.核酸酶SI
• 降解单链 DNA 或 RNA,形成5’-P的单核苷 酸或寡核苷酸片段
5'粘末端
PstI
3' sticky end
3'粘末端
HpaI
blunt end
平末端
14
四.识别位点与切割方式
• 限制性内切酶识别序列一般为6个核苷酸,如
EcoRI,HindIII,BamHI,居多数。 也有少数限制性内切酶,识别序列为4个、5个、 或更多的核苷酸如8个及8个以上,当识别序列核 苷酸数为单数时,则以中间的核苷酸作为对称轴。 如GTNAC(N 代表四种核苷酸)。
某些碱基被甲基化所保护。这种细菌
内部的限制与修饰作用分别由核酸内
切酶和甲基化酶完成,构成了类似免
疫的防御系统。
6
解释 何谓内切酶
-o-o-o-o-o-o-o-o-o-o-o-o-o-o红色为外切酶的作用位点, 蓝色为内切酶的作用位点
7
限制性核酸内切酶的分类
目前已发现的限制性核酸内切酶600余种,可 分为三大类。 Ⅱ类限制性核酸内切酶广泛用于基因工程;
15
• 一般说来,在DNA分子中,识别序列短的 出现概率大,识别序列长的出现概率小。 有N个核苷酸的识别序列出现概率为1/4n。 如识别4个核苷酸Sau 3A,则间隔256 (4×4×4×4)个核苷酸就有一次机会出 现识别位点。如识别8个核苷酸的Not I,则 需间隔65536个核苷酸才有一次机会出现识 别位点。
基因工程知识点总结
选修3易考知识点背诵专题1 基因工程基因工程概念1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来。
(2)功能:能够识别双链DNA分子某种特定核苷酸序列,并且使每一条链中特定部位两个核苷酸之间磷酸二酯键断开,因此具有特异性。
(3)结果:经限制酶切割产生DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补黏性末端之间磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端之间效率较低。
(2)及DNA聚合酶作用异同:DNA聚合酶只能将单个核苷酸加到已有核苷酸片段末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段末端,形成磷酸二酯键。
3.“分子运输车”——载体(1)载体具备条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA鉴定和选择。
(2)最常用载体是质粒,它是一种裸露、结构简单、独立于细菌染色体之外,并具有自我复制能力双链环状DN A分子。
(3)其它载体:噬菌体、动植物病毒(二)基因工程基本操作程序第一步:目基因获取1.目基因是指:是人们所需要转移或改造基因2.获取目基因方法____________ _________________ _____________3.原核基因采取直接分离获得,真核基因是人工合成。
人工合成目基因常用方法有反转录法_和化学合成法_。
4.PCR技术扩增目基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链合成。
基因工程的工具酶
T
T
A
G
C
C
G
怎样切? • 基因的剪刀——限制性内切酶(简称限制酶)
例:大肠杆菌(E.coli)的一种限制酶能识别GAATTC序列,并在G和A之间切开。
限制酶
限制酶
几种II型限制性核酸内切酶的酶切位点
Pst I
Provindencia stuartii 164
Haemophilus influenzae Rd
4363 pBR322物理图谱
练习题
为了绘制长为3.0kb BamH Ⅰ限制性片段的限制性图谱,分别用EcoR Ⅰ、Hpa Ⅱ、 EcoR Ⅰ+Hpa Ⅱ消化这一片段的三个样品,然后通过凝胶电泳分离DNA片段,溴化乙锭染色后观 察DNA带型。请根据这些结果绘制一个限制性图谱,要标明EcoR Ⅰ和Hpa Ⅱ识别位点间的 相对位置,以及它们之间的距离(kb)。
现非特异性的DNA片段的现象。 易产生星活性的内切酶用*标记。如:EcoR I*
造成星活性参数 甘油浓度12-20%,酶与DNA比例,离子强度,45%聚乙二醇(PEG),有机溶剂,8%二甲基
亚枫,二价阳离子,12%
限制性内切酶的应用
1、重组DNA前的切割 2、构建新质粒 3、构建物理图谱 4、DNA分子杂交 5、制备DNA探针 6、亚克隆以用作序列分析 7、基因定位,DNA同源性研究。
A. 连接的两条链必须分别具有 3′端自由羟基(-OH)和5 ′端磷酸基团(-P),而且只有这两 个基团彼此相邻时才能进行连接反应;
B. 在羟基和磷酸基团间形成磷酸二酯键是一种耗能过程,因此连接反应必须有能量分子的参与, 通常有两种能量分子,即ATP和NAD+。
是两条链-因此不能将两条单链连接起来或使单链环化起来。
《基因工程的工具——酶与载体》 知识清单
《基因工程的工具——酶与载体》知识清单基因工程作为现代生物技术的核心领域之一,为人类带来了前所未有的机遇和挑战。
而在基因工程中,酶和载体是至关重要的工具,它们就像是工匠手中的精巧工具,帮助我们实现对基因的精确操作和转移。
一、基因工程中的酶1、限制性内切酶限制性内切酶,也被称为“分子剪刀”,是基因工程中最重要的工具酶之一。
它能够识别特定的核苷酸序列,并在特定的位点将 DNA 分子切断。
这种特性使得我们能够从复杂的 DNA 分子中切取特定的基因片段。
不同的限制性内切酶识别的序列不同,这为基因工程的操作提供了丰富的选择。
限制性内切酶的作用就像是一把精准的剪刀,能够在 DNA 这个长长的“绳子”上剪出我们需要的特定片段。
比如,EcoRI 能识别GAATTC 序列,并在 G 和 A 之间切断 DNA 双链。
2、 DNA 连接酶当我们用限制性内切酶切下所需的基因片段后,需要将它们与其他DNA 片段连接起来,这时候就轮到 DNA 连接酶发挥作用了。
DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。
想象一下,DNA 连接酶就像是一个“胶水”,把被剪开的 DNA 片段重新粘在一起,使它们成为一个连续的整体。
3、 DNA 聚合酶在基因工程中,DNA 聚合酶常用于 DNA 的复制和扩增。
例如,PCR(聚合酶链式反应)技术就依赖于耐高温的 Taq DNA 聚合酶。
通过 PCR 技术,我们可以在体外大量扩增特定的 DNA 片段,为后续的实验和应用提供足够的材料。
4、反转录酶反转录酶能够以 RNA 为模板合成互补的 DNA(cDNA)。
这在获取真核生物的基因时非常有用,因为真核生物的基因中含有内含子,而通过反转录得到的 cDNA 不含内含子,更便于在原核生物中表达。
二、基因工程中的载体1、质粒质粒是一种存在于细菌细胞质中的小型环状 DNA 分子。
它具有自主复制能力,可以在细菌细胞内独立存在和复制。
第二章基因工程中常用的工具酶
第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。
用于生物细胞的破壁、转化、核酸纯化、检测等。
§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。
双链结构的核酸内切酶。
到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。
种以上不同的核酸内切限制酶。
核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。
型限制酶。
2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。
表示分离到的第三个限制酶。
Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。
基因工程常用的工具酶
基因工程常用的工具酶常州工程职业技术学院制药与生物工程技术系生物制药0911 刁亚军学号:2009423134引言:在基因工程的研究和发展过程当中,有许多必不可少的因素影响和制约着基因工程的进展。
本篇综述主要讲述的是基因工程常用的一些工具酶,他们包括限制性内切酶,DNA聚合酶,T4噬菌体DNA连接酶,T4多聚核苷酸激酶,碱性磷酸酶,核酸酶。
这些酶在基因工程中发挥着非常重要的作用。
限制性内切酶限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶。
根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,分别是第一型(Type I)、第二型(Type II)及第三型(Type III)。
Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。
III型限制性内切酶同时具有修饰及认知切割的作用。
限制性内切酶的由来一般是以微生物属名的第一个字母和种名的前两个字母组限制性核酸内切酶成,第四个字母表示菌株(品系)。
例如,从Bacillus amylolique faciens H中提取的限制性内切酶称为Bam H,在同一品系细菌中得到的识别不同碱基顺序的几种不同特异性的酶,可以编成不同的号,如HindII、HindIII,HpaI、HpaII,MboI、MboI等。
限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。
Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。
别名Endodeoxyribonuclease简称限制酶酶反应限制性内切酶能分裂DNA分子在一限定数目的专一部位上。
它能识别外源DNA并将其降解。
单位定义在指明pH与37℃,在0.05mL反应混合物中,1小时消化1μg的λDNA的酶量为1单位。
基因工程中常用的酶
分类与用途
分类
根据识别序列的长度和切割位点的特性,限制性内切核酸酶 可分为Ⅰ型和Ⅱ型。Ⅰ型限制性内切核酸酶识别位点较长, 切割位点不规则;Ⅱ型限制性内切核酸酶识别位点较短,切 割位点规则。
用途
限制性内切核酸酶在基因工程中主要用于DNA的克隆、基因 的定位、突变分析等方面。通过限制性内切核酸酶的切割, 可以将DNA片段分离出来,再进行后续的克隆和转化等操作 。
生物制药
在生物制药中,使用DNA 连接酶将药物基因或疫苗 基因插入到载体中,制备 基因药物或基因疫苗。
03
聚合酶
定义与特性
聚合酶
是一种能够催化DNA复制和修复的酶, 通过聚合核苷酸片段,合成新的DNA 链。
特性
聚合酶具有专一性、高效性和耐受性 等特性,能够在特定的模板指导下, 高效地合成DNA链。
分类与用途
分类
根据来源不同,反转录酶可分为天然反转录酶和重组反转录酶。
用途
在基因工程中,反转录酶主要用于将RNA转录为cDNA,以便进行基因克隆、表达和功能研究。
反转录酶的应用案例
基因克隆
通过反转录酶将mRNA转化为 cDNA,再利用限制性内切酶将其 切割成适当大小的片段,进行基 因克隆和测序。
基因工程中常用的酶
• 限制性内切核酸酶 • DNA连接酶 • 聚合酶 • 反转录酶 • 其他常用酶类
01
限制性内切核酸酶
定义与特性
定义
限制性内切核酸酶是一类能够识 别并切割DNA特定序列的酶,是 基因工程中常用的工具酶之一。
特性
限制性内切核酸酶具有高度的特 异性,能够识别并切割DNA中的 特异序列,切割位点通常是DNA 双链中的特定位点。
限制性内切核酸酶的应用案例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
另外用罗马数字代表同一菌株中不同限制酶的编号,现在常用来表示发现的先后次序。
如HindⅢ是来自Haemophilus influenzae D(嗜血流感杆菌D 株第三种限制酶)。
4.切割位点和结果:限制酶位点在DNA链上是随机分布的,若识别位点为4bp,则44(256)个核苷酸可遇一个切点。
若为6bp,则平均46(4096)个核苷酸才遇到一个切点。
限制酶沿回文结构的对称轴切开,则产生平头末端(flush or blunt ends)如BalⅠ。
多数限制酶错位切开dsDNA,产生5′or 3′-单链互补顺序,称为5′or 3′-粘性末端(sticky or cohesive ends),如HindⅢ、PstI。
5.反应条件:限制酶酶切反应的影响因素如下:(1)DNA的纯度限制酶消化DNA的反应效率,在很大程度上取决于所使用的DNA本身的纯度。
提取DNA时,蛋白质、RNA、酚、氯仿、乙醇、EDTA、SDS、高盐等都有可能抑制限制酶的活性。
小量制备的DNA尤其会遇到这种问题。
RNA一般不影响酶的反应速度,但它能和蛋白质发生非特异性结合,从而减少酶的有效浓度。
少量蛋白质污染不影响酶活性,但如果是Dnase污染则会导致DNA的降解,它可能来源于溶解DNA的试剂溶液或者酶解缓冲液的组分。
由于Dnase的活性需要有Mg2+的存在,而在DNA的储存缓冲液中含有二价金属离子螯合剂EDTA,一般用1mmol/L EDTA溶液(TE)溶解DNA,在保存DNA的过程中因为是低温,Dnase不会有活性,一旦将DNA加入反应体系,EDTA的浓度降低,在37℃温度下反应时,Dnase的活性就会发挥出来。
混杂的结合蛋白则与DNA结合,不仅会封闭酶的识别序列影响酶解,而且形成的DNA—蛋白复合物将干扰DNA的电泳行为。
要避免发生这种情况,唯一的办法就是使用高纯度的DNA。
为了提高限制酶对低纯度DNA的反应效率,一般采用如下4种措施:①增加限制酶的用量,平均每微克底物DNA可高达10单位甚至更多。
②增加酶反应体系的体积,以使潜在的抑制物被相应的稀释。
③延长酶解反应的保温时间。
④向反应体系中添加亚精胺(spermidine)(终浓度为1~2.5mmol/L),亚精胺与负电性的杂质结合。
注意,亚精胺在4℃时会沉淀DNA,因此最好在反应已经保温数分钟后再加入。
DNA本身如果降解了,便无法挽救。
但有时DNA纯度很好,不存在上面所述的问题,酶解效果不好就可能有两种原因,一是DNA没有溶解充分,加入反应体系的DNA比计算的量多得多,使反应体系粘度太大,影响了酶分子的扩散或酶用量相对不足;二是DNA用量虽不过量但由于混合不均匀,也会影响酶解效果。
(2)识别序列的甲基化程度限制酶是原核生物限制—修饰体系的组成部分,因此,识别序列中特定核苷酸的甲基化作用,便会强烈影响酶的活性。
通常从大肠杆菌宿主细胞中分离出的质粒DNA,都混有dam甲基化酶及dcm甲基化酶,前者催化GA TC序列中的A甲基化;后者催化CCA/TGG序列中的C甲基化。
因此,在基因克隆中要使用失去了甲基化酶的大肠杆菌菌株制备质粒DNA。
(3)酶切反应的温度不同的限制酶,具有不同的最适温度,而且彼此之间有相当大的变动范围。
大多数限制酶的最适温度在37℃,但有许多例外的情况,如SmaⅠ是25℃;MaeⅠ45℃、BclⅠ50℃、MaeⅢ55℃、BstⅡ60℃、TaqⅠ65℃等等。
(4)DNA的分子结构DNA分子的不同构型对限制酶的活性也有很大影响。
某些限制酶切割超螺旋的质粒DNA或病毒DNA所需要的酶量,要比消化线性DNA高出许多倍,最高可达20倍。
还有一些限制酶切割不同部位的酶切位点,其效率有明显的差别。
(5)酶解缓冲液各组分的影响使用不适宜的酶解缓冲液,常是导致酶解效果不好的原因。
缓冲液要新鲜配制,各种离子及其浓度要准确,pH要调准。
在反应条件不恰当时,某些限制酶会出现“星号”活性,即它们不再严格遵循从识别序列酶解DNA,而会在其他的序列切断DNA,如EcoRⅠ,其“星号”活性表现在它自AATT序列处切断DNA。
Tris-HCl缓冲液是比较理想的限制酶反应缓冲体系,在pH7.4~8.0有较大的缓冲容量。
Mg2+是酶的激活剂,终浓度一般需在5mmol/L以上,如果反应体系中存在螯合剂(如EDTA 和枸橼酸),游离Mg2+的浓度会减少,使酶活性下降。
当Mg2+被其他二价金属离子(如Mn2+、Co2+或Zn2+)取代时,不仅会影响酶的活性还会改变酶的识别特异性。
反应体系中的NaCl仅提供一定的离子强度。
不同的酶要求不同的NaCl浓度。
个别的酶需要其他的离子,如SmaⅠ绝对需要K+,PstⅠ更易被NH+4激活。
大部分缓冲体系中含二巯基乙醇(BSH,1~10mmol/L)或二硫苏糖醇(DTT,1mmol/L)。
加入巯基化合物的目的是为了去除一些能与巯基去反应的化合物对酶的抑制。
但不是所有的酶都需要添加巯基化合物,如EcoRⅠ、HindⅢ等;而BamHⅠ、AvaⅠ、PvuⅡ和SmaⅠ非要巯基化合物不可。
不需要者可省去,需要者则应新鲜配制。
反应体系中的牛血清白蛋白(BSA)或白明胶是用来稳定酶活性的。
当反应体系中蛋白浓度低于20ug/μl时,有些酶就会极不稳定。
加入BSA后,不仅可减少蛋白的降解,而且还能减轻非特异吸附造成的酶蛋白丢失。
但所用的BSA纯度较高,不含Dnase。
用白明胶可代替BSA。
但过量的BSA也会与DNA结合而影响DNA的电泳分离。
水的质量不容忽视,所用的水应该是无离子及有机化合物的玻璃器皿重蒸水,去离子水也能满足要求。
(6)酶活性限制酶的单位:在限定条件下,1小时消化1μg DNA所需的酶量为1单位。
这是最为重要的。
比活较低的酶,因加入的酶溶液体积大,常有甘油浓度太高的问题,为了避免甘油浓度高于5%,反应体系体积较大,对下步的电泳操作带来不便。
此外,某些酶由于保存时间长,活性降低(以至失活),或者反复取用受到污染或暴露于室温时间太久,也会导致酶活性降低。
因此在进行重要样品酶解前最好测定酶活性的强弱,以免损失样品。
二、T4 DNA连接酶(T4 DNA ligase)从T4噬菌体感染的大肠杆菌中分离的。
能催化两个DNA片段的3′-OH和5′-磷酸形成3′,5′-磷酸二酯键,将两个片段连接成为一个共价结合的DNA分子。
三、逆转录酶(reverse transcriptase)又称依赖RNA的DNA聚合酶(RNA dependent DNA polymerase,RDDP)。
属于多功能性酶。
1.RDDP:以mRNA为模板,以带3′-OH的DNA片段为引物合成cDNA。
2.外切RNA酶活性:底物是RNA-DNA杂化分子中的RNA链。
从RNA链5′-端外切者称为5′→3′外切RNA酶;从RNA链3′-端外切者称为3′→5′外切RNA酶,也称RNA酶H。
3.依赖DNA的DNA聚合酶:以单链DNA为模板,以带3′-OH的DNA片段为引物,从5′→3′方向合成dsDNA。
原文地址:/biotech/exp/molbio/DNA/2010/v8831333.html。