第四章 习题答案电子教案

合集下载

【北师大版】八年级数学上册:第4章《一次函数》全章教学案(68页,含答案)

【北师大版】八年级数学上册:第4章《一次函数》全章教学案(68页,含答案)

第四章一次函数1.初步理解函数的概念,在实际背景中感受自变量取值范围的意义;体会一次函数和正比例函数的意义,能根据所给信息确定一次函数表达式.2.能画一次函数的图象,理解当k>0和k<0时图象的变化情况,并利用一次函数图象解决简单的实际问题.3.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程中,体会数形结合的思想方法与一次函数y=kx+b中k与b 的意义.经历利用一次函数及其图象解决实际问题的过程,发展应用意识;经历函数图象信息的识别与应用过程,发展几何直观.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展符号意识;经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作交流的意识和能力.一、《标准》要求1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.3.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法解决简单的实际问题,增强应用意识,提高实践能力.4.在运用数学表述解决问题过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值.5.探索简单实例中的数量关系和变化规律,了解常量、变量的意义.6.结合实例,了解函数的概念和三种表示法,能举出函数的实例.7.能结合图象对简单问题中的函数关系进行分析.8.能确定简单实际问题中函数自变量的取值范围,并会求函数值.9.能用适当的函数表示法刻画简单实际问题中变量之间的关系.10.结合对函数关系的分析,能对变量的变化情况进行初步讨论.11.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式.12.能利用待定系数法确定一次函数的表达式.13.能画出一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图象的变化情况.14.能用一次函数解决简单实际问题.二、教材分析函数是数学中重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型.本章是学习函数的入门,也是进一步学习的基础.教材通过具体的实例引入一次函数的概念,并通过练习巩固对一次函数意义的认识;通过让学生动手操作,让学生认识到一次函数的图象是一条直线,从而得出两点法作一次函数图象的方法;通过具体的取值结合函数的图象,让学生逐步得出一次函数的性质,体会一次函数在实际生活中的应用.教材注重让学生参与知识的形成过程,自始至终都采用让学生动手尝试、交流、归纳的方式,鼓励学生通过观察、猜想、验证,主动获取知识.【重点】1.初步理解函数的概念.2.画一次函数的图象.3.通过一次函数图象解决生活中的简单问题.【难点】1.一次函数图象的特点.2.一次函数y=kx+b中k与b的实际意义.1.加强与已有知识的联系.在代数式、方程、不等式等内容的学习、探索中都已经渗透了转化的思想,要注意引导学生在原有知识基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解与准确应用,运用数学语言和符号去理解、描述现实世界中问题的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.1函数了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系.通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力.1.经历函数概念的抽象概括过程,体会函数的模型思想.2.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.【重点】1.掌握函数的概念.2.会判断两个变量之间的关系是否属于函数关系.3.能把实际问题抽象概括为函数问题.【难点】1.理解函数的概念.2.能把实际问题抽象概括为函数问题.【教师准备】教材图4 - 1投影图片.【学生准备】预习教材75~76页内容.导入一:长春市某天的气温随时间变化的曲线如图所示.这条曲线反映了气温与时间之间怎样的关系?从这条曲线中又能获得哪些信息呢?导入二:我们生活在一个变化的世界中,时间、温度,还有你的身高、体重等都在悄悄地发生变化.从数学的角度研究变化的量,讨论它们之间的关系,将有助于我们更好地了解自己、认识世界和预测未来.观察下图,你能大致地描述男孩和女孩平均身高的变化情况吗?你的身高在平均身高之上还是之下?你能估计自己18岁时的身高吗?在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.一、感知函数出示教材图4 - 1及相关问题,并由学生讨论完成题目.(1)根据上图填表:(2)对于给定的时间t,相应的高度h确定吗?[设计意图]由于我们已初步接触过这方面知识,所以答案较易得出.在这里要注意时间和高度这两个变量之间的关系.二、做一做1.罐头盒等圆柱形的物体常常如下图那样堆放.随着层数的增加,物体的总数是如何变化的?填写下表:【思考】层数n和物体总数y之间是什么关系?2.一定质量的气体在体积不变时,假若温度降低到-273 ℃,则气体的压强为零.因此,物理学中把-273 ℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别为-43 ℃,-27 ℃,0 ℃,18 ℃时,相应的热力学温度T是多少?(2)给定一个大于-273 ℃的t值,你都能求出相应的T值吗?【思考】在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?三、函数的相关概念一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数(function),其中x 是自变量.表示函数的方法一般有:列表法、关系式法和图象法.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.[知识拓展]理解函数概念时应注意:(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.1.(1)汽车在公路上匀速行驶,速度为每小时30千米,则汽车行驶的路程s(千米)与行驶的时间t(时)之间的关系式为.(2)圆的面积S与半径R的关系式为.答案:(1)s=30t (2)S=πR22.一般地,在某个变化过程中,有个变量x,y.如果给定一个x值,相应地就了一个y值,那么我们称y是x的函数.其中是自变量,是因变量.答案:两确定x y3.对于两个变量之间的函数关系,可以采用不同的表达方式:,,.答案:列表法关系式法图象法4.圆的周长公式C=2πR中,有个变量,是.答案:两R,C5.某30层的大厦底层高4米,以上每层高3米,从底层数起,则前n层的高度h(米)与n的函数关系式为.答案:h=3n+11函数1.感知函数.2.做一做.3.函数的相关概念.一、教材作业【必做题】教材第77页习题4.1第1,2题.【选做题】教材第78页习题4.1第3题.二、课后作业【基础巩固】1.下列变量间的关系不是函数关系的是 ()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径2.下列是关于变量x和y的四个关系式:①y=x;②y2=x;③2x2=y;④y2=2x.其中y 是x的函数的有()A.1个B.2个C.3个D.4个3.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是()A.没挂物体时,弹簧的长度为10 cmB.弹簧的长度随所挂物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.在弹簧的弹性限度内,如果物体的质量为m kg,那么弹簧的长度y cm可以表示为y=2.5m+10D.当物体的质量为4 kg时,弹簧的长度为20 cm4.下列各题中,哪些是函数关系?哪些不是函数关系?(1)匀速运动所走的路程和速度;(2)在平静的湖面上投入一粒石子,泛起的波纹的周长与半径;(3)x+3与x;(4)正方形的面积和梯形的面积;(5)水管中水流的速度和水管的长度.【能力提升】5.如图(1)所示,在长方形ABCD中,动点E从点B出发,沿BADC方向运动至点C 处停止.设点E运动的路程为x,ΔBCE的面积为y,如果y关于x的函数图象如图(2)所示,则当x=7时,点E应运动到()A.点C处B.点D处C.点B处D.点A处6.如下图所示的是桂林冬季某一天的气温随时间的变化图象,请根据图填空:时气温最低,最低气温为℃,当天最高气温为℃,这一天的温差为℃.(所有的结果都取整数)【拓展探究】7.如图所示,正方形ABCD的边长为1,E是CD的中点,P为正方形ABCD边上一个动点,动点P从点A出发,沿A→B→C→E运动.若点P经过的路程为x,ΔAPE的面积为y,则当y=时,求x的值.【答案与解析】1.C(解析:A.长=;B.面积=;C.高不能确定,共有三个变量;D.周长=2π·半径.故选C.)2.B(解析:①③是y关于x的函数.)3.B(解析:因为表中的数据主要涉及弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量,故选项B错误,符合题意.故选B.)4.解:(1)匀速运动所走的路程和速度符合s=vt,是函数关系. (2)在平静的湖面上投入一粒石子,泛起的波纹的周长L与半径r符合L=2πr,是函数关系. (3)x+3与x,设y=x+3,即可得出是函数关系. (4)正方形的面积和梯形的面积没有关系,所以不是函数关系. (5)水管中水流的速度和水管的长度没有关系,所以不是函数关系.所以(1)(2)(3)是函数关系,(4)(5)不是.5.B(解析:当E在AB上运动时,ΔBCE的面积不断增大,当E在AD上运动时,面积不变,当E在DC上运动时,ΔBCE的面积不断减小,所以当x=7时,点E应运动到点D处.故选B.)6.4-210127.解:①当点P在AB上运动时,如图(1)所示,y=x(0≤x<1).当y=时,x=.②当点P 在BC上运动时,如图(2)所示,y=1-×1×(x-1)-(2-x)-×1,整理得y=-x(1≤x<2).当y=时,-x,解得x=.③当点P在CE上运动时,如图(3)所示,EP=-x,y=×1×,即y=-x(2≤x≤2.5).当y=时,-x,解得x=.因为不在2≤x≤2.5内,所以此情况不符合要求.所以当y=时,x的值为或.本课时是函数学习的起始课,因此理解函数的基本思想和表达方式是本课时的重点.通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义.教材安排的实际问题,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题,要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况,鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.本课时的学习需注意后续相关内容的渗透,例如:观察函数图象,感知函数的单调性;通过求函数值,渗透初步的对应思想等.教师在组织教学中应注意做适当的铺垫.随堂练习(教材第77页)解:(1)问题中有时间和温度两个变量,且温度是时间的函数,自变量的取值范围是大于等于0,小于等于24. (2)问题中有汽车的速度v(km/h)和汽车紧急刹车后滑行的路程s(m)两个变量,且s是v的函数,v>0. (3)问题中有信件质量m(g)与邮资y(元)两个变量,且y是m的函数,0<m≤100.习题4.1(教材第77页)1.解:(1)反映了物体与抛射点之间的水平距离s与物体的高度h之间的关系.(2)依次填2,2.5,2.65,2.5,2,1.2,0. (3)确定. (4)可以.2.解:(1)当x=3时,y=9. (2)依题意得y=3x,x的取值范围是x>0,且x是整数.3.解:买单价是0.4元的铅笔,总金额y(元)与铅笔数x(支)之间的关系,其函数的关系式为y=0.4x,自变量的取值范围是非负整数.(答案不唯一)4.解:(1)能. (2)能. (3)能.1.关于确定函数关系式的问题,需要分析实际问题中的等量关系,其具体方法和列方程解应用题类似.2.关于函数自变量的取值范围的讨论,主要包含两个方面:一是自变量取值使函数关系式有意义;二是自变量取值使实际问题有意义,这需要对实际问题作具体分析,具有一定难度.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系式中正确的是()A.y=4n-4B.y=n2C.y=4n+4D.y=4n〔解析〕由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8,从而可知y=4n.故选D.2一次函数与正比例函数理解一次函数和正比例函数的概念,以及两者之间的关系,利用一次函数和正比例函数解决实际问题.能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题.1.通过函数与变量之间的联系,一次函数与一次方程的联系,提高学生的数学思维能力.2.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.【重点】1.一次函数、正比例函数的概念.2.一次函数、正比例函数的关系.3.会根据已知信息写出一次函数的表达式.【难点】一次函数知识的运用.【教师准备】引例和例题投影图片.【学生准备】复习函数的定义、函数值等内容.导入一:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!导入二:汽车的平均速度为95 km/h,A地直达北京的高速公路全程为570 km,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己与北京的距离.小明能得到一个什么样的关系式呢?他是怎样想的?猜猜看.一、出示教材引例及问题某弹簧的自然长度为3 cm.在弹性限度内,所挂物体的质量x每增加1 kg,弹簧长度y增加0.5 cm.(1)计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹簧的长度,并填入下表:(2)你能写出y与x之间的关系式吗?【分析】当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体为x千克时,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x.二、做一做某辆汽车油箱中原有汽油60 L,汽车每行驶50 km耗油6 L.(1)完成下表:(2)你能写出耗油量y(L)与汽车行驶路程x(km)之间的关系式吗?(3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?【答案与提示】(1)如下表所示:(2)y=6·x.(3)z=60-x.【归纳】若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k ≠0)的形式,则称y是x的一次函数.例如y=2x+1, y=x-1等都是一次函数.特别地,当b=0时,称y是x的正比例函数.例如,y=2x,y=-3x等都是正比例函数.正比例函数是一次函数的特例,一次函数包含正比例函数.正比例函数与一次函数的关系如图所示.[知识拓展]正比例函数也是一次函数,不过是特殊的一次函数,就像是等边三角形与等腰三角形的关系一样.三、例题讲解写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?(1)汽车以60 km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系;(2)圆的面积y(cm2)与它的半径x(cm)之间的关系;(3)某水池有水15 m3,现打开进水管进水,进水速度为5 m3/h,x h后这个水池内有水y m3.(由学生交流讨论完成)解:(1)由路程=速度×时间,得y=60x,y是x的一次函数,也是x的正比例函数.(2)由圆的面积公式,得y=πx2,y不是x的正比例函数,也不是x的一次函数.(3)这个水池每小时增加5 m3水,x h增加5x m3水,因而y=15+5x,y是x的一次函数,但不是x的正比例函数.【思考】两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入不超过3500元的部分不收税;月收入超过3500元但不超过5000元的部分征收3%的所得税……如某人月收入3860元,他应缴纳个人工资、薪金所得税为(3860-3500)×3%=10.8(元).(1)当月收入超过3500元而又不超过5000元时,写出应缴纳个人工资、薪金所得税y(元)与月收入x(元)之间的关系式;(2)某人月收入为4160元,他应缴纳个人工资、薪金所得税多少元?(3)如果某人本月缴纳个人工资、薪金所得税19.2元,那么此人本月工资、薪金收入是多少元?〔解析〕一次函数y=kx+b(k,b为常数,k≠0)中,自变量的取值范围是全体实数,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围.本例题的关键是确定问题当中的x的取值范围.解:(1)当月收入超过3500元而不超过5000元时,y=(x-3500)×3%,即y=0.03x-105.(2)当x=4160时,y=0.03×4160-105=19.8(元)(3)因为(5000-3500)×3%=45(元),19.2<45,所以此人本月工资、薪金收入不超过5000元.设此人本月工资、薪金收入是x元,则:19.2=0.03x-105,x=4140.即此人本月工资、薪金收入是4140元.1.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重物1 kg 就伸长0.5 cm,则在弹性限度内,挂重物后的弹簧长度y(cm)与所挂重物x(kg)之间的函数关系式是.解析:弹簧伸长后的长度等于原长加上挂重物后伸长的长度,所以y=0.5x+12.由于这是实际问题,自变量的取值要有实际意义,所以0≤x≤15.故填y=0.5x+12(0≤x≤15).2.y=kx+b是一次函数,则k为()A.一切实数B.正实数C.负实数D.非零实数解析:y=kx+b是一次函数,也就是说kx+b是关于x的一次式,所以k是不等于0的实数.故选D.3.下列函数中,y是x的一次函数的是()A.y=-3x+5B.y=-3x2C.y=D.y=2解析:形如y=kx+b(k,b为常数,k≠0)的函数是一次函数.故选A.4.下列说法不正确的是()A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数解析:正比例函数是特殊的一次函数,不是正比例函数也可能是一次函数,如y=2x-3.故选D.5.某面包厂现年产值是15万元,计划从今年开始每年增加产值2万元.(1)写出年产值y(万元)与年数x之间的函数表达式;(2)求5年后的年产值.解析:(1)年产值等于现年产值加上每年增加的年产值乘年数.(2)将x=5代入(1)中求得的表达式即可得解.解:(1)y=2x+15.(2)当x=5时,y=2×5+15=25,即5年后的年产值为25万元.2一次函数与正比例函数1.出示教材引例及问题.2.做一做.3.例题讲解.例1例2一、教材作业【必做题】教材第82页习题4.2第1,2题.【选做题】教材第82页习题4.2第5题.二、课后作业【基础巩固】1.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的取值范围为()A.m>-B.m> 5C.m=-D.m=52.下列函数:①y=4x+3;②y=x;③y=x4;④y=x2;⑤y=1-x中,一次函数有()A.1个B.2个C.3个D.4个3.在函数y=x, y=x+3,y=,y=2x2-3, y=2(x-3)中,是关于x的正比例函数.【能力提升】4.容积为800 L的水池内已蓄水200 L,若每分钟注入的水量是15 L,设池内的水量为Q(L),注水时间为t(min).(1)请写出Q与t的函数关系式;(2)注水多长时间可以把水池注满?(3)当注水时间为0. 2 h时,池中水量是多少?5.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元.(1)若一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆自行车中,变速车的辆次不小于总辆次的25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围.【拓展探究】6.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案解决下列问题:(1)若某三口之家欲购买120 m2的商品房,求其应缴纳的房款;(2)设某三口之家购买商品房的人均面积为x m2,应缴纳房款为y万元,请写出y 关于x的函数表达式.【答案与解析】1.C(解析:∵函数y=(m-5)x+(4m+1)x2中的y与x成正比例,∴即∴m=-.故选C.)2.C (解析:①y=4x+3是一次函数;②y=x是一次函数;③y=x4的自变量的次数不为1,故不是一次函数;④y=x2的自变量的次数不为1,故不是一次函数;⑤y=1-x是一次函数.故选C.)3.y=x(解析:只有y=x符合y=kx(k≠0)的形式.)4.解:(1)Q=200+15t,0≤t≤40. (2)注水40 min可以把水池注满. (3)当注水0.2 h,即12 min时,池中水量为380 L.5.解:(1)y与x的关系式是y=0.3x+0.5×(3500-x),即y=-0.2x+1750(0≤x≤3500,且x为整数). (2)因为变速车停放的辆次不小于3500的25%,但不大于3500的40%,所以一般自行车停放的辆次在3500×60%与3500×75%之间.当x=3500×60%=2100时,y=-0.2×2100+1750=1330;当x=3500×75%=2625时,y=-0.2×2625+1750=1225.所以该保管站这个星期日保管费收入总数在1225元至1330元之间.6.解析:(1)根据房款=房屋单价×购房面积就可以表示出应缴房款.(2)分别求出当0≤x≤30,30<x≤n和x>n时y与x之间的表达式即可.解:(1)由题意,得应缴纳房款为0.3×90+0.5×30=42(万元). (2)由题意得:①0≤x≤30时,y=0.3×3x=0.9x;②30<x≤n时,y=0.3×90+0.5×3×(x-30)=1.5x-18;③x>n时,y=0.3×90+0.5×3(n-30)+0.7×3×(x-n)=2.1x-18-0.6n.教学时从学生熟悉的实际问题入手,旨在让学生通过直观感知领悟相关概念,通过学生的合作交流得到一次函数和正比例函数的定义,引导学生把新学习的函数知识与实际问题联系起来.对正比例函数和一次函数之间的区别和联系没有做重点强调,这对于学生以后画函数图象和分析图象、性质会带来一定的困难.在教学过程中要适当增加习题,设计不同层次的习题,让不同层次的学生得到不同程度的练习,以提高学生的解题能力和对一次函数与正比例函数的理解和掌握.随堂练习(教材第80页)1.解:依题意得y=2.2x,所以y是x的一次函数,y也是x的正比例函数.2.解:(1)y=80x+100,y是x的一次函数. (2)当x=0.5时,y=140.习题4.2(教材第82页)1.解:y=-3x.2.解:(1)y=3x,y是x的一次函数, 也是x的正比例函数.(2)y=(10-2x)·x=-x2+5x,y不是x的一次函数,也不是x的正比例函数.3.解:(1)y=12+0.2x. (2)48元. (3)440 min.4.解:(1)y=0.25x. (2)45元. (3)400 min.5.解:y A=0.2x+12,y B=0.25x.(1)当x=300时,y A=0.2×300+12=72,y B=0.25×300=75.因为y A<y B,所以选择A类收费方式. (2)由题意得y A=y B,所以0.2x+12=0.25x,解得x=240.所以每月通话240 min时,按A,B两类收费标准缴费,所缴话费相等.要注意一次函数与正比例函数之间的关系,解决“根据所给条件写出简单的一次函数表达式”这类问题的基本思路为:先从实际问题中获取各种有用的信息,然后认真分析,探究这些有关的信息,在此基础上构建出数学模型,并解决这个数学问题,从而进一步解答问题.如图所示,函数、一次函数和正比例函数之间的包含关系是()〔解析〕正比例函数是一次函数的特殊形式,而它们又都是函数.故选A.3一次函数的图象1.理解函数图象的概念,经历作图象的过程,初步了解作函数图象的一般步骤.理解一次函数的代数表达式与图象之间的对应关系,并能熟练作出一次函数的图象.2.了解正比例函数y=kx的图象的特点,会作正比例函数图象,理解一次函数及其图象的有关性质;进一步培养学生数形结合的意识和能力.1.会作一次函数的图象,明确一次函数的图象是一条直线.2.通过观察、思考、交流等过程,得出正比例函数与一次函数图象的性质.。

算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案

算法设计与分析第三版第四章课后习题答案4.1 线性时间选择问题习题4.1问题描述:给定一个长度为n的无序数组A和一个整数k,设计一个算法,找出数组A中第k小的元素。

算法思路:本题可以使用快速选择算法来解决。

快速选择算法是基于快速排序算法的思想,通过递归地划分数组来找到第k小的元素。

具体步骤如下: 1. 选择数组A的一个随机元素x作为枢纽元。

2. 使用x将数组划分为两个子数组A1和A2,其中A1中的元素小于等于x,A2中的元素大于x。

3. 如果k等于A1的长度,那么x就是第k小的元素,返回x。

4. 如果k小于A1的长度,那么第k小的元素在A1中,递归地在A1中寻找第k小的元素。

5. 如果k大于A1的长度,那么第k小的元素在A2中,递归地在A2中寻找第k-A1的长度小的元素。

6. 递归地重复上述步骤,直到找到第k小的元素。

算法实现:public class LinearTimeSelection {public static int select(int[] A, int k) { return selectHelper(A, 0, A.length - 1, k);}private static int selectHelper(int[] A, int left, int right, int k) {if (left == right) {return A[left];}int pivotIndex = partition(A, left, righ t);int length = pivotIndex - left + 1;if (k == length) {return A[pivotIndex];} else if (k < length) {return selectHelper(A, left, pivotInd ex - 1, k);} else {return selectHelper(A, pivotIndex + 1, right, k - length);}}private static int partition(int[] A, int lef t, int right) {int pivotIndex = left + (right - left) / 2;int pivotValue = A[pivotIndex];int i = left;int j = right;while (i <= j) {while (A[i] < pivotValue) {i++;}while (A[j] > pivotValue) {j--;}if (i <= j) {swap(A, i, j);i++;j--;}}return i - 1;}private static void swap(int[] A, int i, int j) {int temp = A[i];A[i] = A[j];A[j] = temp;}}算法分析:快速选择算法的平均复杂度为O(n),最坏情况下的复杂度为O(n^2)。

线性代数课后习题答案第四章向量组的线性相关性

线性代数课后习题答案第四章向量组的线性相关性

第四章 向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+==(1, 2, 3, 4)T . 3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2,a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=, 设211λλλ+-=c , 则b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则a 1可由a 2, ⋅ ⋅ ⋅, a m 线性表示.解 设a 1=e 1=(1, 0, 0, ⋅ ⋅ ⋅, 0), a 2=a 3= ⋅ ⋅ ⋅ =a m =0, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 但a 1不能由a 2, ⋅ ⋅ ⋅, a m 线性表示. (2)若有不全为0的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关. 解 有不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0,原式可化为λ1(a 1+b 1)+ ⋅ ⋅ ⋅ +λm (a m +b m )=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1, b2,b3,b4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3=b 1-b 2+b 3-a 4=b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组: (1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).解 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫ ⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关. 证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A |≠0, 所以R (A )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以R (e 1, e 2,⋅ ⋅ ⋅, e n )≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ),而R (e 1, e 2,⋅ ⋅ ⋅, e n )=n , R (a 1, a 2, ⋅ ⋅ ⋅, a n )≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.17. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 证明它们线性无关的充分必要条件是: 任一n 维向量都可由它们线性表示.证明必要性:设a为任一n维向量.因为a1,a2,⋅⋅⋅,a n线性无关,而a1,a2,⋅⋅⋅,a n,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1,λ2,⋅⋅⋅,λm,使λ1a1+λ2a2+⋅⋅⋅+λm a m=0,而且λ2,λ3,⋅⋅⋅,λm不全为零.这是因为,如若不然,则λ1a1=0,由a1≠0知λ1=0,矛盾.因此存在k(2≤k≤m),使λk≠0,λk+1=λk+2=⋅⋅⋅=λm=0,于是λ1a1+λ2a2+⋅⋅⋅+λk a k=0,a k=-(1/λk)(λ1a1+λ2a2+⋅⋅⋅+λk-1a k-1),即a k能由a1,a2,⋅⋅⋅,a k-1线性表示.19.设向量组B:b1,⋅⋅⋅,b r能由向量组A:a1,⋅⋅⋅,a s线性表示为(b1,⋅⋅⋅,b r)=(a1,⋅⋅⋅,a s)K,其中K为s⨯r矩阵,且A组线性无关.证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r . 证明 令B =(b 1, ⋅ ⋅ ⋅, b r ), A =(a 1, ⋅ ⋅ ⋅, a s ), 则有B =AK . 必要性: 设向量组B 线性无关.由向量组B 线性无关及矩阵秩的性质, 有 r =R (B )=R (AK )≤min{R (A ), R (K )}≤R (K ), 及 R (K )≤min{r , s }≤r . 因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫⎝⎛=O E KC r 为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n nn ααααβαααβαααβ, 证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1,α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ; 解 因为AP =A (x , A x , A 2x ) =(A x , A 2x , A 3x ) =(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫⎝⎛-=110301000) , ,(2x x x A A ,所以⎪⎪⎭⎫⎝⎛-=110301000B .(2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0.22. 求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有 ⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .(3)nx 1 +(n -1)x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0. 解 原方程组即为x n =-nx 1-(n -1)x 2- ⋅ ⋅ ⋅ -2x n -1.取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1)=-n +1; ⋅ ⋅ ⋅ ;取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2. 因此方程组的基础解系为 ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n )T , ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1)T , ⋅ ⋅ ⋅,ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2)T .23. 设⎪⎭⎫⎝⎛--=82593122A , 求一个4⨯2矩阵B , 使AB =0, 且R (B )=2.解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=8/118/5108/18/101 82593122~rA ,所以与方程组AB =0同解方程组为⎩⎨⎧+=-=432431)8/11()8/5()8/1()8/1(x x x x x x . 取(x 3, x 4)T =(8, 0)T , 得(x 1, x 2)T =(1, 5)T ; 取(x 3, x 4)T =(0, 8)T , 得(x 1, x 2)T =(-1, 11)T . 方程组AB =0的基础解系为ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T . 因此所求矩阵为⎪⎪⎪⎭⎫⎝⎛-=800811511B .24. 求一个齐次线性方程组, 使它的基础解系为ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .解 显然原方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x , 即⎪⎩⎪⎨⎧=+=+==14213212213223k x k k x k k x k x , (k 1, k 2∈R ), 消去k 1, k 2得⎩⎨⎧=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.25. 设四元齐次线性方程组I : ⎩⎨⎧=-=+004221x x x x , II : ⎩⎨⎧=+-=+-0432321x x x x x x . 求: (1)方程I 与II 的基础解系; (2) I 与II 的公共解. 解 (1)由方程I 得⎩⎨⎧=-=4241x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 0)T ; 取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, 1)T . 因此方程I 的基础解系为ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T . 由方程II 得⎩⎨⎧-=-=43241x x x x x .取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 1)T ; 取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, -1)T . 因此方程II 的基础解系为ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T . (2) I 与II 的公共解就是方程III :⎪⎩⎪⎨⎧=+-=+-=-=+00004323214221x x x x x x x x x x的解. 因为方程组III 的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000021*********11110011110100011~r A , 所以与方程组III 同解的方程组为⎪⎩⎪⎨⎧==-=4342412x x x x x x .取x 4=1, 得(x 1, x 2, x 3)T =(-1, 1, 2)T , 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .26. 设n 阶矩阵A 满足A 2=A , E 为n 阶单位矩阵, 证明R (A )+R (A -E )=n .证明 因为A (A -E )=A 2-A =A -A =0, 所以R (A )+R (A -E )≤n . 又R (A -E )=R (E -A ), 可知R (A )+R (A -E )=R (A )+R (E -A )≥R (A +E -A )=R (E )=n ,由此R (A )+R (A -E )=n .27. 设A 为n 阶矩阵(n ≥2), A *为A 的伴随阵, 证明⎪⎩⎪⎨⎧-≤-===2)( 01)( 1)( *)(n A R n A R nA R n A R 当当当.证明 当R (A )=n 时, |A |≠0, 故有 |AA *|=||A |E |=|A |≠0, |A *|≠0, 所以R (A *)=n .当R (A )=n -1时, |A |=0, 故有 AA *=|A |E =0,即A *的列向量都是方程组A x =0的解. 因为R (A )=n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1.当R (A )≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0.28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B .与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1,η2, η3是它的三个解向量. 且η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,求该方程组的通解.解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得2η1-(η2+η3)=(η1-η2)+(η1-η3)= (3, 4, 5, 6)T为其基础解系向量, 故此方程组的通解:x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ).30. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1, 4)T ,及b =(1, β, -1)T , 问α, β为何值时(1)向量b 不能由向量组A 线性表示;(2)向量b 能由向量组A 线性表示, 且表示式唯一; (3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式. 解⎪⎪⎭⎫⎝⎛---=11054211121) , , ,(123βαb a a a ⎪⎪⎭⎫ ⎝⎛-+++---βαβαα34001110121 ~r. (1)当α=-4, β≠0时, R (A )≠R (A , b ), 此时向量b 不能由向量组A 线性表示.(2)当α≠-4时, R (A )=R (A , b )=3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.(3)当α=-4, β=0时, R (A )=R (A , b )=2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一. 当α=-4, β=0时,⎪⎪⎭⎫⎝⎛----=1105402111421) , , ,(123b a a a ⎪⎪⎭⎫⎝⎛--000013101201 ~r,方程组(a 3, a 2, a 1)x =b 的解为⎪⎪⎭⎫⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛c c c c x x x 1312011132321, c ∈R .因此 b =(2c +1)a 3+(-3c -1)a 2+c a 1, 即 b = c a 1+(-3c -1)a 2+(2c +1)a 3, c ∈R .31. 设a =(a 1, a 2, a 3)T , b =(b 1, b 2, b 3)T , c =(c 1, c 2, c 3)T , 证明三直线l 1: a 1x +b 1y +c 1=0,l 2: a 2x +b 2y +c 2=0, (a i 2+b i 2≠0, i =1, 2, 3) l 3: a 3x +b 3y +c 3=0,相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关.证明 三直线相交于一点的充分必要条件为方程组⎪⎩⎪⎨⎧=++=++=++000333222111c y b x a c y b x a c y b x a , 即⎪⎩⎪⎨⎧-=+-=+-=+333222111c y b x a c y b x a c y b x a 有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关.32. 设矩阵A =(a 1, a 2, a 3, a 4), 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解.解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解.由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解.由a 2, a 3, a 4线性无关知R (A )=3, 故方程A x =b 所对应的齐次方程A x =0的基础解系中含一个解向量. 因此ξ=(1, -2, 1, 0)T 是方程A x =0的基础解系. 方程A x =b 的通解为x =c (1, -2, 1, 0)T +(1, 1, 1, 1)T , c ∈R .33. 设η*是非齐次线性方程组A x =b 的一个解, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r,是对应的齐次线性方程组的一个基础解系, 证明:(1)η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关;(2)η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r线性无关.证明(1)反证法, 假设η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关.因为ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,而η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关,所以η*可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表示,且表示式是唯一的,这说明η*也是齐次线性方程组的解,矛盾.(2)显然向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r与向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r可以相互表示,故这两个向量组等价,而由(1)知向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,所以向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r也线性无关.34.设η1,η2,⋅⋅⋅,ηs是非齐次线性方程组A x=b的s个解,k1, k2,⋅⋅⋅,k s为实数,满足k1+k2+⋅⋅⋅+k s=1. 证明x=k1η1+k2η2+⋅⋅⋅+k sηs也是它的解.证明因为η1,η2,⋅⋅⋅,ηs都是方程组A x=b的解,所以Aηi=b (i=1, 2,⋅⋅⋅,s),从而A(k1η1+k2η2+⋅⋅⋅+k sηs)=k1Aη1+k2Aη2+⋅⋅⋅+k s Aηs=(k1+k2+⋅⋅⋅+k s)b=b.因此x=k1η1+k2η2+⋅⋅⋅+k sηs也是方程的解.35.设非齐次线性方程组A x=b的系数矩阵的秩为r,η1,η2,⋅⋅⋅,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1, (其中k1+k2+⋅⋅⋅+k n-r+1=1).证明因为η1,η2,⋅⋅⋅,ηn-r+1均为A x=b的解,所以ξ1=η2-η1,ξ2=η3-η1,⋅⋅⋅,ξn-r=η n-r+1-η1均为A x=b的解.用反证法证:ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.设它们线性相关,则存在不全为零的数λ1,λ2,⋅⋅⋅,λn-r,使得λ1ξ1+λ2ξ2+⋅⋅⋅+λ n-rξ n-r=0,即λ1(η2-η1)+λ2(η3-η1)+⋅⋅⋅+λ n-r(ηn-r+1-η1)=0,亦即-(λ1+λ2+⋅⋅⋅+λn-r)η1+λ1η2+λ2η3+⋅⋅⋅+λ n-rηn-r+1=0,由η1,η2,⋅⋅⋅,ηn-r+1线性无关知-(λ1+λ2+⋅⋅⋅+λn-r)=λ1=λ2=⋅⋅⋅=λn-r=0,矛盾.因此ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.ξ1,ξ2,⋅⋅⋅,ξn-r为A x=b的一个基础解系.设x为A x=b的任意解,则x-η1为A x=0的解,故x-η1可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表出,设x-η1=k2ξ1+k3ξ2+⋅⋅⋅+k n-r+1ξn-r=k2(η2-η1)+k3(η3-η1)+⋅⋅⋅+k n-r+1(ηn-r+1-η1),x=η1(1-k2-k3⋅⋅⋅-k n-r+1)+k2η2+k3η3+⋅⋅⋅+k n-r+1ηn-r+1.令k1=1-k2-k3⋅⋅⋅-k n-r+1,则k1+k2+k3⋅⋅⋅-k n-r+1=1,于是x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1.36.设V1={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=0},V2={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=1},问V1,V2是不是向量空间?为什么?解V1是向量空间,因为任取α=(a 1, a 2, ⋅ ⋅ ⋅, a n )T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n )T ∈V 1, λ∈∈R , 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =0, b 1+b 2+ ⋅ ⋅ ⋅ +b n =0,从而 (a 1+b 1)+(a 2+b 2)+ ⋅ ⋅ ⋅ +(a n +b n ) =(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=0, λa 1+λa 2+ ⋅ ⋅ ⋅ +λa n =λ(a 1+a 2+ ⋅ ⋅ ⋅ +a n )=0, 所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∈V 1, λα=(λa 1, λa 2, ⋅ ⋅ ⋅, λa n )T ∈V 1. V 2不是向量空间, 因为任取α=(a 1, a 2, ⋅ ⋅ ⋅, a n )T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n )T ∈V 1, 有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1, b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,从而 (a 1+b 1)+(a 2+b 2)+ ⋅ ⋅ ⋅ +(a n +b n ) =(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=2, 所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∉V 1.37. 试证: 由a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是R 3.证明 设A =(a 1, a 2, a 3), 由02011101110||≠-==A ,知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3是三维空间R 3的一组基, 因此由a 1, a 2, a 3所生成的向量空间就是R 3.38. 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成 的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2.证明 设A =(a 1, a 2), B =(b 1, b 2). 显然R (A )=R (B )=2, 又由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛---=00000013100211 1310131011010211) ,(~r B A , 知R (A , B )=2, 所以R (A )=R (B )=R (A , B ), 从而向量组a 1, a 2与向量组b 1, b 2等价. 因为向量组a 1, a 2与向量组b 1, b 2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.39. 验证a 1=(1, -1, 0)T , a 2=(2, 1, 3)T , a 3=(3, 1, 2)T 为R 3的一个基, 并把v 1=(5, 0, 7)T , v 2=(-9, -8, -13)T 用这个基线性表示. 解 设A =(a 1, a 2, a 3). 由06230111321|) , ,(|321≠-=-=a a a ,知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3为R 3的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则⎪⎩⎪⎨⎧=+=++-=++723053232321321x x x x x x x x , 解之得x 1=2, x 2=3, x 3=-1, 故线性表示 为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321x x x x x x x x , 解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.40. 已知R 3的两个基为a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T ,b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组 , 则⎪⎪⎭⎫⎝⎛-=111001111) , ,() , ,(321321e e e a a a ,1321321*********) , ,() , ,(-⎪⎪⎭⎫⎝⎛-=a a a e e e ,于是⎪⎪⎭⎫⎝⎛=341432321) , ,() , ,(321321e e e b b b⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=-341432321111001111) , ,(1321a a a ,由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-1010104323414323211110011111P。

数字电子技术基础(第四版)课后习题答案_第四章

数字电子技术基础(第四版)课后习题答案_第四章

第4章触发器[题4.1]画出图P4.1所示由与非门组成的根本RS触发器输出端Q、Q的电压波形,输入端S、R的电压波形如图中所示。

图P4.1[解]见图A4.1图A4.1[题4.2]画出图P4.2由或非门组成的根本R-S触发器输出端Q、Q的电压波形,输出入端S D,R D的电压波形如图中所示。

图P4.2[解]见图A4.2[题4.3]试分析图P4.3所示电路的逻辑功能,列出真值表写出逻辑函数式。

图P4.3 [解]:图P4.3所示电路的真值表S R Q n Q n+1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0* 1 110*由真值表得逻辑函数式 01=+=+SR Q R S Q nn[题4.4] 图P4.4所示为一个防抖动输出的开关电路。

当拨动开关S 时,由于开关触点接触瞬间发生振颤,D S 和D R 的电压波形如图中所示,试画出Q 、Q 端对应的电压波形。

图P4.4[解] 见图A4.4图A4.4[题4.5] 在图P4.5电路中,假设CP 、S 、R 的电压波形如图中所示,试画出Q 和Q 端与之对应的电压波形。

假定触发器的初始状态为Q =0。

图P4.5[解]见图A4.5图A4.5[题4.6]假设将同步RS触发器的Q与R、Q与S相连如图P4.6所示,试画出在CP 信号作用下Q和Q端的电压波形。

己知CP信号的宽度t w = 4 t Pd 。

t Pd为门电路的平均传输延迟时间,假定t Pd≈t PHL≈t PLH,设触发器的初始状态为Q=0。

图P4.6图A4.6[解]见图A4.6[题4.7]假设主从结构RS触发器各输入端的电压波形如图P4.7中所给出,试画Q、Q端对应的电压波形。

设触发器的初始状态为Q=0。

图P4.7[解] 见图A4.7图A4.7[题4.8]假设主从结构RS触发器的CP、S、R、DR各输入端的电压波形如图P4.8所示,1DS。

七年级生物第四章教案(全)

七年级生物第四章教案(全)

第四章人体内物质的运输七年级科目:生物主备:审阅:审核:学生姓名:教学过程导入繁忙的运输线,穿梭的陆路运输,航运、航空运输,保障了人员往来的需求,同时也为不同地区货物的往来提供了便利。

人员、货物的往来运输,有赖于运输线的正常有序的运转。

自主学习阅读教材P59-P63,完成《天下通》练习册上相对应的填空题,并在书上勾划,找出自己认为是重点的内容,做好标记;上课的时候要跟着老师的思路注意听讲并做好笔记。

1、为什么失血过多会导致死亡?2、为什么通过化验血液能够在一定程度上检查健康的状况或诊断疾病?3.鲜红的血液里面有什么?4.血液对人有什么作用。

二、探究展示1.、各小组展示合作第二环节合作探究老师提出的问题,没一小组派一个代表回答,其他组员可以补充。

各小组展示以上问题,老师总结板书:血液的组成和功能血浆:成分作用血细胞:红细胞白细胞血小板三、达标检测(一)完成《天下通》上对应练习题(二)熟练记忆以下内容1、血液在人体内不仅担负着体内物质运输的作用,同时还具有吞噬病菌的防御功能以及止血和凝血作用,所以血液对人体的健康和相关生理功能的发挥起着重要的作用。

2、血小板数量偏低,容易出现受伤不容易止血的现象。

因为血小板可以聚集在伤口处,并释放与血液凝固有关的物质。

3、红细胞以及红细胞中的血红蛋白主要功能是运输氧气的。

我前一段时间,被诊断是轻度缺铁性贫血,有时偶尔头晕,医生当时建议我注意加强营养,同时要适当补铁4、数量最多的是红细胞,颜色是红色,形状像两面凹的圆饼。

还有一些个头比红细胞大些,但形状不是很规则的,数量没有红细胞多,这是白细胞。

(三)练习题1、小明做了一个实验:在新鲜的血液中加入抗凝剂,经过一段时间后,血液分为上下两层。

请帮小明分析下列哪项叙述是正确的?()A、上层为血浆B、下层为血浆C、上层为血细胞D、血浆中有机物含量过少2、人患急性炎症时验血,往往会发现血液中哪一成分增多?()A、红细胞B、白细胞C、血小板D、血浆3、世界卫生组织号召普遍使用铁制炊具,是因为:()A、铁有利于蛋白质的吸收B、铁是骨和牙齿的重要成分C、铁是维生素的主要成分D、铁是血红蛋白的组成成分4、血液是由___和___组成的。

2019统编人教版高中化学必修第一册第四章《物质结构元素周期律》全章节教案教学设计含章节综合测试卷及答案

2019统编人教版高中化学必修第一册第四章《物质结构元素周期律》全章节教案教学设计含章节综合测试卷及答案

【2019版新教材】统编版高中化学必修第一册第四章全章节教案教学设计4.1《原子结构与元素周期表》教学设计教学目标:宏观辨识与微观探析:从宏观上学习不同元素的原子结构,从微观上辨析不同元素原子结构的区别与相似点,体会微观粒子的变化对宏观物质的性质的影响。

证据推理与模型认知:通过物质分类的基本模型,理解不同元素的相似或不同特点,通过结合理论与实际感知化学学习的魅力,为后续的化学知识的学习奠定坚实的方法基础。

科学探究与创新意识:熟悉原子核外电子数的递变规律,熟练掌握通过原子结构分析元素性质的能力,体会化学研究过程中的科学方法。

科学精神与社会责任:通过对元素原子结构的学习和理解,掌握更高效的学习方法,建立高效学习的科学精神。

教学重难点:1.熟悉并掌握原子结构的概念。

2.熟悉并掌握原子核外电子数的规律。

3.学习并掌握核素与同位素的概念。

4.了解同位素在生活中的应用,根据知识点求解相关问题。

课前准备:PPT课件教学过程:一、导入教师:丰富多彩的物质世界是由一百多种元素组成的。

最初,人们通过分类整理的方法对元素之间的联系进行研究。

随着元素周期表的建立和元素周期律的发现,特别是原子结构的奥秘被揭示,人们从微观角度探索元素之间的内在联系,进一步认识了元素性质及其递变规律,并通过研究粒子间的相互作用,认识化学反应的本质;逐步建立了结构决定性质的观念。

教师:元素周期表揭示了元素间的内在联系,使元素构成了一个较为系统的体系。

元素周期表的建立成为化学发展史上的重要的里程碑之一。

教师提问:20世纪初,原子结构的奥秘被揭示后,人们对元素周期表的认识更加完善。

那么,原子结构与元素周期表之间有怎样的关系呢?教师:引出本节课学习内容二、授新教师利用多媒体设备向学生投影出下面【新课讲解】原子结构教师:原子由原子核和核外电子构成,原子核由质子和中子构成。

【新课讲解】质量数【新课讲解】原子结构教师:在含有多个电子的原子力,电子分别在能量不同的区域内运动。

概率论第四章习题解答(全)

概率论第四章习题解答(全)

(0.9)10 (0.9)9 3486 0.3874 0.7361
则需要调整设备的概率
P{Y 1} 1 P{Y } 1 0.7361 0.2639
(3)求一天中调整设备的次数 X 的分布律 由于 X 取值为 0,1,2,3,4。 p 0.2369 ,则 X B (4, 0.2369) 于是
个随机变量,其概率密度为
1 x, 0 x 1500, 15002 1 f ( x) ( x 3000),1500 x 3000, 2 1500 0, 其它
求 E( X ) 解 按连续型随机变量的数学期望的定义有
0 1500
E ( X ) xf ( x)dx xf ( x)dx
X p
2
3
4
9
1 8
5 8
1 8
1 8
所以
1 5 1 1 15 E( X ) 2 3 4 9 。 8 8 8 8 4
(2)因为 Y 的取值为 2,3,4,9 当 Y 2 时,包含的字母为“O”,“N”,故
P{Y 2}
1 C2 1 ; 30 15
当 Y 3 时,包含的 3 个字母的单词共有 5 个,故
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )

P{ X 1} P ( A1 )
1 2
1 1 P{ X 2} P ( A1 A2 ) P ( A2 | A1 ) P ( A1 ) 3 2 1 2 1 1 1 P ( A2 | A1 A2 ) P ( A2 | A1 ) P ( A1 ) , 4 3 2 4 3 一般地,若当 X k 时,盒中共有 k 1 只球,其中只有一只白球,故 P ( X k ) P ( A1 A2 Ak 1 Ak ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 ) 1 k 1 k 2 1 2 1 1 1 k 1 k k 1 4 3 2 k k

高一化学必修1(人教版)第四章教案及练习

高一化学必修1(人教版)第四章教案及练习

第四章非金属及其化合物教材分析本章主要讨论硅、氯、硫和氮等典型元素及其重要化合物的性质,安排在第三章“金属及其化合物”之后,是常见无机物及其性质等知识的继续。

这些内容既是学生今后继续学习化学的基础,也是在生活中经常要接触、需要了解和应用的化学常识。

本章具有巩固离子反应、氧化还原反应等基本知识的作用。

在第三章的基础上,进一步介绍元素化合物知识和研究方法,为元素族概念的形成、元素性质的递变规律、元素周期表的形成积累感性材料,是学生认识元素周期律、元素周期表知识的重要基础。

本章在选材上着眼于这几种元素的单质及其重要化合物的主要性质,在知识安排上尽量使知识和用途相结合,理论和实际相结合,物质的重要性能与可能的负面作用相结合,从而使学生认识到常见无机物在生活和生产中的应用,以及与人类和环境的关系。

例如,二氧化硅与硅酸盐产品的应用及其发展,氯气的性质与应用及其可能存在的问题,硫酸、硝酸和氨的性质及广泛用途,酸雨的形成等。

这些内容不仅增强了学生的学习兴趣,而且培养了学生的科学态度和科学精神。

另外,科学史话──“氯气的发现和确认”渗透了严谨、求实的科学思维品质的培养,科学视野──“新型陶瓷”“信使分子──NO”“火箭为什么能飞上天”等让学生体会知识的价值。

这样,更全面地体现化学课程的科学教育功能。

考纲解读1.了解氯、氮、硫、硅等非金属单质的化学性质,认识不同的非金属单质性质有较大的差异。

2.了解氯、氮、硫、硅的重要化合物的主要性质,认识某些非金属化合物既有相似的性质,又有各自的特性。

3.认识氯、氮、硫、硅及其化合物的广泛用途,体会化学的创造性与实用性。

4.通过实验进一步训练学生的操作技能,体会实验对认识和研究物质性质的重要作用,培养学生求实、创新的良好品质。

5.以非金属知识的学习为线索,通过多种活动,帮助学生进一步掌握学习物质及其化学性质的一般方法,提高自主学习能力。

6.了解氮循环对生态平衡的重要作用。

了解某些污染物的来源、性质和危害,体会化学对环境保护的重要意义,培养学生关注社会的意识和责任感。

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。

CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。

设触发器的初始状态为Q0=0,Q1=0。

D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。

CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。

(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。

图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。

CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。

Y图4-67.分析图4-7所示电路的逻辑功能。

(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。

CP图4-78.时序逻辑电路分析。

电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。

并说明电路的功能。

1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。

1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。

(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。

2024年北师大版八年级上册数学第四章教案

2024年北师大版八年级上册数学第四章教案

2024年北师大版八年级上册数学第四章教案一、教学内容二、教学目标1. 理解一元二次方程的定义,掌握其一般形式。

2. 学会使用直接开平方法、配方法、公式法解一元二次方程。

3. 能够将实际问题转化为一元二次方程,并解决实际问题。

三、教学难点与重点教学难点:一元二次方程的解法,尤其是配方法的应用。

教学重点:一元二次方程的定义及其解法。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入:通过一个关于面积的实际问题,引导学生思考如何求解一元二次方程。

2. 讲解一元二次方程的定义,举例说明其一般形式。

3. 讲解直接开平方法、配方法、公式法的具体步骤,通过例题进行讲解。

4. 随堂练习:让学生尝试使用三种方法解一元二次方程,教师巡回指导。

6. 课堂作业:布置一些一元二次方程的题目,让学生当堂完成。

六、板书设计1. 一元二次方程的定义及一般形式。

2. 直接开平方法、配方法、公式法的步骤。

3. 例题及解题过程。

4. 课堂小结。

七、作业设计1. 作业题目:(1)求解方程:x^2 5x + 6 = 0(2)求解方程:2x^2 4x 6 = 0(3)实际问题:一个长方形的长是宽的两倍,面积为24平方厘米,求长方形的长和宽。

2. 答案:(1)x1 = 3, x2 = 2(2)x1 = 3, x2 = 1(3)长:6厘米,宽:3厘米八、课后反思及拓展延伸1. 反思:关注学生在解题过程中的困难和问题,分析原因,为下一节课做好准备。

2. 拓展延伸:让学生尝试研究一元二次方程的根与系数的关系,为后续学习打下基础。

重点和难点解析1. 一元二次方程的解法,尤其是配方法的应用。

2. 实践情景引入的设计,以激发学生兴趣和思考。

3. 板书设计,特别是解题步骤的呈现。

4. 作业设计,确保作业题目的典型性和答案的准确性。

一、一元二次方程解法中的配方法配方法是解一元二次方程的一种重要方法,尤其在求解无理方程时具有优势。

运筹学习题答案(第四章)(课堂PPT)

运筹学习题答案(第四章)(课堂PPT)


1500
6

2000
4.5

1000
3
page 9 28 April 2020
School of Management
运筹学教程
第四章习题解答
表4-14
商标
兑制要求
售价(元/kg)

Ⅲ少于10% Ⅰ多于50%
5.5

Ⅲ少于70% Ⅰ多于20%
5.0

Ⅲ少于50% Ⅰ多于10%
4.8
解:x11 1125, x12 300, x13 75, x21 1125,
x2
d1
d
2
d3
d1
d
2
d3
150 40 40
x1
,
x2
,
d
i
,
d
i
0, i
1,2,3
解:x1
55, x2
40,
d
2
15
满足P1,不满足P2
page 3 28 April 2020
School of Management
运筹学教程
第四章习题解答
min
P1
(d
3
d
4
第四章习题解答
解:目标规划模型如下:
min
P1d1
,
P2
(d
2
d
3
d
4
),
P3d
5
,
P4
d
6
x1 x2 x3 1000
x1
d1
d1
300,
x2
d
3
d
3
350,
x1

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案


1 2 1 2
1 , 2
D (Y ) E (Y 2 ) [ E (Y )]2
1 . 2
9.某正方形场地,按照航空测量的数据,它的边长的数学期望为 350m,又知航 空测量的误差随机变量 X 的分布列为
X (m) P 30 0.05 20 0.08 10 0.16
0
0.42
3
A 机床
次品数 X 概率 P
0
0 .7
1
0 .2 B 机床
2
0.06
3
0.04
次品数 X 概率 P
0
0 .8
1
0.06
2
0.04
3
0.10
问哪一台机床加工质量较好. 解: E ( X ) 0 0.7 1 0.2 2 0.06 3 0.04 0.44 ,
E ( X 2 ) 0 2 0.7 12 0.2 2 2 0.06 32 0.04 0.8 , D ( X ) E ( X 2 ) [ E ( X )]2 0.6064 , E (Y ) 0 0.8 1 0.06 2 0.04 3 0.10 0.44 , E (Y 2 ) 0 2 0.8 12 0.06 2 2 0.04 32 0.10 1.12 , D (Y ) E (Y 2 ) [ E (Y )]2 0.9264 , E ( X ) E (Y ) ,但 D ( X ) D (Y ) ,
0.15 D ( X ) [ x E ( X )]2 f ( x)d x ( x 0.5) 2 (a x 2 bx c)d x
0

1
1 1 1 1 a b c , 5 4 3 4

第四章全章教案新部编本

第四章全章教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念;通过实例,在丰富的现实情境中,使学生经历对简单的平面图形直线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的大小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,•能从现实物体中抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,•掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、面、体关系的研究的数学活动过程,•建立平面图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、•射线、线段和角的表示方法;掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,•探索线段与线段之间、角与角之间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,•在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程中,进行合理的想象,进行简单的、•有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动中的困难,•并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,•体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;•初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,•会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,•理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平面图形之间的互相转化.(2)从现实情境中,抽象概括出图形的性质,•用数学语言对这些性质进行描述.3.关键:(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,•激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1 多姿多彩的图形 2课时4.2 直线、射线、线段 2课时4.3 角 4课时数学活动 1课时回顾与思考 2课时教学设计4.1 多姿多彩的图形4.1.1 几何图形教学内容课本第116~120页.1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.2.过程与方法(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.教学过程一、引入新课1.打开电视,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.(2)提出问题.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4.1第1~6题.2.选用课时作业设计.课时作业设计一、填空题.1.如下图所示,这些物体所对应的立体图形分别是:____ _ _ _ ___.二、选择题.2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是().A B C D3.如下图所示,经过折叠能围成一个棱柱的是().A.①② B.①③ C.①④ D.②④三、解答题.4.桌上放着一个圆柱和一个长方体[如下图(1)],请说出下列三幅图[如下图(2)]分别是从哪个方向看到的.5.如下图,用4个小正方体搭成一个几何体,分别画出从正面、•左面和上面看该几何体所得的平面图形.6.如下图,动手制作:用纸板按图画线(长度单位是mm),沿虚线剪开,做成一个像装墨水瓶纸盒那样的长方体模型.答案:一、1.正方体、圆柱、圆锥、球、棱柱二、2.C 3.D三、4.分别是从左面、上面和正面看到的. 5~6.略4.1.2 点、线、面、体教学内容课本第121页至第123页.教学目标1.知识与技能(1)了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系,•能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.2.过程与方法经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念.3.情感态度与价值观经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.重、难点与关键1.重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系是重点.2.难点:探索点、线、面、体运动变化后形成的图形是难点.3.关键:让学生在现实情境中,进行探究学习是本节课的关键.教具准备长方体、圆柱体模型,投影机和幻灯片.教学过程一、引入新课1.出示一个长方体模型,请同学们认真观察.2.提出问题:这个长方体有几个面?面和面相交成了几条线?•线和线相交成几个点?二、新授1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,•评价并修正自己的结论.2.各小组学生公布自己小组讨论后的结论.教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价.3.几何体的概念.(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、•棱锥等都是几何体.(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的面有哪些?•这些面有什么区别?4.给出面的分类.通过对上面问题的解决,给出面的分类:平面和曲面.教师活动:板书:平面和曲面.提出问题:(1)用幻灯机放映图片,让学生观察.(2)提出问题:通过观察,你得出什么结论?(3)进行小组讨论中,综合小组中每个同学意见,得出观察图片发现的结论.(4)在小组活动中,教师指导学生看课本第121~122页内容,•得出观察图片能发现的结论.师生互动:请学生给出观察结论:点动成线,线动成面,面动成体.教师对学生的回答给出正面评价,并把学生观察结论板书.注:在探索问题解决的方法活动过程中,教师应充分调动学生的想像能力,鼓励学生进行深入探究.思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释. 5.点、线、面、体与几何图形关系.指导学生阅读课本第122页内容,总结出点、线、面、体与几何图形的关系.三、课堂小结1.本节课我们主要探究了几何体的形成:由平面和曲成围成一个几何体.2.点、线、面、体之间的关系.3.体验了在数学活动过程中小组合作的重要性.四、作业布置1.课本第125~126页习题4.1第7~12、13、14题.2.选用课时作业设计.课时作业设计一、填空题.1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理.2.体是由_______围成的,面和面相交于_______,线和线相交于______.3.点动成________,线动成______,面动成_______.二、选择题.4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是().A B C D三、解答题.5.如下图中的棱柱、圆锥分别是由几个面围成的?它们是平面还是曲面.6.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,•用线连一连.答案:一、1.直线点动成线 2.面线点 3.线面体二、4.B ()三、5.棱柱由五个面围成,都是平面;圆锥由两个面围成,侧面是曲面,•底面是平面. 6.略4.2 直线、射线、线段(1)教学内容课本第128页至第131页.教学目标1.知识与技能(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质.(2)会用字母表示直线、射线、线段,会根据语言描述画出图形.2.过程与方法(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感态度与价值观体验通过实验获得数学猜想,得到直线性质的过程.重、难点与关键1.重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形.2.难点:根据语言描述画出图形.3.关键:理解画图语言,建立图形与语言之间的联系.教具准备一把直尺、木工墨盒.教学过程一、引入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出线是直的?其关键是什么?二、新授学生活动:学生经过小组交流后,总结出结论:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点.教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1.探究直线性质.学生活动:完成课本第128页探究课题,学生动手按要求画图,•并进行小组交流,总结出课题结论.教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质. 2.寻找生活中直线性质应用的例子.想一想:日常生活中有哪些现象是应用的直线的性质?学生回答(只要答案合理,教师都给以肯定的评价).3.直线、射线、线段的表示方法.学生活动:阅读课本第129页有关内容.教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1.提出问题:下图中,有几条直线?几条射线?几条线段?•说出它们的名称.DAC B注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价. 2.根据语句画出图形.例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上.注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评.3.完成课本第129页练习.注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,•并请学生作出自我评价.四、课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,•知道了每一个语句都对应着一个几何图形.五、作业布置1.课本第132页至第134页习题3.2第1、2、3、4、10题.2.选用课时作业设计.第一课时作业设计一、填空题.1.在墙上钉一根木条需_______个钉子,其根据是________.2.如下图(1)所示,点A在直线L______,点B在直线L________.3.如下图(2)所示,直线_______和直线______相交于点P;直线AB和直线EF•相交于点______;点R是直线________和直线________的交点.4.如下图(3)所示,图中共有_____条线段,它们是________;共有______条射线,它们是________.二、选择题.5.下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO三、解答题.6.根据下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)两条直线m与n相交于点P;(3)线段a、b相交于点O,与线段c分别交于点P、Q.7.探索规律:(1)若直线L上有2个点,则射线有_____条,线段有______条;(2)若直线L上有3个点,则射线有_____条,线段有______条;(3)若直线L上有4个点,则射线有_____条,线段有______条;(4)若直线L上有n个点,则射线有_____条,线段有______条.答案:一、1.2 两点确定一条直线 2.上外 3.AB CD O CD EF4.3 AB、•AC、BC 6.射线AF,射线AD,射线BF,射线BD,射线CF,射线CD二、5.B三、6.略 7.(1)4 1 (2)6 3 (3)8 6 (4)2n 12n(n-1)4.2 直线、射线、线段(2)教学内容课本第129页至第131页.教学目标1.知识与技能(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,•了解“两点之间,线段最短”的线段性质.2.过程与方法培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法.3.情感态度与价值观积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重、难点与关键1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,•在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点.2.难点:画一条线段等于已知线段的尺规作图方法,•正确比较两条线段长短是难点. 3.关键:学生积极参与画图等动手操作的数学活动中,通过小组交流,•获取数学信息是学好本节课知识的关键.教具准备直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.教学过程一、引入新课1.提出问题:有一根长木棒,如何从它上面截下一段,•使截下的木棒等于另一根木棒的长?教师活动:出示长短不同的两根木棒.学生活动:小组讨论,探索方法,总结出问题的解决方法.注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给予鼓励和肯定,以激发学生的学习兴趣.2.提出数学问题:上面的问题,可以转化为如下一个数学问题:已知线段a,画一条线段等于已知线段a.二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法.教师活动:参与学生小组讨论,指导学生探索问题的解决方法.1.用刻度尺量出已知线段长,•在画出的射线(或直线)上量出相同长度的一条线段. 2.用尺规截取.(按课本第130页所讲方法)教师活动:打开电脑,演示尺规作图过程.板书:画一条线段等于已知线段.3.思考课本第130页的问题,从中得出数学问题:如何比较两条线段的长短?4.探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法.教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短.(1)用刻度尺分别测量出它们的长度进行比较.(2)用把一条线段移到另一条线段上,端点对齐的方法进行比较.5.线段长短的比较结果.学生活动:通过上面的讨论,总结出线段比较结果.教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果.板书:(1)AB<CD (2)AB>CD (3)AB=CD(D) (C)BA(D)(C)BA(C)A6.线段的等分点.(1)线段的中点:教师活动:用多媒体演示,取线段AB上一点M,移动线段AM到线段MB上,当AM•与MB完全重合时,线段AM=MB,此时点M就叫做线段AB的中点.板书: AM=MB=12AB(2)线段的等分点:通过类比线段的中点,可得出线段的三等分点、四等分点.板书:AM=MN=NB=13AB AM=MN=NP=PB=14AB7.探索线段的性质.(1)完成课本第132页思考题.(2)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短.教师活动:板书:线段的性质,并用几何语言完整归纳出线段性质.(3)举例说明线段的性质在生活中的应用.(4)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度.注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8.两点的距离.教师活动:讲解两点的距离定义.三、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.2.本节课学习了线段的性质和两点间距离的定义.3.懂得了知识来源于生活并用于生活的道理.四、作业布置1.课本第133页至第114页习题4.2第5、6、7、8、9、11题.2.选用课时作业设计.第二课时作业设计一、填空题.1.如右图,把河道由弯曲改直,根据__________说明这样做能缩短航道.2.画线段AB=50mm,在线段AB上取一点C,使得5AC=2AB,在AB的延长线上取一点D,使得AB=10BD,那么CD=______mm.3.如右图,AC=CD=DE=EB,图中和线段AD长度相等的线段是________.以D•为中点的线段是________.二、选择题.4.比较线段a和b的长短,其结果一定是().A.a=b B.a>b C.a<b D.a>b或a=b或a<b5.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM•的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=12AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB的中点,其中正确的是().A.①③④ B.④ C.②③④ D.③④三、解答题.6.如下图已知线段a、b、c,画一条线段,使它等于a+b-c(•用尺规和刻度尺两种方法).7.如下图,四条线段AB、BC、CD、DA,且AB<BC<DA<CD,用圆规比较图中的线段大小,确定出A、B、C、D四点的准确位置,再用刻度尺量出这四条线段的长度.8.如下图,长方形的长为3cm,宽为2cm,用刻度尺作出每条边上的中点,并顺次连接它们,猜一猜能得到什么图形,并度量验证你的猜想.答案:一、1.两点之间,线段最短 2.35 3.DB、CE AB、CE二、4.D 5.D •三、6~8.略4.3.1 角的度量(1)教学内容课本第137页至第138页.教学目标1.知识与技能(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,•学会角的表示方法.(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算.2.过程与方法提高学生的识图能力,学会用运动变化的观点看问题.3.情感态度与价值观经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲.重、难点与关键1.重点:会用不同的方法表示一个角,会进行角度的换算是重点.2.难点:角的表示、角度的换算是难点.3.关键:学会观察图形是正确表示一个角的关键.教具准备多媒体设备、量角器、时钟、四棱锥.教学过程一、引入新课1.观察时钟、四棱锥.2.提出问题:时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来.学生活动:进行独立思考、画图,然后观看教师的演示过程.教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角.板书:角.二、新授1.角的概念.(1)提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2)角的定义:有公共端点的两条射线组成的图形叫做角,•这个公共端点是角的顶点,这两条射线是角的两条边.(如下图)2.角的表示.学生活动:阅读课本第137页有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法.请用适当的方法表示下图中的每个角.学生活动:请一个学生板书练习,其余学生独立练习.教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价.学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论.教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价.答案:分别形成平角、周角.3.角的度量.教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算.板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″.学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?教师讲解计算过程.三、巩固练习。

离散数学答案-第四章习题解答.doc

离散数学答案-第四章习题解答.doc

习题四1.用归结法证明:(1)\= p^q^r(2)p T r , q — r# pvqir(3)p W 匕(p T q)v(p f r)(4)p /\q r |= (/? ^ r) v(t? r)(5)p v v r , p t r A q v『⑹(〃T q) T O T 厂)f= p T (q T r)解(1)首先将p I q , p I f , 7p T q八门化为合取范式。

p T q o —\p 7 q , p T r o —yp v r ,—>(# T q /\ 厂)u> -1(-1/? v(q A /*)) u> /? /\ (—v -i厂)给出子句集\rpy q’rpy l ”,p,->^rv—»r}的反驳如下。

①rpy q②~yp v r③p④-it?v—«r⑤q由①和③⑥r由②和③⑦由④和⑤⑧口由⑥和⑦因此,p — q , p T r b p I q z⑵将p T r, q T厂7p v q —厂)化为合取范式。

/? T 厂O -1〃\/儿q t ro-yq 7 丫、-i( p v q r) <=> (p v q) /\—^r 给111子句集{ v r, v r, p v ty, -.r}的反驳如下:—p v r②->q v r③p y q④—if⑤q 7 T rti①和③⑥r由②和⑤⑦□由④和⑥因此,p—> r, q T r 匕p v q T r。

⑶首先将p t qy r, -•((/?^^)v(p^r))化为合取范式。

p T q \z 厂 o -yp v <7 v r ,T q) \/ (p —> r)) o -i((-ip v^) v (-i/? v r))<=> p A —yq A -ir给出子句集\rp7 q\/ F ,p, -yq , 的反驳如下。

—7 q7 丫 Prq—>rq7 丫由①和② r由③和⑤ □由④和⑥①②③④⑤⑥⑦因此,p T qvr \= (j?->(7)v(/?^r)(4)首先将 p /\qf r, -i((pr) v ((? -> r))化为合取范式。

【人教版】八年级物理上册:第4章《光现象》复习课教案设计(含答案)

【人教版】八年级物理上册:第4章《光现象》复习课教案设计(含答案)

第四章《光现象》单元复习课时: 1 课时主备人:李琦(枣庄市第五中学)【复习目标】知识与技术1.认识光源的含义及种类,知道光沿直线流传的条件及光速,能说出常有的光沿直线流传现象。

2.理解光的反射定律,能利用反射定律解决实质问题,会做反射光路图,能辨别镜面反射和漫反射。

3.知道平面镜成像的特色及应用,理解平面镜成像属于光的反射现象,会办理平面镜成像有关的作图。

4.知道光的折射定律,能判断常有的折射现象。

5.认识色散现象,知道色光的三原色和颜料的三原色是不一样的,认识红外线、紫外线的特征及应用。

过程与方法1.经历复习过程,经过形成知识网络学习梳理总结知识的方法,能将本章内容系统化。

2.经过议论沟通,总结归纳解题的方法、技巧,养成学生剖析解决实质问题的能力。

感情、态度、价值观1.沟通学习心得,养成学习物理的优异习惯,加强学好物理的信心。

2.经过合作研究养成学生踊跃合作的学习态度和蔼于察看、总结的学习能力。

3.经过复习养成学生学致使用的学习态度和浓重的学习兴趣。

【复习要点和难点】要点: 1. 光在同种平均介质中是沿直线流传的。

2.光的反射定律和平面镜成像的规律。

3.光的折射规律。

难点: 1. 光现象知识的实质应用。

2.运用光路图解决问题。

易错点: 1、入射角、反射角、折射角常判断为与镜面或界面的夹角。

2、平面镜成像中误以为像的大小规律是近大远小。

3、“倒影”与影子混杂。

【教具准备】多媒体课件激光灯自制光屏平面镜玻璃板方格纸光具盘半圆玻璃块蜡烛打火机讲义【前置准备】利用多媒体展现本章思想导图【复习过程】一、创建情境、引入复习课件展现精巧图片:这些美轮美奂的景色波及到哪些物理知识?指引学生思虑、回答,自然地引出本节复习内容——第四章光现象设计企图:经过学生察看精巧图片,回首光现象这一章的几个重要知识,,激发学生的复习兴趣和热忱。

二、专题复习总结方法【专题一】光的直线流传专题一知识点聚焦:(小组抢答比比谁记得准、答得快)1.光源:自己能够的物体叫光源,依据成因分为光源和光源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题答案第四章 习题答案4-1 已知烟煤的干燥无灰基组成(%)为:C daf H daf O daf N daf S daf82.4 6.0 9.2 1.7 0.7 测得空气干燥基水分M ad =3%,灰分A ad =15%,收到基水分M ar =5%,计算:(1) 1kg 干燥无灰基煤折合成空气干燥基煤、收到基煤时,各为多少?(2) 收到基时该烟煤的组成百分率。

解:(1) 将干燥无灰基换算成空气干燥基后碳的含量为:57.674.82100315100C 100M A 100C daf ad ad ad =⨯--=--= 令1kg 干燥无灰基煤折合成x kg 空气干燥基煤,根据碳含量相等,则有%57.67%4.821⨯=⨯x得x =1.22kg 。

将空气干燥基换算成收到基后碳的含量为:18.6657.6731005100C M 100M 100C ad ad ar ar =⨯--=--= 令1kg 干燥无灰基煤折合成y kg 空气干燥基煤,根据碳含量相等,则有%18.66%4.821⨯=⨯y得y =1.25kg 。

(2) 由(1)可知,空气干燥基该烟煤的组成为:C ad H ad O ad N ad S ad A ad M ad67.57 4.92 7.54 1.39 0.57 15 3则收到基该烟煤的组成为: C ar H ar O ar N ar S ar A ar M ar 66.18 4.82 7.38 1.36 0.56 14.69 54-2 已知重油组成(%)为:C H O N S M A 87.0 11.5 0.1 0.8 0.5 0.07 0.03设某窑炉在燃烧时空气系数=1.2,用油量为200kg/h ,计算:(1) 每小时实际空气用量(Nm 3/h);(2) 每小时实际湿烟气生成量(Nm 3/h);(3) 干烟气及湿烟气组成百分率。

解:(1) 燃烧每千克重油理论需氧量为:1004.22)32O 32S 212H 12C (V 0O 2⨯-+⨯+= 重油kg /Nm 271.21004.22)321.0325.02125.111287(3=⨯-+⨯+=燃烧每千克重油理论需空气量为: 重油kg /Nm 813.1021100271.221100V V 30O 0a 2=⨯=⨯=燃烧每千克重油实际需空气量为:重油kg /Nm 976.12813.102.1V V 30a a =⨯=α=每小时实际空气用量为:h Nm /2.2595976.122003=⨯ (2) 燃烧每千克重油产生的理论烟气量为: 2179V 1004.22]28N 32S )18M 2H (12C [V V V V V 0O 0N 0SO 0O H 0CO 022222⨯+⨯++++=+++= 2179271.21004.22]288.0325.0)1807.025.11(1287[⨯+⨯++++= 重油kg /Nm 466.113=因为空气系数=1.2,故燃烧每千克重油产生的实际烟气量为: 重油kg /Nm 629.13813.10)12.1(466.11V )1(V V 30a 0=⨯-+=-α+= 则每小时产生的实际烟气量为h Nm /2726629.132003=⨯ (3) 燃烧每千克重油产生的烟气中各组成量为:kg /Nm 624.11004.2212871004.2212C V 3CO 2=⨯=⨯= kg /Nm 289.11004.22)1807.025.11(1004.22)18M 2H (V 3O H 2=⨯+=⨯+= kg /Nm 0035.01004.22325.01004.2232S V 3SO 2=⨯=⨯= kg /Nm 258.102179271.22.11004.22288.02179V 1004.2228N V 30O N 22=⨯⨯+⨯=⨯α+⨯= kg /Nm 454.0V )1(V 30O O 22=-α=故干烟气的组成为: CO 2 SO 2 O 2 N 213.16 0.03 3.68 83.13 湿烟气的组成为: CO 2 SO 2 O 2 N 2 H 2O11.91 0.03 3.33 75.27 9.46 4-3 某窑炉使用发生炉煤气为燃料,其组成(%)为:CO 2 CO H 2 CH 4 C 2H 4 O 2 N 2 H 2S H 2O5.6 25.9 12.7 2.5 0.4 0.2 46.9 1.4 4.4燃烧时=1.1,计算:(1) 燃烧所需实际空气量(Nm 3/Nm 3煤气);(2) 实际生成烟气量(Nm 3/Nm 3煤气);(3) 干烟气及湿烟气组成百分率。

解:(1) 燃烧每立方米煤气所需理论氧量为:1001]O S H 5.1H C )4n m (CH 22H 2CO [V 22n m 420O 2⨯-+++++= 33Nm /Nm 274.01001]2.04.15.14.0)442(5.2227.1229.25[=⨯-⨯+⨯++⨯++=燃烧每立方米煤气所需理论空气量为:330O 0a Nm /Nm 305.121100274.021100V V 2=⨯=⨯= 当=1.1时,燃烧每立方米煤气所需实际空气量为:330a a Nm /Nm 435.1305.11.1V V =⨯=α= (2) 燃烧每立方米煤气理论生成烟气量为:0N 0SO 0O H 0CO 02222V V V V V +++=330O 22n m 4222Nm /Nm 105.22179274.01001]9.464.124.0)242(5.234.47.129.256.5[2179V 1001]N S H 2H C )2n m (CH 3O H H CO CO [2=⨯+⨯+⨯+⨯++⨯++++=⨯+⨯++++++++= 燃烧每立方米煤气实际生成烟气量为:330a 0Nm /Nm 236.2305.1)11.1(105.2V )1(V V =⨯-+=-α+=(3) 燃烧每立方米煤气产生的烟气中各组成量为:1001]H mC CH CO CO [V n m 42CO 2⨯+++= 33Nm /Nm 348.01001]4.025.29.256.5[=⨯⨯+++=1001]4.14.0245.224.47.12[1001]S H H C 2n CH 2O H H [V 2n m 422O H 2⨯+⨯+⨯++=⨯++++= 33Nm /Nm 243.0= 332SO Nm /Nm 014.010014.11001S H V 2=⨯=⨯= 330O 2N Nm /Nm 603.12179274.01.110019.462179V 1001N V 22=⨯⨯+⨯=⨯α+⨯= 330O O Nm /Nm 0274.0274.0)11.1(V )1(V 22=⨯-=-α= 故干烟气的组成百分率为:CO 2 O 2 SO 2 N 217.47 1.38 0.70 80.45湿烟气的组成百分率为CO 2 O 2 SO 2 N 2 H 2O15.57 1.23 0.63 71.70 10.874-4 题4-3中,当高温系数=85%,空气、煤气均为20C ,计算实际燃烧温度。

若空气预热至1000C ,此时实际燃烧温度较不预热时提高了多少?解:先计算理论燃烧温度t th :Vc t c V t c Q t a a a f f net th ++= 式中空气和煤气的在0-20C 的平均比热容c a 和c f 可分别查表4-13和4-18得:c a =1.296kJ/(Nm 3. C ),c f =1.32kJ/(Nm 3.C ); 根据上题计算结果,V a =1.435Nm 3/Nm 3煤气,V=2.236Nm 3/Nm3煤气;而煤气低发热量可按下式计算:S H 232H C 590CH 358H 108CO 126Q 24242net ++++=代入上式得:2.236ct th =Q net +c f t f +V a c a t a=6090.8+1.32×20+1.435×1.296×20=6154.4采用“内插法”计算理论燃烧温度t th :设t th =1700C ,c =1.67,则:2.236×1.67×1700=6348>6154.4t th =1600C ,c =1.65,则:2.236×1.65×1600=5903.04<6154.4故 04.590363484.6154634816001700t 1700th --=-- t th =1656.5C则实际燃烧温度t p =t th =85%×1656.5=1408C 3Nm /kJ 8.60904.12324.05905.23587.121089.25126=⨯+⨯+⨯+⨯+⨯=若将空气预热到1000C,c a=1.41 kJ/(Nm3. C )则2.236ct th=Q net +c f t f+V a c a t a=6090.8+1.32×20+1.435×1.41×1000=8140.6设t th=2200C,c=1.70,则:2.236×1.70×2200=8362.6>8140.6t th=2100C,c=1.695,则:2.236×1.695×2100=7959<8140.6求得t th=2145C,则实际燃烧温度t p=t th=85%×2145=1823C故当空气预热至1000C时,实际燃烧温度比不预热时提高了415C。

相关文档
最新文档