高中数学必修三课件第一章1.1.1

合集下载

苏教版高中数学必修三-第一章-算法初步1.1ppt课件

苏教版高中数学必修三-第一章-算法初步1.1ppt课件

【解析】
算法是解决某类问题而设计的一系列可操作
或可计算的步骤,通过这些可有效地解决问题,显然四个语 句中,①②④都是算法,③不是算法.
【答案】 3
算法的设计(直接应用数学公式的算法)
设计一个算法,求底面边长为 4 2,侧棱长为 5 的正四棱锥的体积.
【思路探究】 由底边长可求底面积.由底面边长及侧
算法的含义
下列叙述能称为算法的个数是________. ①植树需要运苗、挖坑、栽苗、浇水这些步骤; ②顺序进行下列运算:1 +1=2,2+1=3,3+1 =4 ,„, 99+1=100; ③3x>x+1; ④求所有能被 3 整除的正数,即 3,6,9,12„.
【思路探究】 根据算法的特征逐一作出判断.
引导学生回顾解一般的二元一次方程组的步骤,分析解 题过程的结构,写出求一般的二元一次方程组的解的算法, 并把它编成程序,让学生输入数据,体验计算机直接给出方 程组的解. 目的是让学生明白算法是用来解决某一类问题的, 从而提高学生对算法的普遍适用性的认识,从而强化重点.
●教学建议 算法这部分的应用性很强,与日常生活联系紧密,虽然 是新引入的章节,但很容易激发学生的学习兴趣.建议教师 通过多媒体辅助教学,采用“问题探究式”教学法,以多媒 体为辅助手段,让学生主动发现问题、分析问题、解决问题, 培养学生的探究论证、逻辑思维能力.
法二 S1 S2
计算判别式 Δ=(-2)2-4×1×(-3);
将 a = 1 , b = - 2 , c =- 3 代入 求根公 式 x =
-b± b2-4ac ,得 x1=3,x2=-1. 2a
1.对于这类解方程(或方程组)的问题,设计其算法时, 一般按照数学上解方程(或方程组)的方法进行设计. 2.设计时要注意全面考虑方程(或方程组)的解的情况, 即先确定方程(或方程组)是否有解, 有解时, 还需确定几个解, 然后按照求解的步骤设计.

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1

2017-2018学年高中数学必修三(人教B版)课件:1.1算法与程序框图1.1.1
数 学 必 修 ③ · 人 教 B 版
S6 输出运算结果 21.
返回导航
第一章 算法初步
命题方向3 ⇨非数值性问题的算法
有蓝和黑两个墨水瓶,但是错把黑墨水装在了蓝墨水瓶里面,而 蓝墨水装在了黑墨水瓶里面.请你设计一个算法,将其互换. 导学号 95064009
[分析]
数 学 必 修 ③ · 人 教 B 版
数 学 必 修 ③ · 人 教 B 版
S4 整理 S3 得到的方程,得到方程 3x-y+2- 3=0.
返回导航
第一章 算法初步
互动探究学案
数 学 必 修 ③ · 人 教 B 版
返回导航
第一章 算法初步
命题方向1 ⇨算法的概念
我们已学过的算法有一元二次方程的求根公式、加减消元法求二 元一次方程组的解、二分法求函数零点等.对算法的描述有: (1)对一类问题都有效; (2)对个别问题有效;
-b- b2-4ac x2= . 2a
数 学 必 修 ③ · 人 教 B 版
b S5 当 a≠0,b -4ac=0 时,原方程有两个相等实数解 x1=x2=- . 2a
2
S6 当 a≠0,b2-4ac<0 时,原方程没有实数解.
返回导航
第一章 算法初步
1.下面四种叙述中,能称为算法的是 导学号 95064013 ( B ) A.上学须有自行车 B.做米饭需要刷锅、淘米、添水、加热这些步骤 C.网上认识的朋友叫网友
数 学 必 修 ③ · 人 教 B 版
有限步后 能得出结果. 混不清,而且经过__________
返回导航
第一章 算法初步
1.算法的有穷性是指 导学号 95064000 ( C ) A.算法的最后包含输出 B.算法中每个操作步骤都是可执行的 C.算法的步骤必须有限

高中数学必修三《程序框图与算法的基本逻辑结构》课件

高中数学必修三《程序框图与算法的基本逻辑结构》课件

第四步,输出S.
S
p
abc 2
p(p a)(p b)(p c)
上述算法的程序框图如何表示?
输出S 结束
教材5页练习
1、任意给定一个正实数,设计一个算法求以这个数为半
径的圆的面积.
开始
第一步: 给定一个正实数r; 第二步: 计算以r为半径的
输入r
圆的面积S=πr2;
S r2
第三步: 得到圆的面积S.
输入x0,y0,A,B,C
d | Ax0 By0 C | A2 B2
输出d
结束
算法的条件结构:
在某些问题的算法中,有些步骤只有在一定条件下才会被执 行,算法的流程因条件是否成立而变化.在算法的程序框图中,由 若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条 件结构,用程序框图可以表示为下面两种形式:
---用程序框、流程线及文 字说明来表示算法的图形.
在上述程序框图中, 有4种程序框,2种流程 线,它们分别有何特定的名 称和功能?
开始
输入n
i=2
求n除以i的余数r i的值增加1,仍用i表示
i>n-1或r=0?

r=0? 是
输出“n 不是质数”


输出“n 是质数”
结束
图形符号
名称
功能
终端框
表示一个算法的起始和结束
2a 2a 否则,输出“方程没有实数根”,结束算法。
第四步:判断 0是否成立。若是,则输出x1 x2 p; 否则,计算x1 p q, x2 p q,并输出x1, x2
输出p
开始
输入a,b,c
b2 4ac
0?
是 p b
2a
q 2a

高一数学人教A版必修3课件:1.1.1 算法的概念 二

高一数学人教A版必修3课件:1.1.1 算法的概念 二

算法的概念
过程 设计 教学 方法 目标 分析
教学 反思
教材 分析
学情 分析
四.教学模式与教法、学法
本课采用“探究——合作”教学模式. 教师的教法 法的引导. 突出活动的组织设计与方
学生的学法
突出探究、发现与交流.
算法的概念
过程 设计
教学 方法 目标 分析
教学 反思
教材 分析
学情 分析
五.教学过程
算法的概念
过程 设计
教学 方法
教学 反思
教材 分析
学情 分析
目标 分析
目标分析
知识技能
M1
解决问题
M2
M4
M3
情感态度
数学思考
知识技能目标
1.了解算法的含义,体会算法的思想
2.能够用自然语言描述解决具体问题的算法 3.理解正确的算法应满足的要求
数学思考
1.通过对具体问题的解决过程与步骤的分析, 让学生体会算法的思想,了解算法的含义.
教材分析
2.教学内容:
《 算法的概念》是全日制普通高级中学教科书必 修3第一章《算法初步》第一节的内容.《算法初步》 是课程标准的新增内容,是数学及其应用的重要组成 部分,也是计算科学的基础.
教材分析
3.地位和作用::
算法概念立足于用自然语言描述解决问题过程中的明确步 骤,是实现用程序框图、程序语言的表示方式的基础. 算法的思想方法几乎贯穿整个高中数学课程的所有章节,如 解三角形、数学归纳法、数学建模等. 本节的内容能为以后学习程序框图、基本算法语句以及选修 1-2第四章“框图”内容奠定基础. 算法是连接人和计算机的纽带,是计算机科学的基础
的步骤吗?
设计意图:在上述“鸡兔同笼”问题中涉及解二元一次方程组的 问题,通过复习所学过的解二元一次方程组的基本步骤,为建立 算法概念做好准备.

高中数学第一章三角函数1.1周期现象与周期函数课件2北师大版必修

高中数学第一章三角函数1.1周期现象与周期函数课件2北师大版必修

136.6
P/mmHg 93.35 136.65 115 93.35
115
5
(1)请根据上表提供的数据,在坐标系中作出血压P与时间 t的对应关系的散点图. (2)血压随时间的变化的现象是周期现象吗? 【解题指南】通过散点图的变化趋势研究周期现象.
【解析】(1)作出血压P与时间t的散点图.如下:
(2)由散点图可以看出,每经过15 s,血压就重复出现相 同的数值,因此血压随时间的变化的现象是周期现象.
【方法技巧】应用周期现象解决实际问题的两个要点
【变式训练】今天是星期五,则168天后是_______,170 天后是_______. 【解题指南】一星期是7天,一个循环. 【解析】因为168=7×24,,170=7×24+2,所以168天 后仍是星期五,170天后是星期天. 答案:星期五 星期天
依据规定,当海浪高于1米时才对冲浪爱好者开放,依据 上表可以判断,一天内的8:00至20:00时之间,有多少时 间可以供冲浪者运动?
【解题探究】1.从图像观察,函数值有没有重复出现? 2.对题(2)中的数据如何提取有效信息? 【探究提示】1.有,当x分别在[0,2],[3,5],[6,8]取值时, 对应的y值会重复出现. 2.将实际问题中的数据转化为散点图,利用散点图解决实 际问题.
【微思考】 (1)重复出现的现象是周期现象吗? 提示:不一定,重复出现,还要有规律. (2)有规律可循的现象是周期现象吗? 提示:不一定,有规律可循,还要重复出现.
【即时练】 下列现象不是周期现象的是_________(填序号). ①挂在弹簧下方上下震动的小球; ②游乐场中摩天轮的运行; ③抛一枚骰子,向上的数字是奇数; ④每四年出现1个闰年. 【解析】①②④都有规律可循,而抛一枚骰子,向上的数 字可能是奇数,也可能是偶数,无规律可循.故③不是周期 现象. 答案:③

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

高中数学第一章 1.1.1 第一课时 集合的含义优秀课件

高中数学第一章  1.1.1  第一课时 集合的含义优秀课件

3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.

人教版高中数学必修三课件 第一章 1.1 1.1.2 第一课时 程序框图、顺序结构

人教版高中数学必修三课件 第一章 1.1 1.1.2 第一课时 程序框图、顺序结构
19
对顺序结构程序框图的识读,首先弄明白程序框图中各 程序框的功能,然后按流程线指引的方向从上到下(或从左 到右)依次判断即可.
20
[活学活用] 1.根据如图所示的程序框图,若输入 m 的值是 3,则输出
的 y 的值是________.
解析:若输入 m 的值是 3,则 p=8,y=8+5=13,故输 出 y 的值为 13. 答案:13
3
图形符号
名称
功能
判断某一条件是否成立,成立时 _判__断__框__ 在出口处标明“__是__”__或__“_Y__”_;不
成立时标明“__否__”__或__“_N__”
流程线
连接程序框
连接点
连接程序框图的两部分
4
2.顺序结构
概念
顺序结构是由若干个依次执行的 _步__骤__ 组 成 的 , 这 是 任 何 一 个 算 法 都 离不开的基本结构
16
[活学活用] 已知一个圆柱的底面半径为 R,高为 h,求圆柱的体积.设 计一个解决该问题的算法,并画出相应的程序框图. 解:算法如下: 第一步,输入 R,h. 第二步,计算 V=πR2h. 第三步,输出 V. 程序框图如图所示:
17
顺序结构的读图问题 [典例] 阅读如图所示的程序框图,回答下面的问题:
(2)顺序结构是任何一个算法都离不开的基本结构.故 选 A的理解 框图符合标准化,框内语言简练化,框间流程方向 化.从上到下,从左到右,勿颠倒.起止框不可少,判断 框一口进,两口出.顺序结构处处有.
11
[活学活用] 在程序框图中,表示判断框的图形符号的是
1.1.2 程序框图与算法的基本逻辑结构
第一课时 程序框图、顺序结构
预习课本 P6~9,思考并完成以下问题

2020-2021学年高中数学必修3人教A版课件:1.1.1 算法的概念

2020-2021学年高中数学必修3人教A版课件:1.1.1 算法的概念

其中正确的顺序是( )
A.①②③
B.②③①
(2)设计算法时注意的问题 ①算法从初始步骤开始,每一个步骤只能有一个确定的后继步骤,从而组成 一个步骤序列,序列的终止表示问题得到解答或指出问题没有解. ②一个具体问题的算法不唯一,如解二元一次方程组的算法就有消元法、代 入法两种.由于传统数学问题解法的不唯一,使得求解某一个问题的算法也不唯 一. ③不同的算法有简繁、优劣之分,但每一种都会使问题有一个最终的结果.对 于一个具体的问题,我们可以找到一个算法步骤相对较少、执行步骤也较少的算 法,即最优算法.
4.已知 A(x1,y1),B(x2,y2),求直线 AB 的斜率的一个算法如下: (1)输入 x1、y1、x2、y2 的值. (2)计算 Δx=x2-x1,Δy=y2-y1. (3)若 Δx=0,则输出斜率不存在,否则(Δx≠0),k=__①__.
(4)输出斜率 k.
则①处应填________. 解析: 由斜率的计算公式应填ΔΔyx.
[自主练习] 1.下列叙述不能称为算法的是( ) A.从北京到上海先乘汽车到飞机场,再乘飞机到上海 B.解方程 4x+1=0 的过程是先移项再把 x 的系数化成 1 C.利用公式 S=πr2 计算半径为 2 的圆的面积得 π×22 D.解方程 x2-2x+1=0
解析:
A× A,B 两选项给出了解决问题的方法和步骤,是算法
题型二 算法的设计 写出解方程 x2-2x-3=0 的一个算法. [思路探究] 解一元二次方程的方法很多,此处,我们用因式分解法、配方 法、公式法写出算法. , 解析: 法一:算法如下. (1)将方程左边因式分解,得(x-3)(x+1)=0.① (2)由①得 x-3=0,②或 x+1=0.③ (3)解②得 x=3,解③得 x=-1.

高中数学必修三第一章1.1算法与程序边框图

高中数学必修三第一章1.1算法与程序边框图

第一章1.1算法与程序边框图1.算法的概念(1)算法概念的理解①算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.②算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.③算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.(2)算法的四个特征:概括性、逻辑性、有穷性、不唯一性①概括性:写出的算法必须能解决某一类问题,并且能够重复使用.②逻辑性:算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,而且每一步都是正确无误的,从而组成了一个有着很强逻辑性的步骤序列.③有穷性:算法有一个清晰的起始步,终止步是表示问题得到解答或指出问题没有解答,所有序列必须在有限个步骤之内完成,不能无停止地执行下去.④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法,当然这些算法有简繁之分、优劣之别.(3)常见的算法类型①数值性计算问题.如:解方程(或方程组)、解不等式(或不等式组)、利用公式求值、累加或累乘等问题,可通过相应的数学模型借助一般的数学计算方法,分解成清晰的步骤,使之条理化.②非数值性计算问题.如:判断、排序、变量变换等需先建立过程模型,再通过模型进行算法设计与描述.注意:(ⅰ)注意算法与解法的区别:算法是解决一类问题所需要的程序或步骤的统称;而解法是解决某一个具体问题的过程或步骤,是具体的解题过程.(ⅱ)设计算法时要尽量选取简捷、快速、高效的解决问题的算法.对一个具体的问题,我们要对解决问题的途径进行透彻的研究,找出最优算法,做到“先思考后处理”.2.程序框图(1)程序框图又称为流程图,是一种用程序框、流程线及文字说明来准确、直观地表示算法的图形.(2)用程序框图表示算法,具有直观、形象的特点,能更清楚地展现算法的逻辑结构.(3)程序框图主要由程序框和流程线组成.基本的程序框有终端框、输入框、输出框、处理框、判断框,其中终端框是任何流程图不可缺少的,而输入、输出可以用在算法中任何需要输入、输出的位置.(4)画程序框图的规则①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画;③终端框(起止框)是任何程序框图必不可缺少的,表示程序的开始和结束;④除判断框外,大多数程序框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;⑤程序框图符号框内的文字要简洁精炼.注意:(ⅰ)每一种程序框图的图形符号都有特定的含义,在画程序框图时不能混用,并且所用图形符号一定要标准规范,起始框只有一条流出线(没有流入线),终止框只有一条流入线(没有流出线),输入、输出框只有一条流入线和一条流出线,判断框有一条流入线和两条流出线.(ⅱ)如果一个程序框图由于纸面等原因需要分开画,要在断开处画上连接点,并标出连接的号码.(ⅲ)判断框是“是”与“否”两分支的判断,有且仅有两个结果.(ⅳ)一般地,画程序框图时,先用自然语言编写算法,然后再画程序框图.3.算法的三种基本结构(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的基本结构,其基本结构形式如图所示,其中A、B两框所指定的操作是依次执行的.顺序结构中所表达的逻辑关系是自然串行、上下连贯、线性排列的.(2)条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构.条件结构用于进行逻辑判断,并根据判断的结果进行不同的处理.条件结构必含判断框.条件结构的结构形式如图2所示,此结构中包含一个判断框,算法执行到此判断框给定的条件P时,根据条件P是否成立选择不同的执行框(A框或B框).注意:无论P是否成立,下一步只能执行A框或B框之一,不能A框和B框同时执行,也不能A、B两框都不执行,但A框和B框中可以有一个是空的,如图3.(3)循环结构:根据条件是否成立,以决定是否重复执行某些操作,在算法中要求重复执行同一操作的结构称为循环结构,重复执行的处理步骤称为循环体.根据执行情况及循环结束条件的不同可以分为当型循环(WHILE型)和直到型循环(UNTIL型).当型循环的特点是“先判断,后执行”,即先判断条件,当条件满足时,反复执行循环体,当条件不满足时退出循环(也就是说直到条件不满足时退出循环).如图4.直到型循环的特点是先执行一次循环体,再判断条件,当条件不满足时执行循环体,当条件满足时退出循环(即直到条件满足时退出循环),即“先执行,后判断”.如图5.当型循环可能一次也不执行循环体,而直到型循环至少要执行一次循环体.当型循环与直到型循环可以相互转化,条件互补.循环结构中常用的变量有计数变量、累加变量及累乘变量.计数变量用来记录某个事件发生的次数(即执行循环体的次数),累加变量用来计算数据之和,累乘变量用来计算数据之积.对于这些变量,开始一般要先赋初值,一般地,计数变量初值可设为0或1,累加变量初值设为0,累乘变量初值设为1.注意:(ⅰ)正确理解顺序结构的特点及适用条件是作出顺序结构图的关键.(ⅱ)画条件结构的程序框图要用到判断框,判断框有两个出口,根据不同的条件输出不同的信息,这些不同的信息必须全部写出.(ⅲ)只有有规律的,能重复进行的算法过程才能用循环结构.题型一算法设计写出能找出a 、b 、c 三个数中最小值的一个算法.解 第一步:输入a 、b 、c .并且假定min =a ;第二步:若b <min 成立,则用b 的值替换min ;否则直接执行下一步;第三步:若c <min 成立,则用c 的值替换min ,否则直接执行下一步;第四步:输出min 的值,结束.点评 本题的思路是:将min 定义为最小值,并把a 的值赋给min ,然后依次与b 、c 比较大小,遇到小的就替换min 的值,最后输出min 的值,这种方法可以推广到从多个不同的数中找出最大或最小的一个.题型二 条件结构的程序框图已知函数y =⎩⎪⎨⎪⎧ -1 (x >0),0 (x =0),1 (x <0).写出求该函数值的算法及程序框图.解 算法如下:第一步:输入x ;第二步:如果x >0,那么使y =-1,如果x =0,那么使y =0,如果x <0,那么使y =1; 第三步:输出函数值y .程序框图如图所示.点评 该函数是分段函数,当x 取不同范围内的值时,函数的表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的表达式求函数值,因为函数分了三段,所以判断框需要两个,即进行两次判断.求分段函数的函数值的程序框图,如果是分两段的函数只需引入一个判断框,如果是分三段的函数,至少需要引入两个判断框,分四段的函数要引入三个判断框,以此类推,至于判断框内的内容是没有顺序的,比如:本题中的两个判断框内的内容可以交换,但对应的下一图框中的内容或操作也必须相应地进行变化,比如本题的程序框图也可以画成如图1所示或如图2所示.图1图2题型三循环结构的程序框图看下面的问题:1+2+3+…+()>10 000,这个问题的答案不唯一,我们只要确定出满足条件的最小正整数n0,括号内填写的数只要大于或等于n0即可.试写出满足条件的最小正整数n0的算法并画出相应的程序框图.解算法如下:第一步:p=0;第二步:i=0;第三步:i=i+1;第四步:p=p+i;第五步:如果p>10 000,则输出i,算法结束.否则,执行第六步;第六步:回到第三步,重新执行第三步、第四步和第五步.该算法的程序框图如图所示.点评本题属于累加问题,代表了一类相邻两数的差为常数的求和问题的解法,需引入计数变量和累加变量,应用循环结构解决问题.在设计算法时前后两个加数相差1,则i=i +1,若相差2,则i=i+2,要灵活改变算法中的相应部分.另外需注意判断框内的条件的正确写出,直到型和当型循环条件不同,本题解法用的是直到型循环,用当型循环结构时判断框内条件应为p≤10 000.如图所示.题型四程序框图在生活中的应用72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.解用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同时引进两个累加变量,分别计算高于80分的成绩的总和和人数.程序框图如图所示.构和循环结构相结合的算法.【例1】如图所示是某一算法的程序框图,根据该框图指出这一算法的功能.错解 求S =12+14+16+…+110的值. 错解辨析 本题忽略了计数变量与循环次数,没有明确循环体在循环结构中的作用,以及循环终止条件决定是否继续执行循环体.正解 在该程序框图中,S 与n 为两个累加变量,k 为计数变量,所以该算法的功能是求12+14+16+…+120的值. 【例2】 试设计一个求1×2×3×4×…×n 的值的程序框图.错解 程序框图如图所示.错解辨析 本题程序框图看似当型循环结构,我们应当注意的是,当型循环结构是当条件满足时执行循环体,而本题显然是误解了当型循环结构条件.正解 程序框图如图所示.乘变量t和计数变量i,这里t与i每一次循环,它们的值都在改变.1.(海南、宁夏高考)如果执行下面的程序框图,那么输出的S为()A.2 450 B.2 500 C.2 550 D.2 652答案 C解析当k=1,S=0+2×1;当k=2,S=0+2×1+2×2;当k=3,S=0+2×1+2×2+2×3;…当k=50,S=0+2×1+2×2+2×3+…+2×50=2 550.2.(济宁模拟)在如图的程序框图中,输出结果是()A.5 B.6C.13 D.10答案 D解析a=5时,S=1+5=6;a=4时,S=6+4=10;a=3时,终止循环,输出S=10.3.(广东高考)阅读下图的程序框图.若输入m=4,n=6,则输出a=________,i=________.答案12 3解析输入m=4,n=6,则i=1时,a=m×i=4,n不能整除4;i=2时,a=m×i=8,n不能整除8;i=3时,a=m×i=12,6能整除12.∴a=12,i=3.一、选择题1.一个完整的程序框图至少包含()A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框答案 A解析一个完整的程序框图至少需包括终端框和输入、输出框.2.下列关于条件结构的说法中正确的是()A.条件结构的程序框图有一个入口和两个出口B.无论条件结构中的条件是否满足,都只能执行两条路径之一C .条件结构中的两条路径可以同时执行D .对于一个算法来说,判断框中的条件是惟一的答案 B解析 由条件结构可知:根据所给条件是否成立,只能执行两条途径之一.3.下列问题的算法适宜用条件结构表示的是( )A .求点P (-1,3)到直线l :3x -2y +1=0的距离B .由直角三角形的两条直角边求斜边C .解不等式ax +b >0 (a ≠0)D .计算100个数的平均数答案 C解析 条件结构是处理逻辑判断并根据判断进行不同处理的结构.只有C 中含有判断a 的符号,其余选项都不含逻辑判断.4.下列程序框图表示的算法是( )A .输出c ,b ,aB .输出最大值C .输出最小值D .比较a ,b ,c 的大小答案 B解析 根据流程图可知,此图应表示求三个数中的最大数.5.用二分法求方程的近似根,精确度为δ,用直到型循环结构的终止条件是( )A .|x 1-x 2|>δB .|x 1-x 2|<δC .x 1<δ<x 2D .x 1=x 2=δ答案 B解析 直到型循环结构是先执行、再判断、再循环,是当条件满足时循环停止,因此用二分法求方程近似根时,用直到型循环结构的终止条件为|x 1-x 2|<δ.二、填空题6.下边的程序框图(如下图所示),能判断任意输入的整数x 是奇数或是偶数.其中判断框内的条件是________.答案 m =0?解析 根据程序框图中的处理框和输出的结果,寻找判断框内的条件.由于当判断框是正确时输出的是“x 是偶数”,而判断框前面的处理框是x 除以2的余数,因此判断框应填“m =0?”.7.下图是计算1+13+15+…+199的程序框图,判断框应填的内容是________,处理框应填的内容是________.答案 i ≤99? i =i +2解析 由题意知,该算法从i =1开始到99结束,循环变量依次加2.8.完成下面求1+2+3+…+10的值的算法:第一步,S =1.第二步,i =2.第三步,S =S +i .第四步,i =i +1.第五步,________________________________________________________________________. 第六步,输出S .答案 如果i =11,执行第六步;否则执行第三步解析 本题是用自然语言来描述的算法,实际上第五步是一个判断条件,根据题意,是循环是否终止的条件,因此应该为如果i =11,执行第六步;否则执行第三步.三、解答题9.画出求11×2+12×3+13×4+…+199×100的值的程序框图. 解 这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:10.写出解方程ax +b =0 (a 、b 为常数)的算法,并画出程序框图.解 算法如下:第一步,判断a 是否等于零,若a ≠0,执行第二步,若a =0,执行第三步;第二步,计算-b a ,输出“方程的解为-b a”; 第三步,判断b 是否等于零,若b =0,输出“有无数个解”的信息,若b ≠0,输出“方程无解”的信息.程序框图如图所示:探 究 驿 站11.画出求12+12+…+12(共6个2)的值的程序框图. 分析 本题看上去非常烦琐,尤其是对于2的位置处理,容易让人产生错觉.本题只要把含有2的式子分离开来,用A 代替12,即令A =12,则不难分析出分母可化为12+A的形式,且此结构重复出现.解 方法一 当型循环结构程序框图如图所示.方法二 直到型循环结构程序框图如图所示.12.给出以下10个数:5,9,80,43,95,73,28,17,60,36,要求把大于40的数找出来并输出.试画出该问题的程序框图.解程序框图如下图:趣味一题13.相传,古印度的舍罕王打算重赏国际象棋的发明者——宰相西萨·班·达依尔.于是,这位宰相跪在国王面前说:“陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子;在第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一倍.陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人罢!”国王慷慨地答应了宰相的要求,他下令将一袋麦子拿到宝座前.计数麦粒的工作开始了.第一格内放一粒,第二格两粒,第三格四粒……还没到第二十格,袋子已经空了.一袋又一袋的麦子被扛到国王面前来,但是,麦粒数一格接一格地增长得那么迅速,很快就可以看出,即使拿来全印度的小麦,国王也无法兑现他对宰相许下的诺言!请你画出一个程序框图来求需要的麦粒数.分析由题意,我们可以看出第一格内放一粒,第二格两粒,第三格四粒,就是往后每一格是前一格的2倍,这样一共需要的麦粒数就是1+2+22+…+262+263.从而可以得出这是一个累加求和问题,可以利用循环结构来设计算法,计数变量i从1到64循环64次,每个求和的数可用一个累乘变量表示.解程序框图:。

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)
精品PPT
练习:
1、下列关于程序框图的说法正确的是 A、程序框图是描述算法的语言
A ( )
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
精品PPT
例1.写出求任意两个数的平均数的算法,并
画出程序框图
程序框图
如何计算选手最后得分?
第一步:100+20=120 第二步: 120+30=150 第三步:150-15=135 第四步:135+50=185
如果引入变量S S=100; S=S+20; S=S+30; S=S-15; S=S+50 输出S
可使算法的表示非常简洁。
精品PPT
算法的概念
问题1:结合实际过程,应当如何理解“x=x+20”这样的式子? 问题2:左右两边的x的意义或取值是否一样?能不能消去?
求n除以i的余数r
i的值增加1,仍用i表示
i>n-1或r=0?


顺序结构

r=0?
循环结构 否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
精品PPT
1、顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与 框之间是按从上到下的顺序进行的,它是由若干个依次执行 的处理步骤组成的,它是任何一个算法都离不开的一种基本 算法结构。 顺序结构在程序框图中的体现就是用流程线将程 序框自上而下地连接起来,按顺序执行算法步骤。
精品PPT
探究
如图是求解一元二次方程 的 算法

人教版高中数学必修三课件:1.1.1 算法的概念

人教版高中数学必修三课件:1.1.1 算法的概念
解:b→a→c→d→e
考点类析
例2 写出解方程x2-2x-3=0的一个算法.
解:方法一,算法如下: 第一步,将等号左边因式分解,得(x-3)(x+1)=0①; 第二步,由①式得x-3=0或x+1=0; 第三步,解x-3=0得x=3,解x+1=0得x=-1,即x=3或x=-1.
考点类析
例2 写出解方程x2-2x-3=0的一个算法. 解:方法二,算法如下: 第一步,移项,得x2-2x=3①; 第二步,①式等号两边同时加1并配方,得(x-1)2=4②; 第三步,②式等号两边同时开方,得x-1=±2③; 第四步,解③式得x=3或x=-1.
预习探究
(4)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同 的算法,这些算法有繁简、优劣之分. (5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决.
预习探究
知识点三
算法的设计要求
设计算法的要求主要有以下几点: (1)写出的算法必须能解决一类问题,并且能够重复使用; (2)要使算法尽量简单、步骤尽量少; (3)要保证算法的各个步骤有效,计算机能够执行,且在有限步骤后能得到结果.
备课素材
累加、累乘问题的算法 解决一个问题的算法一般不是唯一的,不同的算法有优劣之别,保证得到正 确的结果是对每个算法的最基本的要求.另外,还要求算法的每个步骤都要 易于实现、易于理解,效率要高,通用性要好等.
备课素材
备课素材
[例2] 求1×3×5×7×9×11的值,写出其算法.
解:算法如下:
备课素材
[小结]
知识 1.算法的概念; 2.算法的特性; 3.算法的设计
方法
易错
1.根据具体的问题进行判断,是 给出问题,在书写步骤时,不能

高中数学第一章坐标系1.1平面直角坐标系1.1.1平面直角

高中数学第一章坐标系1.1平面直角坐标系1.1.1平面直角

题型一 题型二 题型三
解:(1)设
������ ������
=
������,
得y=kx,所以
k
为过原点的直线的斜率.
又 x2+y2-4x+1=0 可化简为(x-2)2+y2=3,
它表示以(2,0)为圆心, 3为半径的圆,如图所示.
当直线 y=kx 与已知圆相切,且切点在第一象限时,k 最大,
此时,|CP|= 3, |������������| = 2,
(2)曲线可看作是满足某些条件的点的集合或轨迹,由此我们可借 助坐标系,研究曲线与方程间的关系.
名师点拨1.两点间的距离公式:在平面直角坐标系 中,P1(x1,y1),P2(x2,y2)两点之间的距离公式为
|P1P2|= (������1-������2)2 + (������1-������2)2.
所以
-1 + 2������ < -3-������ < 0,
0,

������
<
1 2
,
������ > -3.
所以-3<m< 12.
答案:-3<m<
1 2
2.曲线与方程 在平面直角坐标系中,如果某曲线C上的点与一个二元方程 f(x,y)=0的实数解建立了如下关系: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都在曲线C上. 那么,方程f(x,y)=0叫作曲线C的方程,曲线C叫作方程f(x,y)=0的曲 线. 名师点拨求曲线的方程一般有以下五个步骤:(1)建立适当的平面 直角坐标系,并用(x,y)表示曲线上任意一点M的坐标;(2)写出适合条 件p的点M的集合p={M|P(M)};(3)用坐标表示条件p(M),写出方程 f(x,y)=0;(4)化简方程f(x,y)=0(必须等价);(5)证明以(4)中方程的解为 坐标的点都在曲线上.一般地,方程的变形过程若是等价的,则步骤 (5)可以省略.

(人教a版)必修三同步课件:1.1.1算法的概念

(人教a版)必修三同步课件:1.1.1算法的概念

第二步,取下右边的银元放在一边,然后把剩下的7枚银元
依次放在右边进行称量,直到天平不平衡,偏轻的那一枚 就是假银元.
法二
算法如下.
第一步,把9枚银元平均分成3组,每组3枚. 第二步,先将其中两组放在天平的两边,若天平不平衡,则
假银元就在轻的那一组;否则假银元在未称量的那一组.
第三步,取出含假银元的那一组,从中任取2枚银元放在天平 左、右两边称量,若天平不平衡,则假银元在轻的那一边;
太狼、懒羊羊和一捆青草过河.河边 只有一条船,由于船太小,只能装下 两样东西.在无人看管的情况下,灰 太狼要吃懒羊羊,懒羊羊要吃青草, 请问包包大人如何才能带着他们平安过河? 试设计一种算法.

包包大人采取的过河的算法可以是:
第一步,包包大人带懒羊羊过河;
第二步,包包大人自己返回;
第三步,包包大人带青草过河; 第四步,包包大人带懒羊羊返回; 第五步,包包大人带灰太狼过河; 第六步,包包大人自己返回;
解析
由于算法具有有限性、确定性、输出性等特点,因
而②③④正确,而解决某类问题的算法不一定唯一,从而 ①错. 规律方法 1.算法实际上是解决问题的一种程序性方法,
它通常解决某一个或一类问题,在用算法解决问题时,显
然体现了特殊与一般的数学思想. 2.算法的特点有:①有限性,②确定性,③顺序性与正确 性,④不唯一性,⑤普遍性.解答有关算法概念的判断题 应根据算法的这五大特点进行.
高中数学· 必修3· 人教A版
第一章
算法初步
1.1 算法与程序框图 1.1.1 算法的概念
[学习目标]
1.通过解二元一次方程组的方法,体会算法的基本思想. 2.了解算法的含义和特征. 3.会用自然语言表述简单的算法.

高中数学必修三第一章

高中数学必修三第一章

高中数学必修三第一章高中数学必修三第一章 1第一章算法初步1.1.1 算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的开始和结束,对于任何流程图都是不可缺少的。

输入输出框表示算法的输入输出信息,可以用在算法中任何需要输入输出的位置。

处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。

判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时明“否”或“N”。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2.框图一般是从上到下,从左到右画的。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

浙江省杭州市萧山区第三高级中学高中数学必修一:1.1.1任意角 (共12张PPT)

浙江省杭州市萧山区第三高级中学高中数学必修一:1.1.1任意角 (共12张PPT)
练习1:已知角的顶点与直角坐标系的原 点重合,始边与x轴的非负半轴重合,做 出下列各角,并指出它们是第几象限角? 30°, -75°, 120°, 390°, -150°,-330°, -690°
练习2:
(1)锐角是第几象限角?第一象限角一定 是锐角吗?
y

oห้องสมุดไป่ตู้
x
与 终边相同的角的一般形式为:
写出终边落在x轴非负 半轴上的角的集合。
练习4、写出终边落在阴影部分 内的角的集合(含边界)。 y
6 0 3 0
O
x
小结:
正角:射线按逆时针方向旋转形成的角 1.任意角的概念 负角:射线按顺时针方向旋转形成的角
零角:射线不作旋转形成的角 1)置角的顶点于原点
2.象限角 2)始边重合于X轴的正半轴 3)终边落在第几象限就是第几象限
明目标、知重点
例1 、在0 ~ 360 范围内,找出与 950 12 终边相同的角,并判



定它是第几象限角 .
练习 3、写出与下列各角终边 相同的角的集合 (1) 5418'
(2)1303
360 720 并把(2)集合中适合不等式 的元素写出来 .
例2
S={ |
=
k 3600 , k Z
}
k 360 , k Z的几点注意:
0
1 、k Z 2、是任意的角
3、终边相同的角不一定 相等,终边相同的角有 无数个,相差 360的整数倍。
4 、k的两层含义:
(1)特殊性:对 k每赋一个值就有一个具 体角
(2)一般性:表示了所有 与终边相同的角
3.与终边相同的角组成的集 合: S { k 3600 , k z}

2022年秋高中数学第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其运算课件新人

2022年秋高中数学第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其运算课件新人

π
2
<a,b>=
a⊥b
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)两个有共同始点且相等的向量,其终点必相同.( √ )
(2)两个有公共终点的向量,一定是共线向量.( × )
(3)在空间中,任意一个向量都可以进行平移.( √ )
(4)模相等的向量不一定是相等向量.( √ )
(5)表示两个平行向量的有向线段所在的直线一定不重合.( × )
提示两个非零向量共线且同向时,<a,b>=0;两个非零向量共线且反向
时,<a,b>=π.
知识点2 空间向量的线性运算及其运算律
(1)如图,任意给定两个不共线的向量a,b,在空间中任取一点O,作
=a, =b ,以OA,OC为邻边作平行四边形OABC,则
①加法:a+b= .
②减法:a-b= .
向量的模(或
向量的 大小也称为向量的模,向量a的模可用 |a| 来表示
长度)
相等向量
大小 相等 、方向 相同 的向量
平行向量
方向 相同 或者 相反 的两个非零向量
(或共线向量)
空间中的多个向量,如果表示它们的有向线段通过平移之后,
共面向量
都能在 同一平面 内
(2)空间向量的夹角
∠AOB
<a,b>
0≤<a,b>≤π
λa+λb
.
名师点睛
(1)在△ABC 中, + + =0.
(2)以向量a,b为邻边的平行四边形中,a+b与a-b对应的有向线段所表示的
是两条对角线,|a+b|与|a-b|为两条对角线的长度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档