2012土壤学第十章土讲义壤元素的生物地球化学循环

合集下载

第十章土壤元素的生物地球化学循环PPT课件

第十章土壤元素的生物地球化学循环PPT课件
光合作用是土壤碳循环中重要的碳同化途径。光 合作用产生的有机物质主要是碳水化合物,它是土壤 有机碳的最初来源。
光合作用强度直接受植物生物学特性和气候条件 的影响。
三、土壤呼吸作用
土壤呼吸作用是指土壤产生并向大气释 放二氧化碳的过程,主要由土壤微生物(异养 呼吸)和根系(自养呼吸)产生。除植被冠层光 合作用,土壤呼吸作用是陆地生态系统碳收 支中最大的通量。
研究土壤呼吸作用引起的土壤CO2通量变化必须特别注意 土壤表层附近的不稳定碳库的变化。人为扰动或全球变暖引起 的土壤CO2通量释放的增加主要源于具有最短更新时间的不稳 定碳库。如温带森林土壤的CO2年生产量中有83%是仅为15cm 的表层土壤提供的。
四、土壤碳的固定
土壤碳的固定:光合作用固定的碳大于呼吸 作用消耗的碳。
➢土壤碳库估计中不确定性还与土壤实测调查数据 不充分有关。
➢控制土壤碳储量的主导因子多,包括气候(温度 和水汽)、植物类型、母岩(黏土含量和土壤排水 层)等,而温度、水汽和颗粒大小在土壤剖面的不 同深度变化极大。
图 中国土壤有机碳密度(0-100cm)分布
二、土壤光合作用
光合作用(Photosynthesis)是绿色植物吸收 光能 ,在可见光的照射下,将二氧化碳和水转化为 有机物,并释放出氧气的过程。
木质素、树脂和某些芳香族化合 几个月到几年 物
纤维、脂肪
几天到几个月
氨基酸、简单糖类和低分子脂肪 几小时到几天 酸等
➢不同土壤层中有机碳的的平均停留期受土壤有机质的 性质和数量、腐殖质的特性以及环境条件等影响,一 般为100~3000年。
➢地质大循环的土壤碳周转时间可达几百万年甚至几亿 年,远远长于大气碳库和陆地植被碳库,可见土壤碳 库在生物地球化学循环中周转速度最慢。

《土壤学》课程笔记

《土壤学》课程笔记

《土壤学》课程笔记第一章:什么是土壤?1.1 土壤的重要性与功能土壤不仅是地球表面的一个物理层,它还是一个动态的生态系统,具有多种重要性和功能:- 生命支持系统:土壤是植物生长的基础,为植物提供必需的养分、水分和栖息地,从而支撑着地球上绝大多数生物的生命活动。

- 水循环的关键参与者:土壤是大气降水的主要接收者,通过渗透、蒸发和径流等过程参与水循环,维持水文平衡。

- 养分循环的枢纽:土壤是生物地球化学循环的核心,包括碳、氮、磷、硫等元素的循环,这些元素是所有生命体必需的。

- 环境净化器:土壤具有过滤、吸附、降解和转化污染物质的能力,有助于保护地下水和地表水质量。

- 土壤保持文化遗产:土壤记录了地球历史和人类活动的信息,是自然和文化遗产的一部分。

1.2 一方水土养一方人土壤的特性直接影响着一个地区的生态环境、经济发展和人类生活方式:- 地域性:不同地区的土壤类型和特性不同,这决定了当地的植被类型、农作物种植模式和农业生产效率。

- 文化影响:土壤条件影响人类居住模式、饮食习惯和传统技艺,如稻田文化、葡萄种植文化等。

- 经济发展:土壤资源丰富与否直接影响地区经济的发展,如农业、矿业和旅游业等。

1.3 土壤的概念与土壤学内容土壤是由矿物质、有机质、水分、空气和生物组成的复杂混合体,具有以下特点:- 物理性质:土壤的物理性质包括质地、结构、孔隙度、水分和温度等。

- 化学性质:土壤的化学性质涉及pH值、养分含量、阳离子交换量、有机质含量等。

- 生物性质:土壤是地球上生物多样性最丰富的栖息地之一,包括微生物、昆虫、植物根系等。

土壤学内容主要包括:- 土壤的形成与演变:研究土壤如何从母质经过生物、气候和时间的作用形成,以及土壤剖面的发育过程。

- 土壤分类:根据土壤的形态、性质和发生特性,将土壤划分为不同的类型。

- 土壤的物理、化学和生物性质:研究土壤的物理结构、化学成分和生物活动对土壤功能的影响。

- 土壤肥力和植物营养:探讨土壤如何提供植物生长所需的养分,以及如何通过施肥等手段提高土壤肥力。

土壤生物化学过程与养分循环课件PPT

土壤生物化学过程与养分循环课件PPT
氨基糖等。 ---增强土壤的保肥性和缓冲性
影响土壤有机质分解和周转的因素 腐殖物质占10-30%。
占土壤有机质的20~30%
土壤生物化学过程和养分循环
土壤有机质组成---非腐殖质
糖类物质 saccharides
➢在一般有机体代谢过程中,糖类物质中所 含的结合能是最好的能量来源,在土壤代 谢过程中,糖类同样可作为能量物质,是土 壤微生物的主要能源物质。
酶氧化 ---提供植物需要的其他养分
多糖、多糖醛酸苷、有机酸等非腐殖物质占3-8%,
2
2
2
一般土壤微生物活动的最适宜温度大约为25-35 ℃,超出这个范围,微生物的活动就会受到明显的抑制。
土络壤合有 多腐机糖质可殖转将化土化和壤碳颗过素粒循结程环合为:稳定h的团u聚m体i。fication
各种有机化合物通过微生物的合成或在原植物组织中的聚合转 进入土壤的有机残体经过一年降解后,三分之二以上的有机物质以二氧化碳的形式损失掉,残留在土壤中的有机质不到三分之一,其
2.5g/ml)溶液中的沉降速度将其分作轻组和 重组土壤,它们中的有机质被分别称作轻 组有机质(Light Fraction Organic Matter, LFOM) 和重组有机质(High Fraction Organic Matter, HFOM)。
土壤生物化学过程和养分循环
SOM分组方法---密度分组法
土壤有碳机素质储土量壤(G,t 含C)有:机陆质地在2生0%物以圈下1的5土50壤G,t C称土为壤矿质圈土12壤0。0Gt C
土➢壤但碳耕密作度土壤中(kg,/表m层2):有单机质位的面含积量土通壤常在碳5素%以含下量。
有机质含量(%)
肥力水平
<0.5

(土壤学教学课件)第十章-土壤元素的生物地球化学循环

(土壤学教学课件)第十章-土壤元素的生物地球化学循环
态氮(-NH2)通过微生物和植物吸收同化, 成为生物有机质的组成部分,称为无机氮的 生物固定。
22
土壤中氮素的损失
1. 硝酸盐的淋失 2. 反硝化脱氮 嫌气条件下,硝酸盐在反硝化微生物作用下被
还原成为氮气和氮氧化物的过程。
NO3-
NO2-
NO
N2O
N2
23
3. 化学脱氮 ➢指土壤中的含氮化合物通过纯化学反应生成
(土壤学教学课件)第十章-土壤元素 的生物地球化学循环
土壤养分的基本概念
土壤养分-由土壤提供的植物生长发育所必须的营养 元素。
植物体中含有90余种元素,生长发育必需元素17种:
植物“必需”营养元素的标准:
如果缺少这种元素,植物就不能生长或不能完 成生命周期。
这种元素不能被其他元素所代替,它具有营养 的作用。
11
土壤氮素含量
• 我国土壤全氮含量差异较大,南北略高,中 部略低。
• 耕地土壤全氮含量一般在1 g kg-1以下。
12
土壤中氮素的形态
(一)无机态氮
✓无机态氮在土壤中含量很少,表土中一般只占全 氮含量的1~2%,表土层以下的土层含量更少。
✓土壤中无机态氮的形态主要为:铵态氮(NH4-N) (ammonium nitrogen)和硝态氮(NO3-N)(nitrate nitrogen)。
气态氮而损失的过程。
➢双分解作用。铵态氮和亚硝态氮生成亚硝酸 铵产生双分解作用脱氮。
➢亚硝酸分解。生成一氧化氮。 ➢氨挥发。与土壤的酸碱性密切相关。土壤碱
性越强,质地越轻,氨的挥发也越严重。
24
25
土壤氮素调节
➢土壤氮素的矿化作用和硝化作用是有机氮的 有效化过程。
➢反硝化作用和化学脱氮是有效氮的损失过程。

土壤学作业整理

土壤学作业整理

第一章土壤矿物质1.核心名词原生矿物次生矿物四面体八面体同晶替换2:1型1:1型粘粒矿物2.思考题(1)什么叫做矿物?分析原生矿物和次生矿物在土壤中的主要作用是什么?(2)试比较高岭石、蒙脱石和伊利石在晶架构造上有何不同?(3)试比较高岭石组矿物与蒙脱石组矿物在性质上的差异以及产生这些差异的原因是什么?第二章土壤有机质(一)基本概念1. 土壤有机质2.土壤腐殖质3. 矿化作用4. 腐殖化作用7. 腐殖化系数8. C/N 9. 腐殖酸10. 褐腐酸11. 黄腐酸12. 激发效应( 二)问答题1. 什么叫土壤有机质?包括哪些形态?其中哪种最重要?2. 增加土壤有机质的方法有哪些?你认为最有效是哪种?3. 叙述土壤有机质在土壤肥力上的意义和作用?4. 水田的腐殖质含量一般比旱地高?为什么?5. 影响土壤有机质转化的条件是什么?其中最主要的条件是哪一种?为什么?(三)判断题1、土壤有机质是化学中已有的有机化合物( )2、土壤有机质的转化是受微生物控制的一系列生化反应( )3、C/N高会抑制有机质的分解( )4、HA的酸性比FA强,分子量比FA高,稳定性比FA高( )5、一般南方土壤有机质的HA/FA<1,而北方﹥1( )6、一般随着土壤熟化度的提高,HA/FA也提高( )7、土壤施用的有机肥越多,土壤有机质含量提高的也越高( )8.有机质的转化是先矿化后腐殖化,两个过程是矛盾对立的( )9、土壤微生物主要分解碳水化合物,不分解腐殖质( )10、土壤有机质在土壤中是完全独立存在的( )第三章土壤生物一、名词土壤生物土壤微生物菌根根际R/S比土壤酶竞争关系互生关系共生关系拮抗关系捕食关系寄生关系二、思考题1、土壤中主要有哪些生物?请举例说明。

2、蚯蚓对土壤肥力有何影响?3、微生物在土壤肥力上的重要性是什么?第四章土壤水、空气和热量1. 与大气组成相比,土壤空气有哪些特点?2. 简述土壤空气更新的方式及其影响因素。

(土壤学讲义)第10章土壤养分循环

(土壤学讲义)第10章土壤养分循环

第十章土壤养分循环第一节土壤氮素循环第二节土壤磷和硫的循环第三节土壤中的钾钙镁第四节土壤中的微量元素循环第五节土壤养分平衡及有效性循环第一节土壤氮素一、陆地及土壤生态系统中的氮循环(一)陆地生态系统中的氮形态大气中氮以分子态氮(N2)和各种氮氧化物(NO2、NO、N2O)等形式存在。

其中N2占78% ,生物作用下转化为土壤和水体生物有效态(铵态氮和硝态氮)(二)氮素循环由两个重叠循环构成:一是大气层的气态氮循环几乎所有的气态氮对大多数高等植物无效,只有若干种微生物或少数与微生物共生的植物可以固定大气中的氮素,使它转化成为生物圈中的有效氮。

二是土壤氮的内循环1-矿化作用 2-生物固氮作用 3-铵的粘土矿物固定作用4-固定态铵的释放作用 5-硝化作用6-腐殖质形成作用 8-腐殖质稳定化作用7-氨和铵的化学固定作用二、土壤氮的获得和转化(一)土壤氮的获得1、大气中分子氮的生物固定2、雨水和灌溉水带入的氮3、施用有机肥和化学肥料(二)土壤中N的转化1、氮的形态---无机态氮和有机态氮(1)土壤无机态氮铵态氮(NH4+-N)硝态氮(NO3--N)(2)有机态氮 --主要存在形态,占全N的95%以上水溶性有机氮按溶解度大小分水解性有机氮非水解性有机氮2、土壤氮素的转化(1)有机氮的矿化矿化过程分两个阶段:第一阶段:氨基化阶段即复杂的含氮化合物(如氨基糖、蛋白质、核酸等)经微生物酶的系列作用下,逐渐分解而形成简单的氨基化合物。

第二阶段:氨化作用即在微生物作用下,各种简单的氨基化合物分解成氨的过程。

氨化作用于可在不同条件下进行:O2 RCOOH +NH3+CO2+QRCHNH2COOH + 2H---RCH2COOH +NH3+QH2O RCHOHCOOH+NH3+Q(2)铵的硝化硝化作用:是指土壤中大部分NH4+通过微生物作用氧化成亚硝酸盐和硝酸盐的过程。

2NH4++3O2-------2NO2-+2H2O+4H++Q2NO2-+O2-------2NO3-+Q(3)无机态氮的生物固定定义:矿化作用生成的铵态氮、硝态氨和某些简单的氨基态氮,通过微生物和植物的吸收同化,成为生物有机体组成部分,称为无机态N的生物固定(又称为生物固持)(4)铵离子的矿物固定定义:是指离子直径大小与2:1型粘土矿物晶架表面孔穴大小接近的铵离子,陷入晶架表面的孔穴内,暂时失去了它的生物有效性,转变为固定态铵的过程。

第十章土壤元素的生物地球化学循环(2011-4-10)

第十章土壤元素的生物地球化学循环(2011-4-10)

(三)土壤碳循环对环境的影响
泥炭土、沼泽土和水稻土中逸出的CH4是大气中CH4 的主要来源之一。大气中CH4和CO2量的增加会通过 温室效应而使气候变暖。
(四)当前土壤碳循环研究存在的问题
1、对土壤有机碳动态变化的了解较少; 2、区域尺度上的土壤循环研究; 3、土壤碳库估计中不确定问题; 4、控制土壤碳储量的主导因子。
引起CO2浓度升高的主要原因是土地利用的改变 和燃烧化石燃料。
控制气候交换的因素有温度、湿度、Eh和基质的 有效性。
(二)土壤碳循环与大气中CH4浓度
CH4的代谢比CO2复杂,土壤中既产生CH4, 又消耗 CH4。全球每年进入大气的CH4排放量约0.41PgC。湿地土 壤的CH4每年排放量约0.131PgC,占总排放量的32%,其中 自然湿地和水田分别为86TgC和45TgC(1Tg=0.001Pg)。
2NH4+ + 3O2
2NO2- + 2H2O + 4H+ + 660kJ
条件:亚硝化细菌(专性自养型微生物)

通气:良好 O2< 5% pH 5.5 - 10 (7-9), < 4.5 受抑制!
水分:50~60%
温度:35℃ < 2℃ STOP!
养分:Cu,Mo等促进硝化作用的进行。缺钙,不利。
2)硝化作用
1、在充分通气条件下(氨化作用)
RCHNH2COOH+O2
2、在嫌气条件下
RCH2COOH + NH3 + 能量
RCHNH2COOH+2H RCHNH2COOH+2H
RCH2COOH + NH3 + 能量 RCH2 + CO2 + NH3 + 能量

10土壤养分循环

10土壤养分循环

第三节 土壤中的钾钙镁
土壤中的钙和镁
土壤中钙、镁形态
矿物态 交换态和水溶态
土壤钙、镁的丰、缺状况
第四节
土壤中的微量元素循环
土壤中微量元素的来源及转化
土壤中微量元素的来源与损失
来源
岩石 大气 施肥
损失
植物吸收和收获物移出 土壤淋洗和侵蚀
第四节
土壤中的微量元素循环
土壤中微量元素的来源及转化
微量元素转化
第五节
土壤养分平衡及有效性
土壤溶液中养分的补给
养分容量和强度指标
容量指标指土壤中有效养分总量; 强度指标指土壤溶液中养分离子的浓度; 缓冲容量指土壤固相维持溶液中养分强度的能力。
土壤养其吸附离子的结合能; 养分位 把养分的有效性与化学位联系起来,用化学位衡 量养分的有效度,称为养分位。但养分位不等于化学位, 而是化学位的简单函数。
思考问题
土壤的养分贮存在何处? 在氮素循环中所强调的重要概念是什么? 什么是磷的固定? 钾是如何从土壤中损失的? 哪些微量元素的有效度依赖于土壤pH?
粘粒矿物的类型 土壤质地 土壤水分条件 土壤酸碱度
第三节 土壤中的钾钙镁
土壤钾的固定和释放及其影响因子
土壤钾的释放及影响因素
释放过程主要是非交换性钾转变为交换性钾的过程; 只有当土壤交换性钾减少时,非交换性钾才释放为 交换性钾,土壤钾的释放量随交换性钾含量下降而 增加; 土壤释钾能力主要决定于其非交换性钾的含量; 干燥、灼烧和冰冻对土壤钾的释放有显著影响。
土壤氮的转化
有机氮的矿化 铵的硝化 无机态氮的生物固定 铵离子的矿物固定
第一节
土壤氮素循环
土壤氮的损失
淋洗损失 气体损失
反硝化作用 氨挥发

《土壤学》课程笔记

《土壤学》课程笔记

《土壤学》课程笔记第一章:什么是土壤?1.1 土壤的重要性与功能土壤不仅是地球表面的一个物理层,它还是一个动态的生态系统,具有多种重要性和功能:- 生命支持系统:土壤是植物生长的基础,为植物提供必需的养分、水分和栖息地,从而支撑着地球上绝大多数生物的生命活动。

- 水循环的关键参与者:土壤是大气降水的主要接收者,通过渗透、蒸发和径流等过程参与水循环,维持水文平衡。

- 养分循环的枢纽:土壤是生物地球化学循环的核心,包括碳、氮、磷、硫等元素的循环,这些元素是所有生命体必需的。

- 环境净化器:土壤具有过滤、吸附、降解和转化污染物质的能力,有助于保护地下水和地表水质量。

- 土壤保持文化遗产:土壤记录了地球历史和人类活动的信息,是自然和文化遗产的一部分。

1.2 一方水土养一方人土壤的特性直接影响着一个地区的生态环境、经济发展和人类生活方式:- 地域性:不同地区的土壤类型和特性不同,这决定了当地的植被类型、农作物种植模式和农业生产效率。

- 文化影响:土壤条件影响人类居住模式、饮食习惯和传统技艺,如稻田文化、葡萄种植文化等。

- 经济发展:土壤资源丰富与否直接影响地区经济的发展,如农业、矿业和旅游业等。

1.3 土壤的概念与土壤学内容土壤是由矿物质、有机质、水分、空气和生物组成的复杂混合体,具有以下特点:- 物理性质:土壤的物理性质包括质地、结构、孔隙度、水分和温度等。

- 化学性质:土壤的化学性质涉及pH值、养分含量、阳离子交换量、有机质含量等。

- 生物性质:土壤是地球上生物多样性最丰富的栖息地之一,包括微生物、昆虫、植物根系等。

土壤学内容主要包括:- 土壤的形成与演变:研究土壤如何从母质经过生物、气候和时间的作用形成,以及土壤剖面的发育过程。

- 土壤分类:根据土壤的形态、性质和发生特性,将土壤划分为不同的类型。

- 土壤的物理、化学和生物性质:研究土壤的物理结构、化学成分和生物活动对土壤功能的影响。

- 土壤肥力和植物营养:探讨土壤如何提供植物生长所需的养分,以及如何通过施肥等手段提高土壤肥力。

土壤元素的生物地球化学循环

土壤元素的生物地球化学循环

土壤元素的生物地球化学循环●土壤碳的生物地球化学循环●土壤碳循环●土壤碳库在生物地球化学循环中的周转●土壤碳循环对土壤氮、硫、磷循环的影响●土壤碳循环对环境的影响●当前土壤碳循环研究存在问题土壤碳循环仍然是陆地碳循环研究中最薄弱环节,尤其是对土壤有机碳动态变化的了解更少,对全球土壤碳库的估计差异也很大。

●主导土壤碳循环的重要作用和过程●土壤光合作用●土壤呼吸作用●土壤碳的固定●土壤碳酸盐转化与平衡过程●土壤碳循环与全球气候变暖●土壤碳循环与大气CO2浓度●土壤碳循环与大气中CH4浓度●CH4和CO2对大气碳库环境的综合影响●土壤氮的生物地球化学循环●氮素的作用及环境效应●土壤氮素的来源●生物固氮●高能固氮●工业固氮●❗❗❗土壤氮素的形态及转化●土壤有机氮的矿化作用●土壤无机氮的生物固定●❗铵态氮的硝化作用●硝态氮的反硝化作用●❗阳离子的固定●化学脱氮指土壤中的含氮化合物通过纯化学反应生成气态物质而损失的过程。

●土壤硫的生物地球化学循环●土壤硫的形态●土壤硫循环●土壤硫的内部循环●土壤硫的外部循环●主导土壤硫循环的主要作用和过程●大气硫沉降●❗❗❗土壤有机硫矿化●新加入土壤中的有机硫的矿化与C/S比值有关,C/S比值小于200时,将发生硫的净矿化●温度低于10℃时,矿化作用受到显著抑制;10~35 ℃时矿化量随温度的升高而增大●土壤水分含量为最大持水量的60%时,矿化作用最强,小于最大持水量的15%或大于最大持水量的80%时均显著减弱,将土壤风干可促进有机硫的矿化●土壤pH7.5左右时矿化量最大,在此pH以下,矿化量随pH的降低而减少,酸性土壤矿化量随石灰施用量的增多而增多●土壤无机硫的生物固定●硫的氧化和还原●同化还原:在酶的作用下,生物体将从土壤中吸收的无机硫同化还原成各种含硫化合物,组成蛋白质或释放出H2S●异化还原:微生物利用硫(作为电子受体)氧化有机质●排水不良的土壤中:硫与铁锰形成固态硫化物●硫的吸附与解析●❗❗❗土壤磷的生物地球化学循环●磷的作用及环境效应●土壤磷的含量及影响因素●土壤磷的种类及形态●有机磷●植素类(P-O-C)●核酸类(C-O-P-O-C)●磷脂类(C-P)●无机磷●水溶态磷●吸附态磷●矿物态磷●土壤磷的循环与转化●土壤有机磷矿化●有效磷的生物固定●❗❗❗土壤磷的吸附和解吸土壤磷的吸附是磷在土壤中被固定的主要机理之一●非专性吸附:在酸性条件下,土壤中的铁、铝氧化物,能从介质中获得质子而使本身带正电荷,并通过静电引力吸附磷酸根阴离子●专性吸附:磷酸根离子置换土壤胶体(粘土矿物或铁、铝氧化物)表面金属原子配位壳中的-OH或-OH2配位基,同时发生电子转移并共享电子对而被吸附在胶体表面上●土壤磷的解吸:则是磷从土壤固相向液相转移的过程,是土壤中磷释放作用的重要机理●❗❗❗土壤磷的沉淀●酸性条件下,磷与铁、铝、锰的共沉淀●碱性条件下,磷与钙的共沉淀●❗❗土壤磷的溶解●Fe-P、O-P的还原作用土壤嫌气条件下,供氧不足,还原过程强烈,高价铁还原为亚铁可减少难溶性磷酸盐的生成,同时也可促进O-P表面铁(铝)胶膜的溶解,使封闭于胶膜中的磷酸盐得以释放,进而增加磷素的有效性●Ca-P 的酸溶作用石灰性土壤中,难溶性的高钙磷如磷灰石与土壤中的各种有机酸、无机酸(如H2CO3、H2SO4、HNO3等)作用,逐渐脱钙转化为易溶性磷酸一钙的过程●土壤磷养分的调控●调节土壤酸碱度●合理使用磷肥(水旱轮作)●增施有机肥●水分管理●土壤钾的生物地球化学循环●土壤钾素的形态和有效性●矿物态钾——无效钾●非交换态钾——缓效钾指存在于层状硅酸盐矿物层间(伊利石、蛭石)和颗粒边缘上的一部分钾●交换性钾——速效钾被带负电荷的土壤胶体表面所吸附的钾离子,一般仅占土壤全钾含量的1-2%●水溶性钾——速效钾是以钾离子形态存在于土壤溶液中的钾,是土壤中活性最高的钾,也是植物钾素养分的直接来源●土壤钾的循环与转化●土壤中钾素的固定●黏粒矿物类型:2∶1型黏土矿物中,凡四面体电荷越多,固钾能力越强●土壤水分条件:土壤干湿交替可导致固定态钾增多●土壤酸碱度:酸性土壤的固钾能力小于碱性土壤●NH4+的影响:施用铵态氮肥可使固钾量显著减少(补偿效应)●土壤中钾素的释放●受矿物本身抗风化能力强弱的影响●主要是非交换性钾转变为交换性钾的过程●干燥、灼烧和冰冻对土壤中钾的释放有显著影响。

第十章土壤养分循环

第十章土壤养分循环
① 难溶性磷酸盐 如氟磷灰石、羟基磷灰石等存在于石灰性土壤中;粉红磷
铁矿和磷铝石在酸性土壤中较多。
② 易溶性磷酸盐 包括水溶性和弱酸溶性两种。 易溶磷酸盐,一方面来自与化肥,另一方面来自于难溶磷
酸盐的溶解。
第十章土壤养分循环
(四)土壤磷的转化
1.土壤磷的有效化过程
有机态磷和难溶性磷酸盐在一定条件 下,转化为植物可以吸收利用的水溶性的 磷酸盐或弱酸溶性的磷酸盐的过程是其有 效性提高的过程,通常称之为磷的释放。
固氮作用主要是靠微生物,固氮微生物分共生和自生两类。 (1)与豆科作物共生的固氮菌,其固氮能力很强。10~20斤/亩 (2)自生固氮菌,有分为好气和嫌气两类。
好气性固氮能力强,在热带林地,可达10~30斤/亩
第十章土壤养分循环
对于农田来说,土壤氮素的来源不止以上两 种途径,包括:
(1)固氮作用;自生固氮 、共生固氮和联合固氮 (2)降水; (3)灌水; (4)施肥;① 有机肥;② 无机化肥;它们是土壤氮 肥的主要来源。
3.游离态氮(N2)
第十章土壤养分循环
三 土中氮素的转化
一)土壤氮素的有效化过程
1.有机态氮的矿化过程
含氮的有机合化物,在多种微物物的作用下降解为简单的氨 态氮的过程。
(1)水解过程
水解 水解
蛋白质 多肽 氨基酸、酰胺等
朊酶
肽酶
条件:① 真菌、细菌、放线菌等;
②在通气良好; ③ 温度较高;
④ 水分60~70%; ⑤ pH值适中;
植物吸收利用的土壤养分,称~ 无效养分-不能被植物吸收利用的土壤养分,称~ 土壤养分状况-是指土壤养分的含量、组成、形态
分布和有效性的高低。
第十章土壤养分循环
土壤养分循环

第十章土壤元素的生物地球化学循环

第十章土壤元素的生物地球化学循环

以(Nitrosonas为主)
条件:亚硝化细菌(专性自养型微生物) 通气:良好 O2< 5% pH 5.5 - 10 (7-9), < 4.5 受抑制! 水分:50~60% 温度:35℃ < 2℃ STOP! 养分:Cu,Mo等促进硝化作用的进行。缺钙,不利。
(2)硝化作用
硝化微生物
2NO2- + O2
七、土壤铵离子的矿物固定
土壤中另一个无机氮固氮反应称为铵离子的,称为土壤无机氮的矿物固定(ammonium fixation)。无机 态氮中,粘土矿物固定态的铵约占土壤全氮量的百分之几至十几。
不同土壤对NH4+的固定能力不同,与下列因子有关: 1、土壤黏粒矿物类型 2、土壤质地 3、土壤中钾的状态 4、铵的浓度 5、水分条件 6、土壤pH
3.游离态氮(N2)
(二) 陆地生态系统中的氮循环
(三) 土壤氮的内循环
二、 大气氮的沉降
全球由大气降水进入土壤的氮,据估计 每年每公顷2~22kg。
三、 大气氮的生物固定
在自然界中,某些原核微生物在常温常压下通过固氮酶将空气中的氮素固定为氨,这一过程称为 生物固氮,这类微生物称为固氮微生物。据估计,全球每年的生物固氮总量为2亿吨,约占全球作物需 氮量的四分之三。
停留期 几年到几千年 几个月到几年 几天到几个月 几小时到几天
➢不同土壤层中有机碳的的平均停留期受土壤有机质的性质和数量、腐殖质的特性以及环境条件等影响,一 般为100~3000年。
➢地质大循环的土壤碳周转时间可达几百万年甚至几亿年,远远长于大气碳库和陆地植被碳库,可见土壤碳 库在生物地球化学循环中周转速度最慢。
图 中国土壤有机碳密度(0-100cm)分布
二、土壤光合作用

第8章-土壤元素的生物地球化学循环

第8章-土壤元素的生物地球化学循环
与 Na钙H2、PO镁4、结K合2H形P成O4的、一Na价2H磷P酸O4盐、KCaH(2HP2OP4O、4)2、 Mg(H2PO4)2
✓这些磷酸盐在土壤溶液中大多以H2PO4-、
HPO42-、PO43-离子形态存在。
39
各种磷酸根离子的pH分布图 40
2.吸附态磷
➢ 吸附态磷是指那些通过库仑力、分子引力、化学键 能等各种作用力被土壤固相表面吸附的磷酸根阴离 子。土壤固相表面对磷酸根的吸附以专性吸附即配 位体交换较为重要。
✓ 有机态氮矿化释放的氨在土壤中转化为铵(NH4+) 离子,部分被带负电荷的土壤粘粒和有机胶体吸附,
部分被植物直接吸收。
✓ 土壤中大部分铵离子通过微生物的作用氧化成亚硝 酸盐和硝酸盐。
✓ 第一步:先把铵离子转化成亚硝态氮,称为亚硝化 作用,反应式为:
2NH 4
3O2
亚硝化微生物 (以Nitrosomonas为主)
氮素供应足时,可增强叶绿素的形成,光合作 用加强,叶色浓绿。
在作物生产中,作物对氮的需要量较大,土壤 供氮不足是引起农产品产量下降和品质降低的 重要因素。
7
8
水稻缺氮,植株矮小,僵化。自下而上叶片 黄化,无光泽。
9
10
硝酸盐淋失(Nitrate Leaching) 氮素肥料施用过剩会造成江湖水体富营养化、 地下水硝态氮积累及毒害等。
➢第一阶段:复杂的含氮化合物如蛋白质、核 酸、氨基糖等,在细菌、真菌、放线菌等微 生物酶的系列作用下,逐级分解而形成简单 的氨基化合物,称为氨基化阶段(氨基化作 用)。
➢第二阶段:在微生物作用下,各种简单的氨 基化合物分解成氨,称为氨化阶段(氨化作 用),氨化作用在好气、嫌气条件下均可进 行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、土壤有机磷的矿化和无机磷的生物
四、土壤微量元素的氧化与还原
固定
五、土壤微量元素的络合与离解
*
三、土壤磷的吸附与解吸
六、土壤微量元素的调控与管理
5
§10 土壤元素的生物地球化学循环
§10-1 土壤碳的生物地球化学循环
一、土壤碳循环
基本平衡
*
6
§10 土壤元素的生物地球化学循环
呼吸、燃烧、工业利用
海洋中C
光合作用
空气CO2 土
绿色植 物

矿 化
有 机
动物 微生物

石油煤
(一)土壤碳库在生物地球化学 (三)土壤碳循环对环境的影响
循化中的周转
(四)当前土壤碳循环研究存在
(二)土壤碳循环对土壤氮、硫、 的问题
磷循环的影响
*
二、土壤的光合作用
绿色植物吸收太阳光的能量,同化C02和H2O, 制造有机物质并释放氧的过程,称为光合作用,是 土壤碳循环中重要的碳同化途径。光合作用产生的 有机物质主要是碳水化合物,它是土壤有机碳的最 初来源:
三、土壤有机硫的矿化
一、土壤氮循环
四、土壤无机硫的生物固定
二、大气氮的沉降
五、硫的氧化和还原
三、大气氮的生物固定
六、硫的吸附和解吸
四、土壤有机氮的矿化
七、土壤硫的调控和管理
五、土壤铵的硝化
§10-5 土壤钾的生物地球化学循环
六、土壤无机氮的生物固定
一、土壤钾的循环
七、土壤铵离子的矿物固定
二、土壤钾的固定
§10-1 土壤磷的沉淀与溶解
二、土壤光合作用
五、土壤磷的流失
三、土壤呼吸作用
六、土壤磷的调控
四、土壤碳的固定
§10-4 土壤硫的生物地球化学循环
五、土壤碳酸盐转化与平衡过程
一、土壤硫循环
六、土壤碳循环与全球气候变化
二、大气硫的沉降
§10-2 土壤氮的生物地球化学循环
6CO2 + 6H2O → C6H12O6 + 6O2
*
8
§10 土壤元素的生物地球化学循环
三、土壤呼吸作用
在断断分从从压土大梯壤气度中向的向土作大壤用气 空下扩 气,散 扩驱, 散使。同C土时O2壤气使的体O这分2分种子子从不不 CO2
O2
大用气,中称吸为收土壤O2,呼同吸时。排出CO2的气体扩散作
八、土壤氨的挥发
三、土壤钾的释放
九、土壤硝酸盐淋失
四、土壤钾的损失
十、土壤反硝化损失
五、土壤钾的控制与管理
十一、土壤中氮损失的环境效应
§10-6 土壤微量元素的生物地球化学循环
十二、土壤氮的调控
一、土壤微量元素的循环
§10-3 土壤磷的生物地球化学循环
二、土壤微量元素的吸附与解吸固定
一、土壤磷循环
三、土壤微量元素的沉淀与溶解
六、土壤碳循环与全球气候变化
(一)土壤碳循环与大气CO2浓度 如果没有土壤呼吸(包括土壤生
物呼吸和植物根系及菌根的呼吸)产 生C02补充大气,大气中的C02在15年 内将被耗尽。可见,土壤有机碳库对 大气碳库C02浓度的影响很大。
(二)土壤碳循环与大气中CH4浓度 大气中每年有386×1012g C的CH4被氧化为C02;每年土壤净损失和大气净积累的
CH4为23×1012g–28×1012g C。 湿地中90%的CH4在回到大气之前被氧化成C02。
(三)CH4和CO2对大气碳库环境的综合影响
*
13
§10 土壤元素的生物地球化学循环
土壤碳循环意义:
满足光合作用的需要;调节气候
*
14
气候变化与 粮食安全
研究结果表明,与目前常用的1951年至19 80年中国种植制度气候区划结果相比,198 1年以来由于气候变暖,在陕西、山西、河北、 北京和辽宁,一年两熟种植北界明显向北移动; 在湖南、湖北、安徽、江苏和浙江一年三熟种植 北界向北空间位移明显。在不考虑品种变化、社 会经济等方面因素的前提下,各省的种植制度由 一年一熟改变为一年二熟,粮食单产平均可增加 54%至106%;由一年二熟变成一年三熟, 粮食单产平均可增加27%至58%。
国土资源部地质调查局教授级高级工程师奚小 环说,我国承诺到2020年,将在目前基础上碳强 度减排40%—45%。由于森林面积有限,耕地需承 担更大的减排任务。
*
11
五、土壤碳酸盐转化与平衡过程
决定土壤中碳酸盐淋溶与淀积的关键:CO2— H20体系平衡(即C02/HCO3-/C032-)。
*
12
§10 土壤元素的生物地球化学循环
但是气候变暖,影响粮食安全的气象 灾害(干旱、洪涝、冻害等)和病虫 害也越来越频繁,针对气候变化和可 能带来的不利影响,研究农业灾害预 警及风险评估技术,建立现代防灾减
灾体系是当务之急。
粮食安全 就是能确保所有的人在任何时候既买得
到又买得起他们所需的基本食品,这个概 念包括:
*
9
§10 土壤元素的生物地球化学循环
四、土壤碳的固定
土壤碳库是地球系统处于活跃状态的最 大碳汇,也是温室气体的主要碳源。土壤的 巨大碳容量和天然固碳作用,能最有效地减 缓碳释放。
关键:植树造林,扩大绿色植物在地面 的覆盖率,促进光合作用和减少呼吸作用, 延长有机碳在土壤中的存留时间。
*
10
全国多目标区域地球化学调查结果:我国平均 土壤有机碳储量为每平方公里15339吨,土壤平均 碳密度为48.8吨/公顷,低于美国的50.3吨/公顷 、欧盟的70.8吨/公顷。
2012土壤学第十章土壤元素的生物地球
精品jin
§10 土壤元素的生物地球化学循环
土壤元素的生物地球化学循环是 “土壤圈”物质循环的重要组成部分。
土壤中化学元素以能量传递为驱动力, 沿着土壤-生物-大气进行物质循环传递的过 程(主要过程界定为:土壤-植物-大气)称为
土壤元素的生物地球化学循环。
*
2
典型的再循环过程:
①植物从土壤中吸收营养元素; ②植物的残体归还土壤; ③土壤微生物分解植物残体,释放营养元素; ④营养元素再次被植物吸收。
土壤元素循环: 在生物参与下,营养元素从土 壤到植物,再从植物回到土壤的循环,是一个 复杂的生物地球化学过程。
*
3
§10 土壤元素的生物地球化学循环
学习目标
掌握有关“土壤碳的生物地球化学循环”、 “土壤氮的生物地球化学循环”、“土壤磷的 生物地球化学循环”、“土壤硫的生物地球化 学循环”、“土壤钾的生物地球化学循环”、 “土壤微量元素的生物地球化学循环”的重要 概念和基本原理;了解土壤磷的控制机制和影 响土壤钾固定的因素。
4
§10 土壤元素的生物地球化学循环
相关文档
最新文档