类比推理(1课时)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

截面圆面积不等,距球心较近
的截面圆面积较大.
以点P(x0,y0)为圆心,r为半径的圆 的方程为(x-x0)2+(y-y0)2=r2.
以点P(x0,y0,z0)为球心,r为半径 的球的方程为 (x-x0)2+(y-y0)2+(z-z0)2=r2.
类比推理
由特殊到特殊的推理
类比推理 注意
以旧的知识为基础,推测新 的结果,具有发现的功能
复习
归纳推理
由部分到整体、 个别到一般的推理
归纳推理的基础
观察、分析
归纳推理的作用 注意
发现新事实、 获得新结论
归纳推理的结论不一定成立
在创造发明中, 人们经常应用 类比
春秋时代的鲁班在林中砍柴时被齿形茅草割 破了手,他由此受到启发从而发明了锯子。
想想看,锯子的出现是鲁班受了什么启发而发明的?
A
O
B
D
C
相似性(类比前提)
三角形
1.平面最简单的多边形 3条边 周长 面积
2S r=a+b+c
面积法
空间四面体
1.空间最简单的多面体 4个面 表面积 体积
?3V
r= S1+S2+S3+S4
体积法
试将平面上的圆与空间的球进行类比
.
.
圆的定义:平面内到一个定点的距离等于定
长的点的集合.
球的定义:到一个定点的距离等于定长的点
(3) a>ba2>b2
不问一:定这,样类推比演的出结的结论论未是必否正一确定,正需确要?验证
例2.试将平面向量与空间向量进行类比
类比的前提
平面向量
空间向量
(相同或相似 的地方)
既有大小又有方向的量
→a =(a1,a2) →b =( b1,b2)
→a +→b =(a1+ b1,a2+ b2)
→a ·→b = a1 b1+ a2 b2
茅草
锯子
相似点:功能 (前提)
形状 (联想的结论)
能割破手 能割断木头
齿形 联想
?齿形
类似与鲁班发明锯子,还有哪些发明或发现 也是这样得到的?
形状,沉浮原理
鱼类
潜水艇
蜻蜓 外形,飞行原理
直升机
仿生学中许多发明都是类比生物机制得到的,这
种思维我们数学上称之为:类比推理
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕
类比具有发现的功能
我们学过的数学知识中,还有哪些也是这 样进行类比的?
让我们一起来重温一些数学发现的过程
例1、试根据等式的性质推演不等式的性质。
前提
等式
不等式
都是反映数的大小关系的
(1) a=ba+c=b+c
(1) a>ba+c>b+c
(2) a=b ac=bc
(2) a>b ac>bc
(3) a=ba2=b2
→a =(a1,a2,a3) →b =( b1,b2,b3)
→a +→b =(a1+ b1,a2+ b2,a3+ b3)
→a ·→b = a1 b1+ a2 b2+ a3 b3
λ→a =(λa1,λa2)

λ→a =(λa1,λa2,λa3)

例3,类比等差数列与等比数列
问题.二者可类比的前提是什么?
轴自转
轴自转
有大气层
有大气层
一年中有四季的变更
一年中有四季的变更
温度适合生物的生存
有生命存在
大部分时间的温度适合地 球上某些已知生物的生存
可能有生命存在
火星与地球类比的思维过程:
存在类似特征
地球
火星
地球上有生命存在
猜测火星上也可能有生命存在
这种思维所经历的步骤:
观察、比较
联想、类推
猜测新的结论
问题1.是否任意两类事物都可以进行这样的 联想推演呢?
则 am+ an= ap+ aq
则 am· an= ap· aq
定义叙述上仅“差”“比”一字之差,公式上的类 似主要体现在:加 乘;乘 乘方的对应。
1.已知数列{an}是等差数列,则{a1+a2+n…+an}
是等差数列。若已知数列{bn}(bn>0, n∈N*)是
等比数列,类比上述等差数列,则

等比数列?
的集合.



截面圆
直径
大圆
周长
表面积
面积
体积
圆的概念和性质
球的类似概念和性质
圆心与弦(非直径)中点连线垂直 球心与Байду номын сангаас面圆(不经过球心的截面圆)
于弦.
圆心连线垂直于截面圆.
与圆心距离相等的两弦相等;与圆 与球心距离相等的两截面圆面
心距离不等的两弦不等,距圆心较 积相等;与球心距离不等的两
近的弦较长.
答:数列{ n a1a2…an}是等比数列.
例4、已知△ABC三边长分别是a,b,c,面积为S,
求三角形内切圆半径r;
C
面积法
由12r(a+b+c)=S
2S r=a+b+c
A
O B
你还能联想到其他类似的问题吗? 空间四面体内切球的半径怎么求?
已知空间四面体A-DBC,四个面的面积分别为 S1、S2、S3、S4,体积为V,求其内切球半径R。
不是
问题2.能够进行这样联想推演的两类事物必 须满足什么条件? 这两类事物在某些方面相同或相似
类比的一般模式:
a,b,c与a′,b′,c′相同或相似
前提 结论
A对象
a b c
推演
d
B对象
a′b′ c′
d′
(d与d′ 相同或相 似)
由两类对象具有某些类似特征和其中 一类对象的某些已知特征,推出另一类对 象也具有这些特征的推理称为类比推理.
类比推理的结论不一定成立
小结 ☞
归纳推理和类比推理的过程
从具体问 题出发
观察、分析、 比较、联想
归纳推理
合情推理 类比推理
归纳、 类比
提出 猜想
通俗地说,合情推理是指“合乎情理”的推理.
没有大胆猜测就没有伟大发明 牛顿
公输般很注意对客观事物的观察、研究, 他受自然现象的启发,致力于创造发明。 一次攀山时,手指被一棵小草划破,他摘下 小草仔细察看,发现草叶两边全是排列均匀的小齿 于是就模仿草叶制成伐木的锯,他看到各种小鸟 在天空自由自在地飞翔,就用竹木削成飞鹞, 借助风力在空中试飞。开始飞的时间较短,经过 反复研究,不断改进,竟能在空中飞行很长时间, 公输般一生注重实践,善于动脑,在建筑、机械等
等比数列
1.an = a1+(n-1)d (n∈N+)
1.an = a1qn-1 (n∈N+)
2.an = am+(n-m)d (m,n∈N+)
2.an = amqn-m (m,n∈N+)
3.an-1+ an+1 =2an(n≥2,n∈N+) 3.an-1·an+1 =an2 (n≥2,n∈N+)
4.若 m,n,p,q∈N+且 m+n=p+q, 4.若 m,n,p,q∈N+且 m+n=p+q,
定义上的相似
仅一字之差
定义1:一般的,如果一个数列从第二项起,每一项与他
的前一项的差都是一个常数,那么这个数列就叫做等差
数列,这个常数叫等差数列的公差。
定义2:一般的,如果一个数列从第二项起,每一项与他
的前一项的比都是一个常数,那么这个数列就叫做等比
数列,这个常数叫等比数列的公比。
性质上类比
等差数列
相关文档
最新文档