2014全国统一高考数学真题及逐题详细解析(文科)—北京卷
2014年北京市高考数学(文科)
6第一部分(选择题共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若集合 A = {0,1, 2, 4}, B = {1, 2, 3} ,则 A B = ()A. {0,1, 2, 3, 4}B. {0, 4}C. {1, 2}D.{3}2.下列函数中,定义域是 R 且为增函数的是( )A. y = e- xB. y = xC. y = ln xD. y = x3.已知向量 a = (2, 4) , b = (-1,1) ,则 2a - b = ( )A. (5, 7)B. (5, 9)C. (3, 7)D. (3, 9)4.执行如图所示的程序框图,输出的 S 值为( )A.1B. 3C. 7D.155.设 a 、 b 是实数,则“ a > b ”是“ a 2 > b 2”的()A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件6.已知函数 f ( x ) = - log 2 x ,在下列区间中,包含 f ( x )零点的区间是() xA. (0,1)B. (1, 2)C. (2, 4)D. (4, +∞)7.已知圆C:(x-3)2+(y-4)2=1和两点A(-m, 0),B (m, 0)(m > 0),若圆C 上存在点P ,使得∠APB = 90 ,则m 的最大值为()A. 7B. 6C. 5D. 48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p = at 2 + bt + c (a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A. 3.50 分钟B. 3.75 分钟C. 4.00 分钟D. 4.25 分钟第2 部分(非选择题共110 分)二、填空题共6 小题,每小题5 分,共30 分。
2014年北京高考文科数学试题含答案(Word版)(卷)
2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}32.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,94.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15 输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点 P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)学 科网满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京高考数学文科word解析版2014
一、选择题共8小题,每小题5分,共40分。在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合 , ,则 ( )
A. B. C. D.
2.下列函数中,定义域是 且为增函数的是()
A. B. C. D.
3.已知向量 , ,则 ( )
A. B. C. D.
已知函数 .
(1)求 在区间 上的最大值;
(2)若过点 存在3条直线与曲线 相切,求t的取值范围;
(3)问过点 分别存在几条直线与曲线 相切?(只需写出结论)
参考答案北京2014文
一选择题:
1.C解析过程:根据集合的运算性质
2.B解析过程:A在义域上为减函数;;C的定义域为 ;D在定义域上先减后增
使得 ,则 的最大值为()
A. B. C. D.
8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.
在特定条件下,可食用率 与加工时间 (单位:分钟)
满足的函数关系 ( 、 、 是常数),
图中记录了三次实验的数据.根据上述函数模型和实验数据,
可以得到最佳加工时间为( )
A. 分钟B. 分钟
C. 分钟 D. 分钟
(1)求数列 和 的通项公式;
(2)求数列 的前 项和.
16.(本小题满分13分)函数 的部分图象如图所示.
(1)写出 的最小正周期及图中 、 的值;
(2)求 在区间 上的最大值和最小值.
17.(本小题满分14分)如图,在三棱柱 中,侧棱垂直于底面, , , 、 分别为 、 的中点.
(1)求证:平面 平面 ;
3.A解析过程:
4.C解析过程:第一次循环S=1,k=1;第二次循环S=3,k=2;第三次循环S=7,k=3,输出k的值,答案C
2014年全国高考文科数学试题及答案-北京卷
2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =3.已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,94.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.155. 设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不必要条件 C.充分必要条件 D.既不充分不必要条件 6. 已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞ 7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o ,则m 的最大值为( )A.7B.6C.5D.48. 加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年普通高等学校招生全国统一考试(北京卷)数学试题(文)含解析
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有 名,所以样本中的学生课外阅读时间少于12小时的频率是
(Ⅱ)取 中点 ,连结 , .
因为 , 分别是 , 的中点,
所以 ,且 .
因为 ,且 ,
所以 ,且 .
所以四边形 为平行四边形.
所以 .
又因为 平面 , 平面 ,
所以 平面 .
(Ⅲ)因为 , , ,
所以 .
所以三棱锥 的体积
.
18.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
【答案】
【解析】由题意设双曲线方程 ,又∵ ,∴ 即双曲线方程为 .
11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.
【答案】
【解析】三棱锥的直观图如图所示,并且 , , , , .
12.在 中, , , ,则 ; .
【答案】2、
【解析】由余弦定理得 ,即 ;
,∴ .
13.若 、 满足 ,则 的最小值为.
解:(Ⅰ)由题意,椭圆 的标准方程为 .
所以 , ,从而 .
因此 , .
故椭圆 的离心率 .
(Ⅱ)设点 , 的坐标分别为 , ,其中 .
因为 ,
所以 ,
即 ,解得 .
又 ,所以
.
因为 ,且当 时等号成立,所以 .
2014年北京卷文科数学高考试卷(原卷 答案)
绝密★启用前2014年普通高等学校招生全国统一考试(北京卷)文科数学本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e −= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =−,则2a b −=( )A.()5,7B.()5,9C.()3,7D.()3,94.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15 5. 设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 6. 已知函数()26log f x x x=−,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 7.已知圆()()22:341C x y −+−=和两点(),0A m −,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 8. 加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京文科数学高考试题及答案
2014年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.1、若集合A={0,1,2,4},B={1,2,3},则A∩B=A、{0,1,2,3}B、{0,4}C、{1,2}D、{3}2、下列函数中,定义域是R且为增函数的是A、y=e﹣xB、y=xC、y=lnxD、y=|x|3、已知向量=(2,4),=(﹣1,1),则2﹣=A、(5,7)B、(5,9)C、(3,7)D、(3,9)4、执行如图所示的程序框图,输出的S值为A、1B、3C、7D、155、设a,b是实数,则“a>b”是“a2>b2”的A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件6、已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是A、(0,1)B、(1,2)C、(2,4)D、(4,+∞)7、已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为A、7B、6C、5D、48、加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A、3.50分钟B、3.75分钟C、4.00分钟D、4.25分钟二、填空题共6小题,每小题5分,共30分.9、若(x+i)i=﹣1+2i(x∈R),则x=_____10、设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为___11、某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为___12、在∠ABC中,a=1,b=2,cosC=,则c=_________;sinA=_____13、若x,y满足,则z=x+y的最小值为___14、顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:粗加工精加工工序时间原料原料A915原料B621则最短交货期为_________个工作日.三、解答题,共6小题,满分80分,解答应写出文字说明,演算步骤或证明过程.15、已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}为等比数列.(∠)求数列{a n}和{b n}的通项公式;(∠)求数列{b n}的前n项和.16、函数f(x)=3sin(2x+)的部分图象如图所示.(∠)写出f(x)的最小正周期及图中x0,y0的值;(∠)求f(x)在区间[﹣,﹣]上的最大值和最小值.17、如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB∠BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(∠)求证:平面ABE∠B1BCC1;(∠)求证:C1F∠平面ABE;(∠)求三棱锥E﹣ABC的体积.18、从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(∠)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(∠)求频率分布直方图中的a,b的值;(∠)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)19、已知椭圆C:x2+2y2=4.(∠)求椭圆C的离心率;(∠)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA∠OB,求线段AB长度的最小值.20、已知函数f(x)=2x3﹣3x.(∠)求f(x)在区间[﹣2,1]上的最大值;(∠)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(∠)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)2014年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)(2014•北京)若集合A={0,1,2,4},B={1,2,3},则A∩B=()B.{0,4}C.{1,2}D.{3}A.{0,1,2,3,4}考点:交集及其运算.专题:集合.分析:直接利用交集的运算得答案.解答:解:∠A={0,1,2,4},B={1,2,3},∠A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.点评:本题考查交集及其运算,是基础题.2.(5分)(2014•北京)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数单调性的性质和函数成立的条件,即可得到结论.解答:解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.点评:本题主要考查函数定义域和单调性的判断,比较基础.3.(5分)(2014•北京)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)考点:平面向量的坐标运算.专题:平面向量及应用.分析:直接利用平面向量的数乘及坐标减法运算得答案.解答:解:由=(2,4),=(﹣1,1),得:2﹣=2(2,4)﹣(﹣1,1)=(4,8)﹣(﹣1,1)=(5,7).故选:A.点评:本题考查平面向量的数乘及坐标减法运算,是基础的计算题.4.(5分)(2014•北京)执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.15考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求S=1+21+22+…+2k的值,根据条件确定跳出循环的k值,计算输出的S值.解答:解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值,∠跳出循环的k值为3,∠输出S=1+2+4=7.故选:C.点评:本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.5.(5分)(2014•北京)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.分析:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的理解.解答:解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.故选D点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.6.(5分)(2014•北京)已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)考点:函数零点的判定定理.专题:函数的性质及应用.分析:可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.解答:解:∠f(x)=﹣log2x,∠f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∠f(x)在区间(2,4)内必有零点,故选:C点评:本题考查还是零点的判断,属基础题.7.(5分)(2014•北京)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4考点:直线与圆的位置关系.专题:直线与圆.分析:根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.解答:解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∠圆心C到O(0,0)的距离为5,∠圆C上的点到点O的距离的最大值为6.再由∠APB=90°,以A为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.点评:本题主要直线和圆的位置关系,求得圆C上的点到点O的距离的最大值为6,是解题的关键,属于中档题.8.(5分)(2014•北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c (a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟考点:进行简单的合情推理.专题:应用题;推理和证明.分析:由提供的数据,求出函数的解析式,由二次函数的图象与性质可得结论.解答:解:将(3,0.7),(4,0.8),(5,0.5)分别代入p=at2+bt+c,可得,解得a=﹣0.2,b=1.5,c=﹣2,∠p=﹣0.2t2+1.5t﹣2,对称轴为t=﹣=3.75.故选:B.点评:本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.二、填空题共6小题,每小题5分,共30分.9.(5分)(2014•北京)若(x+i)i=﹣1+2i(x∈R),则x=2.考点:复数相等的充要条件.专题:数系的扩充和复数.分析:化简原式可得∠﹣1+xi=﹣1+2i,由复数相等的定义可得.解答:解:∠(x+i)i=﹣1+2i,∠﹣1+xi=﹣1+2i,由复数相等可得x=2故答案为:2点评:本题考查复数相等的充要条件,属基础题.10.(5分)(2014•北京)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为x2﹣y2=1.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),可得c=,a=1,进而求出b,即可得出双曲线的方程.解答:解:∠双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),∠c=,a=1,∠b=1,∠C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.点评:本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.11.(5分)(2014•北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为2.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由主视图知CD∠平面ABC、B点在AC上的射影为AC中点及AC长,由左视图可知CD长及∠ABC中变AC的高,利用勾股定理即可求出最长棱BD的长.解答:解:由主视图知CD∠平面ABC,设AC中点为E,则BE∠AC,且AE=CE=1;由左视图知CD=2,BE=1,在Rt∠BCE中,BC=,在Rt∠BCD中,BD=2,在Rt∠ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.点评:本题考查点、线、面间的距离计算,考查空间图形的三视图,考查学生的空间想象能力,考查学生分析解决问题的能力.12.(5分)(2014•北京)在∠ABC中,a=1,b=2,cosC=,则c=2;sinA=.考点:余弦定理.专题:三角函数的求值;解三角形.分析:利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.解答:解:∠在∠ABC中,a=1,b=2,cosC=,∠由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∠cosC=,C为三角形内角,∠sinC==,∠由正弦定理=得:sinA===.故答案为:2;点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.13.(5分)(2014•北京)若x,y满足,则z=x+y的最小值为1.考点:简单线性规划.专题:数形结合.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=x+y为,由图可知,当直线过C(0,1)时直线在y轴上的截距最小.此时.故答案为:1.点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.(5分)(2014•北京)顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序粗加工精加工时间原料原料A915原料B621则最短交货期为42个工作日.考点:算法的特点.专题:应用题;函数的性质及应用.分析:先完成B的加工,再完成A的加工即可.解答:解:由题意,徒弟利用6天完成原料B的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42 个工作日.故答案为:42.点评:本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题.三、解答题,共6小题,满分80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)(2014•北京)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}为等比数列.(∠)求数列{a n}和{b n}的通项公式;(∠)求数列{b n}的前n项和.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:(∠)利用等差数列、等比数列的通项公式先求得公差和公比,即得结论;(∠)利用分组求和法,有等差数列及等比数列的前n项和公式即可求得数列的和.解答:解:(∠)设等差数列{a n}的公差为d,由题意得d===3.∠a n=a1+(n﹣1)d=3n(n=1,2,…),设等比数列{b n﹣a n}的公比为q,则q3===8,∠q=2,∠b n﹣a n=(b1﹣a1)q n﹣1=2n﹣1,∠b n=3n+2n﹣1(n=1,2,…).(∠)由(∠)知b n=3n+2n﹣1(n=1,2,…).∠数列{3n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∠数列{b n}的前n项和为n(n+1)+2n﹣1.点评:本题主要考查学生对等差数列及等比数列的通项公式和前n项和公式的应用,考查学生的基本的运算能力,属基础题.16.(13分)(2014•北京)函数f(x)=3sin(2x+)的部分图象如图所示.(∠)写出f(x)的最小正周期及图中x0,y0的值;(∠)求f(x)在区间[﹣,﹣]上的最大值和最小值.考点:三角函数的周期性及其求法;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(∠)由题目所给的解析式和图象可得所求;(∠)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.解答:解:(∠)∠f(x)=3sin(2x+),∠f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(∠)∠x∈[﹣,﹣],∠2x+∈[﹣,0],∠当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣3点评:本题考查三角函数的图象和性质,属基础题.17.(14分)(2014•北京)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB∠BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(∠)求证:平面ABE∠B1BCC1;(∠)求证:C1F∠平面ABE;(∠)求三棱锥E﹣ABC的体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(∠)证明AB∠B1BCC1,可得平面ABE∠B1BCC1;(∠)证明C1F∠平面ABE,只需证明四边形FGEC1为平行四边形,可得C1F∠EG;(∠)利用V E﹣ABC=,可求三棱锥E﹣ABC的体积.解答:(∠)证明:∠三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∠BB1∠AB,∠AB∠BC,BB1∩BC=B,∠AB∠B1BCC1,∠AB⊂平面ABE,∠平面ABE∠B1BCC1;(∠)证明:取AB中点G,连接EG,FG,则∠F是BC的中点,∠FG∠AC,FG=AC,∠E是A1C1的中点,∠FG∠EC1,FG=EC1,∠四边形FGEC1为平行四边形,∠C1F∠EG,∠C1F⊄平面ABE,EG⊂平面ABE,∠C1F∠平面ABE;(∠)解:∠AA1=AC=2,BC=1,AB∠BC,∠AB=,∠V E﹣ABC===点评:本题考查线面平行、垂直的证明,考查三棱锥E﹣ABC的体积的计算,正确运用线面平行、垂直的判定定理是关键.18.(13分)(2014•北京)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合计100(∠)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(∠)求频率分布直方图中的a,b的值;(∠)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)考点:频率分布直方图;频率分布表.专题:计算题;概率与统计.分析:(∠)根据频率分布表求出周课外阅读时间少于12小时的频数,再根据频率=求频率;(∠)根据小矩形的高=求a、b的值;(∠)利用平均数公式求得数据的平均数,可得答案.解答:解:(∠)由频率分布表知:周课外阅读时间少于12小时的频数为6+8+17+22+25+12=90,∠周课外阅读时间少于12小时的频率为=0.9;(∠)由频率分布表知:数据在[4,6)的频数为17,∠频率为0.17,∠a=0.085;数据在[8,10)的频数为25,∠频率为0.25,∠b=0.125;(∠)数据的平均数为1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小时),∠样本中的100名学生该周课外阅读时间的平均数在第四组.点评:本题考查了频率分布表与频率分布直方图,再频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.19.(14分)(2014•北京)已知椭圆C:x2+2y2=4.(∠)求椭圆C的离心率;(∠)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA∠OB,求线段AB长度的最小值.考点:椭圆的简单性质;两点间的距离公式.专题:圆锥曲线的定义、性质与方程.分析:(∠)椭圆C:x2+2y2=4化为标准方程为,求出a,c,即可求椭圆C的离心率;(∠)先表示出线段AB长度,再利用基本不等式,求出最小值.解答:解:(∠)椭圆C:x2+2y2=4化为标准方程为,∠a=2,b=,c=,∠椭圆C的离心率e==;(∠)设A(t,2),B(x0,y0),x0≠0,则∠OA∠OB,∠=0,∠tx0+y0=0,∠t=﹣,∠,∠|AB|2=(x0﹣t)2+(y0﹣2)2=+4≥4+4=8,当且仅当,即x02=4时等号成立,∠线段AB长度的最小值为2.点评:本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算能力,属于中档题.20.(13分)(2014•北京)已知函数f(x)=2x3﹣3x.(∠)求f(x)在区间[﹣2,1]上的最大值;(∠)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(∠)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)考点:导数在最大值、最小值问题中的应用;函数的零点;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(∠)利用导数求得极值点比较f(﹣2),f(﹣),f(),f(1)的大小即得结论;(∠)利用导数的几何意义得出切线方程4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.利用导数判断函数的单调性进而得出函数的零点情况,得出结论;(∠)利用(∠)的结论写出即可.解答:解:(∠)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,令f′(x)=0得,x=﹣或x=,∠f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1,∠f(x)在区间[﹣2,1]上的最大值为.(∠)设过点p (1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=2﹣3x0,且切线斜率为k=6﹣3,∠切线方程为y ﹣y0=(6﹣3)(x﹣x0),∠t﹣y0=(6﹣3)(1﹣x0),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g (x)有3个不同的零点”.∠g′(x)=12x2﹣12x=12x(x﹣1),∠g(x)与g′(x)变化情况如下:x(﹣(g′(x)+g(x)↗t t ∠g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤﹣3时,g(x)在区间(﹣∞,1]和(1,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(1)=t+1≥0,即t≥﹣1时,g(x)在区间(﹣∞,0]和(0,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(0)>0且g(1)<0,即﹣3<t<﹣1时,∠g(﹣1)=t﹣7<0,g(2)=t+11>0,∠g(x)分别在区间[﹣1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(﹣∞,0)和[1,+∞)上单调,故g(x)分别在。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年高考北京卷数学文试题及答案解析
2014年高考北京卷数学文试题及答案解析一、选择题1.[2014•北京文卷]若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 【答案】C【解析】{}{}{}2,13,2,14,2,1,0== B A . 2. [2014•北京文卷]下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =【答案】B【解析】由定义域为R 排除选项C ,定义域单调递增排除选项A 、D. 3. [2014•北京文卷]已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】2a -b =()()()7,51,14,22=--.4. [2014•北京文卷]执行如图所示的程序框图,输出的S 值为( )A. B.3 C.7 D.15输出【答案】C【解析】7222210=++=S . 5. [2014•北京文卷]设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 【答案】D【解析】当0<⋅b a 时,由b a >推不出22b a >,反之也不成立. 6. [2014•北京文卷] 已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 【答案】C 【解析】在同一坐标系中作函数()xx h 6=与()x x g 2log =的图象如图,可得()x f 零点所在区间为()4,2. 7. [2014•北京文卷]已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 【答案】B【解析】由图可知当圆C 上存在点P 使O =∠90APB ,即圆C 与以AB 为直径的圆有公共点,∴143122+≤+≤-m m ,解之得64≤≤m .8. [2014•北京文卷]加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间(单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 O 5430.80.70.5t p记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 【答案】B【解析】由题意得⎪⎩⎪⎨⎧++=++=++=c b a c b a c b a 5255.04168.0397.0,解之得⎪⎩⎪⎨⎧-==-=25.12.0c b a ,∴()0625.075.32.025.12.022+--=-+-=t t t p ,即当75.3=t 时,P 有最大值.二、填空题9. [2014•北京文卷]若()()12x i i i x R +=-+∈,则x = . 【答案】2【解析】∵()i xi i i x 211+-=+-=+,∴2=x . 10. [2014•北京文卷]设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为()0,m A -()0,m BP. 【答案】122=-y x【解析】由题意设双曲线方程1222=-by x ,又∵()2221=+b ,∴12=b即双曲线方程为122=-y x .11. [2014•北京文卷]某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .俯视图侧(左)视图正(主)视图11122【答案】 22【解析】三棱锥的直观图如图所示,并且ABC PB 面⊥,2=PB ,2,2===BC AC AB ,222222=+=PA ,()62222=+=PC .12. [2014•北京文卷]在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 【答案】2、815PBAC【解析】由余弦定理得24112241cos 2222=⨯⨯⨯-+=-+=C ab b a c ,即2=c ; 872221442cos 222=⨯⨯-+=-+=bc a c b A ,∴815871sin 2=⎪⎭⎫⎝⎛-=A . 13. [2014•北京文卷]若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y =+的最小值为 .【答案】1【解析】可行域如图,当目标函数线x y z 3+=过可行域内A 点时,z 有最小值,联立⎩⎨⎧=-+=011y x y ,解之得()1,0A ,11103min =⨯+⨯=Z .14. [2014•北京文卷] 【答案】42【解析】交货期最短即少耽误工期,所以先让徒弟加工原料B ,交货期为4215216=++天. 顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都则最短交货期为 工作日. 15. [2014•北京文卷]已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.1=y 01=--y x 01=-+y x xy 3-=A(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.【解析】⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --=== 所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得·· 344112012843b a q b a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,,⑵ 由⑴知()13212n n b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112n n -=--×. 所以,数列{}n b 的前n 项和为()31212n n n ++-.16. [2012•北京文卷] 函数()3sin 26f x x π⎛⎫=+⎪⎝⎭的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值; (2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值. Oy xy 0x 0【解析】⑴ ()f x 的最小正周期为π07π6x =. 03y =⑵ 因为ππ212x ⎡⎤∈--⎢⎥⎣⎦,,所以π5π2066x ⎡⎤+∈-⎢⎥⎣⎦,.于是当π206x +=,即π12x =-时,()f x 取得最大值0;当ππ262x +=-,即π3x =-时,()f x 取得最小值3-. 17. [2014•北京文卷]如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA解:(Ⅰ)在三棱柱111ABC A B C -中,1BB ⊥底面ABC .所以1BB AB ⊥. 又因为AB BC ⊥.所以AB ⊥平面11B BCC .所以平面ABE ⊥平面11B BCC .(Ⅱ)取AB 中点G ,连结EG ,FG . 因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC =.因为11AC A C ∥,且11AC A C =, 所以1FG EC ∥,且1FG EC =. 所以四边形1FGEC 为平行四边形. 所以1C F EG ∥.又因为EG ⊂平面ABE ,1C F ⊄平面ABE ,GC 1B 1A 1FE CBA所以1C F ∥平面ABE .(Ⅲ)因为12AA AC ==,1BC =,AB BC ⊥,所以AB ==. 所以三棱锥E ABC -的体积111112332ABC V S AA =⋅=⨯⨯=△. 18. [2014•北京文卷]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 解:(Ⅰ)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210++=名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(Ⅱ)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a ===频率组距. 课外阅读时间落在组[810),的有25人,频率为0.25, 所以0.250.1252b ===频率组距. (Ⅲ)样本中的100名学生课外阅读时间的平均数在第4组. 19. [2014•北京文卷] 已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=. 所以24a =,22b =,从而2222c a b =-=. 因此2a =,c =故椭圆C的离心率c e a =.(Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠.因为OA OB ⊥, 所以0OA OB ⋅=, 即0020tx y +=,解得02y t x =-. 又220024x y +=,所以 ()()222002AB x t y =-+-()22000022y x y x ⎛⎫=++- ⎪⎝⎭2220002044y x y x =+++()2202224442x x x x --=+++ ()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为 20. [2014•北京文卷] 已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 解:(Ⅰ)由()323f x x x =-得()263f x x '=-.令()0f x '=,得x =或x =.因为()210f -=-,f ⎛= ⎝()11f f ==-所以()f x 在区间[]21-,上的最大值为f ⎛= ⎝. (Ⅱ)设过点()1P t ,的直线与曲线()y f x =相切于点()00x y ,,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为()20063y y x -=-()0x x -,因此()()2000631t y x x -=-- . 整理得3204630x x t -++=. 设()32463g x x x t =-++,则“过点()1P t ,存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”. ()()21212121g x x x x x '=-=-.()g x 与()g x '的情况如下:)所以,(0)g t =当(0)30g t =+≤,即3t -≤时,此时()g x 在区间(]1-∞,和(1)+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当(1)10g t =+≥,即1t -≥时,此时()g x 在区间(0)-∞,和[)0+∞,上分别至多有1个零点,所以()g x 至多有2个零点.当()00g >且()10g <,即31t -<<-时,因为()()1702110g t g t -=-<=+>,,所以()g x 分别在区间[)10-,,[)01,和[)12,上恰有个零点.由于()g x 在区间()0-∞,和()1+∞,上单调,所以()g x 分别在区间()0-∞,和[)1-∞,上恰有1个零点.综上可知,当过点()1P t ,存在条直线与曲线()y f x =相切时,的取值范围是()31--, . (Ⅲ)过点()12A -, 存在条直线与曲线()y f x =相切;过点()210B ,存在2条直线与曲线()y f x =相切; 过点()02C , 存在条直线与曲线()y f x =相切.:。
2014年北京市高考数学试卷(文科)
2014年市高考数学试卷〔文科〕一、选择题共8小题,每一小题5分,共40分.在每一小题列出的四个选项中,选出符合题目要求的一项1.假如集合{}{}0,1,2,4,1,2,3A B ==,如此A ∩B=〔 〕 A .{}0,1,2,3,4B .{}0,4C .{}1,2D .{}32.如下函数中,定义域是R 且为增函数的是〔 〕 A.x y e -= B.y x = C.ln y x = D.y x =3.向量()()2,4,1,1a b ==-,如此2a b -=〔〕 A .()5,7B .()5,9C .()3,7D .()3,94.执行如以下图的程序框图,输出的S 值为〔〕 A .1B .3C .7D .155.设,a b 实数,如此"a b >〞是"22a b >〞的〔〕 A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件6.函数26()log f x x x=-,在如下区间中,包含()f x 零点的区间是〔〕 A .(0,1)B .(1,2)C .(2,4)D .(4,)+∞7.圆()()22:341C x y -+-=和两点()()(),0,,00A m B m m ->,假如圆C 上存在点P ,使得90APB ︒∠=,如此m 的最大值为〔〕A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为"可食用率〞,在特定条件下,可食用率p与加工时间t〔单位:分钟〕满足函数关系2p at bt c=++〔,,a b c是常数〕,如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最优加工时间为〔〕A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题共6小题,每一小题5分,共30分.9.假如()()12x i i i x+=-+∈R,如此x=.10.设双曲线C的两个焦点为())0,0,一个顶点是()1,0,如此C的方程为.11.某三棱锥的三视图如以下图,如此该三棱锥最长棱的棱长为.12.在ABC中,11,2,cos4a b C===,如此C=;sin A=.13.假如,x y满足11010yx yx y≤⎧⎪--≤⎨⎪+-≥⎩,如此z y=+的最小值为.14.顾客请一位工艺师把,A B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进展精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间〔单位:工作日〕如下:原料 原料A 9 15 原料B621如此最短交货期为个工作日.三、解答题,共6小题,总分为80分,解答应写出文字说明,演算步骤或证明过程. 15.{}n a 是等差数列,满足 143,12a a ==,等比数列{}n b 满足144,20b b ==. 〔1〕求数列{}n a 和{}n b 的通项公式; 〔2〕求数列{}n b 的前n 项和.16.函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的局部图象如以下图.〔Ⅰ〕写出()f x 的最小正周期与图中00,x y 的值;〔Ⅱ〕求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.17.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,1,2,1,,AB BC AA AC BC E F ⊥===分别是11,A C BC 的中点.〔Ⅰ〕求证:平面11ABE B BCC ⊥; 〔Ⅱ〕求证:1C F ∥平面ABE ; 〔Ⅲ〕求三棱锥E ABC -的体积.18.从某校随机抽取100名学生,获得了他们一周课外阅读时间〔单位:小时〕的数据,整理得到数据分组与频数分布表和频率分布直方图:〔Ⅰ〕从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;〔Ⅱ〕求频率分布直方图中的,a b 的值;〔Ⅲ〕假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组〔只需写结论〕 19.椭圆22:24C x y +=. 〔Ⅰ〕求椭圆C 的离心率;〔Ⅱ〕设O 为原点,假如点A 在直线2y =上,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值. 20.函数3()23f x x x =-.〔Ⅰ〕求()f x 在区间[]2,1-上的最大值;〔Ⅱ〕假如过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值X 围; 〔Ⅲ〕问过点()()()1,2,2,10,0,2A B C -分别存在几条直线与曲线()y f x =相切?〔只需写出结论〕2014年市高考数学试卷〔文科〕参考答案与试题解析一、选择题共8小题,每一小题5分,共40分.在每一小题列出的四个选项中,选出符合题目要求的一项1.〔2014•〕假如集合A={0,1,2,4},B={1,2,3},如此A ∩B=〔〕 A .{0,1,2,3,4}B .{0,4}C .{1,2}D .{3} [分析]直接利用交集的运算得答案. [解答]解:∵A={0,1,2,4},B={1,2,3}, ∴A ∩B={0,1,2,4}∩{1,2,3}={1,2}. 应当选:C .2.〔2014•〕如下函数中,定义域是R 且为增函数的是〔〕 A .y=e ﹣x B .y=xC .y=lnxD .y=|x|[分析]根据函数单调性的性质和函数成立的条件,即可得到结论. [解答]解:A .函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为〔0,+∞〕,函数为增函数,不满足条件.D.函数的定义域为R,在〔0,+∞〕上函数是增函数,在〔﹣∞,0〕上是减函数,不满足条件.应当选:B.3.〔2014•〕向量=〔2,4〕,=〔﹣1,1〕,如此2﹣=〔〕A.〔5,7〕B.〔5,9〕C.〔3,7〕D.〔3,9〕[分析]直接利用平面向量的数乘与坐标减法运算得答案.[解答]解:由=〔2,4〕,=〔﹣1,1〕,得:2﹣=2〔2,4〕﹣〔﹣1,1〕=〔4,8〕﹣〔﹣1,1〕=〔5,7〕.应当选:A.4.〔2014•〕执行如以下图的程序框图,输出的S值为〔〕A.1B.3C.7D.15[分析]算法的功能是求S=1+21+22+…+2k的值,根据条件确定跳出循环的k值,计算输出的S值.[解答]解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值,∵跳出循环的k值为3,∴输出S=1+2+4=7.应当选:C.5.〔2014•〕设a,b是实数,如此"a>b〞是"a2>b2〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[分析]此题考查的判断充要条件的方法,我们可以根据充要条件的定义进展判断,此题的关键是对不等式性质的理解.[解答]解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但〔﹣2〕2<〔﹣3〕2,所以"a>b〞是"a2>b2〞的不充分条件;反之,由a2>b2也不一定得a>b,如〔﹣3〕2>〔﹣2〕2,但﹣3<﹣2,所以"a>b〞是"a2>b2〞的不必要条件.应当选Dx,在如下区间中,包含f〔x〕零点的区间是〔〕6.〔2014•〕函数f〔x〕=﹣log2A.〔0,1〕B.〔1,2〕C.〔2,4〕D.〔4,+∞〕[分析]可得f〔2〕=2>0,f〔4〕=﹣<0,由零点的判定定理可得.[解答]解:∵f〔x〕=﹣logx,2∴f〔2〕=2>0,f〔4〕=﹣<0,满足f〔2〕f〔4〕<0,∴f〔x〕在区间〔2,4〕内必有零点,应当选:C7.〔2014•〕圆C:〔x﹣3〕2+〔y﹣4〕2=1和两点A〔﹣m,0〕,B〔m,0〕〔m>0〕,假如圆C上存在点P,使得∠APB=90°,如此m的最大值为〔〕A.7B.6C.5D.4[分析]根据圆心C到O〔0,0〕的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.[解答]解:圆C:〔x﹣3〕2+〔y﹣4〕2=1的圆心C〔3,4〕,半径为1,∵圆心C到O〔0,0〕的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,应当选:B.8.〔2014•〕加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为"可食用率〞,在特定条件下,可食用率p与加工时间t〔单位:分钟〕满足函数关系p=at2+bt+c〔a,b,c是常数〕,如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最优加工时间为〔〕[分析]由提供的数据,求出函数的解析式,由二次函数的图象与性质可得结论.[解答]解:将〔3,0.7〕,〔4,0.8〕,〔5,0.5〕分别代入p=at2+bt+c,可得,解得a=﹣0.2,b=1.5,c=﹣2,∴p=﹣2﹣2,对称轴为t=﹣=3.75.应当选:B.二、填空题共6小题,每一小题5分,共30分.9.〔2014•〕假如〔x+i〕i=﹣1+2i〔x∈R〕,如此x=2.[分析]化简原式可得∴﹣1+xi=﹣1+2i,由复数相等的定义可得.[解答]解:∵〔x+i〕i=﹣1+2i,∴﹣1+xi=﹣1+2i,由复数相等可得x=2故答案为:210.〔2014•〕设双曲线C的两个焦点为〔﹣,0〕,〔,0〕,一个顶点是〔1,0〕,如此C的方程为x2﹣y2=1.[分析]利用双曲线C的两个焦点为〔﹣,0〕,〔,0〕,一个顶点是〔1,0〕,可得c=,a=1,进而求出b,即可得出双曲线的方程.[解答]解:∵双曲线C的两个焦点为〔﹣,0〕,〔,0〕,一个顶点是〔1,0〕,∴c=,a=1,∴b=1,∴C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.11.〔2014•〕某三棱锥的三视图如以下图,如此该三棱锥最长棱的棱长为2.[分析]由主视图知CD⊥平面ABC、B点在AC上的射影为AC中点与AC长,由左视图可知CD长与△ABC中变AC的高,利用勾股定理即可求出最长棱BD的长.[解答]解:由主视图知CD⊥平面ABC,设AC中点为E,如此BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC=,在Rt△BCD中,BD=,在Rt△ACD中,AD=2.如此三棱锥中最长棱的长为2.故答案为:2.12.〔2014•〕在△ABC中,a=1,b=2,cosC=,如此c=2;sinA=.[分析]利用余弦定理列出关系式,将a,b,以与cosC的值代入求出c的值,由cosC 的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.[解答]解:∵在△ABC中,a=1,b=2,cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∵cosC=,C为三角形内角,∴sinC==,∴由正弦定理=得:sinA===.故答案为:2;.13.〔2014•〕假如x,y满足,如此z=x+y的最小值为1.[分析]由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.[解答]解:由约束条件作出可行域如图,化目标函数z=x+y为,由图可知,当直线过C〔0,1〕时直线在y轴上的截距最小.此时.故答案为:1.14.〔2014•〕顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进展精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间〔单位:工作日〕如下:工序时间原料粗加工精加工原料A915原料B621如此最短交货期为42个工作日.[分析]先完成B的加工,再完成A的加工即可.[解答]解:由题意,徒弟利用6天完成原料B的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42个工作日.故答案为:42.三、解答题,共6小题,总分为80分,解答应写出文字说明,演算步骤或证明过程.15.〔2014•〕{an }是等差数列,满足a1=3,a4=12,等比数列{bn}满足b1=4,b4=20.〔1〕求数列{an }和{bn}的通项公式;〔2〕求数列{bn}的前n项和.[分析]〔1〕由等差数列的通项公式求出公差,由此能求出数列{an}的通项公式;由等比数列{bn }通项公式求出公比q,由此能求出数列{bn}的通项公式.〔2〕由等比数列{bn }的首项和公比能求出数列{bn}的前n项和.[解答]解:〔1〕∵{an }是等差数列,满足a1=3,a4=12,∴3+3d=12,解得d=3,∴an=3+〔n﹣1〕×3=3n.∵等比数列{bn }满足b1=4,b4=20,∴4q3=20,解得q=,∴bn=4×〔〕n﹣1.〔2〕∵等比数列{bn}中,,∴数列{bn }的前n项和Sn==.16.〔2014•〕函数f〔x〕=3sin〔2x+〕的局部图象如以下图.〔Ⅰ〕写出f〔x〕的最小正周期与图中x0,y的值;〔Ⅱ〕求f〔x〕在区间[﹣,﹣]上的最大值和最小值.[分析]〔Ⅰ〕由题目所给的解析式和图象可得所求;〔Ⅱ〕由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.[解答]解:〔Ⅰ〕∵f〔x〕=3sin〔2x+〕,∴f〔x〕的最小正周期T==π,可知y0为函数的最大值3,x=;〔Ⅱ〕∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f 〔x 〕取最大值0, 当2x+=,即x=﹣时,f 〔x 〕取最小值﹣317.〔2014•〕如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC,AA 1=AC=2,BC=1,E,F 分别是A 1C 1,BC 的中点. 〔Ⅰ〕求证:平面ABE ⊥B 1BCC 1; 〔Ⅱ〕求证:C 1F ∥平面ABE ; 〔Ⅲ〕求三棱锥E ﹣ABC 的体积.[分析]〔Ⅰ〕证明AB ⊥B 1BCC 1,可得平面ABE ⊥B 1BCC 1;〔Ⅱ〕证明C 1F ∥平面ABE,只需证明四边形FGEC 1为平行四边形,可得C 1F ∥EG ; 〔Ⅲ〕利用V E ﹣ABC =,可求三棱锥E ﹣ABC 的体积.[解答]〔Ⅰ〕证明:∵三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面, ∴BB 1⊥AB,∵AB ⊥BC,BB 1∩BC=B, ∴AB ⊥平面B 1BCC 1, ∵AB ⊂平面ABE, ∴平面ABE ⊥B 1BCC 1;〔Ⅱ〕证明:取AB 中点G,连接EG,FG,如此, ∵F 是BC 的中点, ∴FG ∥AC,FG=AC, ∵E 是A 1C 1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;〔Ⅲ〕解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,∴VE﹣ABC===.18.〔2014•〕从某校随机抽取100名学生,获得了他们一周课外阅读时间〔单位:小时〕的数据,整理得到数据分组与频数分布表和频率分布直方图:排号分组频数1[0,2〕62[2,4〕83[4,6〕174[6,8〕225[8,10〕256[10,12〕127[12,14〕68[14,16〕29[16,18〕2合计100〔Ⅰ〕从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;〔Ⅱ〕求频率分布直方图中的a,b的值;〔Ⅲ〕假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组〔只需写结论〕[分析]〔Ⅰ〕根据频率分布表求出1周课外阅读时间少于12小时的频数,再根据频率=求频率;〔Ⅱ〕根据小矩形的高=求a、b的值;〔Ⅲ〕利用平均数公式求得数据的平均数,可得答案.[解答]解:〔Ⅰ〕由频率分布表知:1周课外阅读时间少于12小时的频数为6+8+17+22+25+12=90,∴1周课外阅读时间少于12小时的频率为=0.9;〔Ⅱ〕由频率分布表知:数据在[4,6〕的频数为17,∴频率为0.17,∴a=0.085;数据在[8,10〕的频数为25,∴频率为0.25,∴b=0.125;〔Ⅲ〕数据的平均数为1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68〔小时〕,∴样本中的100名学生该周课外阅读时间的平均数在第四组.19.〔2014•〕椭圆C:x2+2y2=4.〔Ⅰ〕求椭圆C的离心率;〔Ⅱ〕设O为原点,假如点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.[分析]〔Ⅰ〕椭圆C:x2+2y2=4化为标准方程为,求出a,c,即可求椭圆C的离心率;〔Ⅱ〕先表示出线段AB长度,再利用根本不等式,求出最小值.[解答]解:〔Ⅰ〕椭圆C:x2+2y2=4化为标准方程为,∴a=2,b=,c=,∴椭圆C的离心率e==;〔Ⅱ〕设A〔t,2〕,B〔x0,y〕,x≠0,如此∵OA⊥OB,∴=0,∴tx0+2y=0,∴t=﹣,∵,∴|AB|2=〔x0﹣t〕2+〔y﹣2〕2=〔x+〕2+〔y﹣2〕2=x02+y2++4=x2+++4=+4〔0<x2≤4〕,因为≥4〔0<x02≤4〕,当且仅当,即x2=4时等号成立,所以|AB|2≥8.∴线段AB长度的最小值为2.20.〔2014•〕函数f〔x〕=2x3﹣3x.〔Ⅰ〕求f〔x〕在区间[﹣2,1]上的最大值;〔Ⅱ〕假如过点P〔1,t〕存在3条直线与曲线y=f〔x〕相切,求t的取值X围;〔Ⅲ〕问过点A〔﹣1,2〕,B〔2,10〕,C〔0,2〕分别存在几条直线与曲线y=f〔x〕相切?〔只需写出结论〕[分析]〔Ⅰ〕利用导数求得极值点比拟f〔﹣2〕,f〔﹣〕,f〔〕,f〔1〕的大小即得结论;〔Ⅱ〕利用导数的几何意义得出切线方程4﹣6+t+3=0,设g〔x〕=4x3﹣6x2+t+3,如此"过点P〔1,t〕存在3条直线与曲线y=f〔x〕相切〞,等价于"g〔x〕有3个不同的零点〞.利用导数判断函数的单调性进而得出函数的零点情况,得出结论;〔Ⅲ〕利用〔Ⅱ〕的结论写出即可.[解答]解:〔Ⅰ〕由f〔x〕=2x3﹣3x得f′〔x〕=6x2﹣3,令f′〔x〕=0得,x=﹣或x=,∵f〔﹣2〕=﹣10,f〔﹣〕=,f〔〕=﹣,f〔1〕=﹣1,∴f〔x〕在区间[﹣2,1]上的最大值为.〔Ⅱ〕设过点P〔1,t〕的直线与曲线y=f〔x〕相切于点〔x0,y〕,如此y0=2﹣3x,且切线斜率为k=6﹣3,∴切线方程为y﹣y0=〔6﹣3〕〔x﹣x〕,∴t﹣y0=〔6﹣3〕〔1﹣x〕,即4﹣6+t+3=0,设g〔x〕=4x3﹣6x2+t+3,如此"过点P〔1,t〕存在3条直线与曲线y=f〔x〕相切〞,等价于"g〔x〕有3个不同的零点〞.∵g′〔x〕=12x2﹣12x=12x〔x﹣1〕,∴g〔x〕与g′〔x〕变化情况如下:x〔﹣∞,0〕0〔0,1〕1〔1,+∞〕g′〔x〕+0﹣0+g〔x〕↗t+3↘t+1↗∴g〔0〕=t+3是g〔x〕的极大值,g〔1〕=t+1是g〔x〕的极小值.当g〔0〕=t+3≤0,即t≤﹣3时,g〔x〕在区间〔﹣∞,1]和〔1,+∞〕上分别至多有一个零点,故g〔x〕至多有2个零点.当g〔1〕=t+1≥0,即t≥﹣1时,g〔x〕在区间〔﹣∞,0]和〔0,+∞〕上分别至多有一个零点,故g〔x〕至多有2个零点.当g〔0〕>0且g〔1〕<0,即﹣3<t<﹣1时,∵g〔﹣1〕=t﹣7<0,g〔2〕=t+11>0,∴g〔x〕分别在区间[﹣1,0〕,[0,1〕和[1,2〕上恰有1个零点,由于g〔x〕在区间〔﹣∞,0〕和[1,+∞〕上单调,故g〔x〕分别在区间〔﹣∞,0〕和[1,+∞〕上恰有1个零点.综上所述,当过点过点P〔1,t〕存在3条直线与曲线y=f〔x〕相切时,t的取值X 围是〔﹣3,﹣1〕.〔Ⅲ〕过点A〔﹣1,2〕存在3条直线与曲线y=f〔x〕相切;过点B〔2,10〕存在2条直线与曲线y=f〔x〕相切;过点C〔0,2〕存在1条直线与曲线y=f〔x〕相切.。
2014年高考真题——文科数学(北京卷)Word版含答案
2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x =3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件 6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞ 7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4 8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数), 下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟O 5430.80.70.5t p第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年高考北京文科数学试题及答案(解析版)
;.2014年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2014年北京,文1,5分】若集合0,1,2,4A,1,2,3B,则A B ()(A )0,1,2,3,4(B )0,4(C )1,2(D )3【答案】C 【解析】因为{1,2}AB,故选C .【点评】本题考查交集及其运算,是基础题.(2)【2014年北京,文2,5分】下列函数中,定义域是R 且为增函数的是()(A )xye(B )y x(C )ln yx(D )yx【答案】B【解析】对于选项A ,在R 上是减函数;选项C 的定义域为),0(;选项D ,在)0,(上是减函数,故选B .【点评】本题主要考查函数定义域和单调性的判断,比较基础.(3)【2014年北京,文3,5分】已知向量2,4a,1,1b,则2a b()(A )5,7(B )5,9(C )3,7(D )3,9【答案】A 【解析】因为2(4,8)a,所以2(4,8)(1,1)(5,7)ab,故选A .【点评】本题考查平面向量的数乘及坐标减法运算,是基础的计算题.(4)【2014年北京,文4,5分】执行如图所示的程序框图,输出的S 值为()(A )1 (B )3 (C )7 (D )15 【答案】C【解析】当0k 时,1S ;当1k 时,123S ;当2k 时,347S ;当3k 时,输出7S ,故选C .【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.(5)【2014年北京,文5,5分】设a 、b 是实数,则“ab ”是“22ab ”的()(A )充分必要条件(B )必要而不必要条件(C )充分必要条件(D )既不充分不必要条件【答案】D 【解析】若0,2ab ,则22ab ,故不充分;若2,0a b ,则22ab ,而a b ,故不必要,故选D .【点评】判断充要条件的方法是:①若p q 为真命题且qp 为假命题,则命题p 是命题q 的充分不必要条件;②若p q 为假命题且q p 为真命题,则命题p 是命题q 的必要不充分条件;③若p q 为真命题且q p 为真命题,则命题p 是命题q 的充要条件;④若pq 为假命题且qp 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.(6)【2014年北京,文6,5分】已知函数26log f xx x,在下列区间中,包含f x 零点的区间是()(A )0,1(B )1,2(C )2,4(D )4,【答案】C 【解析】因为3(2)410,(4)202f f ,所以由根的存在性定理可知,故选A .【点评】本题考查还是零点的判断,属基础题.;.O5430.80.70.5tp (7)【2014年北京,文7,5分】已知圆22:341C x y 和两点,0A m ,,00B m m,若圆C 上存在点P ,使得90APB,则m 的最大值为()(A )7 (B )6(C )5 (D )4【答案】B【解析】由题意知,点P 在以原点0,0为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两个圆有交点即可,所以15m ,故选B .【点评】本题主要直线和圆的位置关系,求得圆C 上的点到点O 的距离的最大值为6,是解题的关键,属于中档题.(8)【2014年北京,文8,5分】加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p atbtc (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()(A )3.50分钟(B )3.75分钟(C )4.00分钟(D )4.25分钟【答案】B【解析】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p atbtc 的图象上,所以930.71640.82550.5ab c a b c a b c ,解得0.2, 1.5,2a b c.2215130.2 1.520.2()416pttt,当153.754t 时,p 取最大值,故选B .【点评】本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.第二部分(非选择题共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2014年北京,文9,5分】若i i 12i x x R ,则x.【答案】2【解析】由题意知:i 112i x ,所以由复数相等的定义知2x.【点评】本题考查复数相等的充要条件,属基础题.(10)【2014年北京,文10,5分】设双曲线C 的两个焦点为2,0,2,0,一个顶点式1,0,则C 的方程为.【答案】221xy【解析】由题意知:2,1ca,所以2221bca,又因为双曲线的焦点在x 轴上,所以C 的方程为221xy.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.(11)【2014年北京,文11,5分】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为______.【答案】22【解析】由三视图可知:该几何体为一条侧棱垂直底面的三棱锥,底面为边长为2的等边三角形,棱锥的高为2,所以最长的棱长为222222.【点评】本题考查点、线、面间的距离计算,考查空间图形的三视图,考查学生的空间想象能力,考查学生分析解决问题的能力.(12)【2014年北京,文12,5分】在ABC 中,1a ,2b ,1cos 4C,则c;sin A .【答案】2,158【解析】由余弦定理得:22212cos 52244c a b ab C ,故2c ;因为4417cos 2228A,所以15sin 8A.俯视图侧(左)视图正(主)视图11122;.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.(13)【2014年北京,文13,5分】若x 、y 满足1101yx y xy,则3z xy 的最小值为_______.【答案】 1【解析】画出不等式组表示的平面区域,可知区域为三角形,平移直线3zxy 可得,当直线经过两条直线1y与10xy的交点0,1时,z 取得最小值1.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.(14)【2014年北京,文14,5分】顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料A 915原料B621则最短交货期为工作日.【答案】42【解析】因为第一件进行粗加工时,工艺师什么都不能做,所以最短交货期为6152142天.【点评】本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题.三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2014年北京,文15,13分】已知n a 是等差数列,满足13a ,412a ,数列nb 满足14b ,420b ,且nn b a 为等比数列.(1)求数列n a 和n b 的通项公式;(2)求数列n b 的前n 项和.解:(1)设等差数列n a 的公差为d ,由题意得41123333a a d ,所以11312na a n d n n ,,.设等比数列n n b a 的公比为q ,由题意得344112012843b a q b a ,解得2q .所以11112n n nnb a b a q .(2)由(1)知13212n nb n n,,.数列3n 的前n 项和为312n n,数列12n 的前n 项和为1212112nn×.所以,数列n b 的前n 项和为31212nn n .【点评】本题主要考查学生对等差数列及等比数列的通项公式和前n 项和公式的应用,考查学生的基本的运算能力,属基础题.(16)【2014年北京,文16,13分】函数3sin 26f xx的部分图象如图所示.(1)写出f x 的最小正周期及图中0x 、0y 的值;(2)求f x 在区间,212上的最大值和最小值.解:(1)f x 的最小正周期为π,07π6x .03y .(2)因为ππ212x ,,所以π5π2066x ,.于是当π206x,即π12x时,f x 取得最大值0;当ππ262x,即π3x 时,f x 取得最小值3.Oy xy 0x 0;.【点评】本题考查三角函数的图象和性质,属基础题.(17)【2014年北京,文17,14分】如图,在三棱柱111ABCA B C 中,侧棱垂直于底面,ABBC ,12AA AC ,E 、F 分别为11AC 、BC 的中点.(1)求证:平面ABE平面11B BCC ;(2)求证:1//C F 平面ABE ;(3)求三棱锥EABC 的体积.解:(1)在三棱柱111ABCA B C 中,1BB 底面ABC .所以1BB AB .又因为ABBC .所以AB平面11B BCC .所以平面ABE 平面11B BCC .(2)取AB 中点G ,连结EG ,FG .因为E ,F 分别是11A C ,BC 的中点,所以FG AC ∥,且12FG AC .因为11AC AC ∥,且11ACAC ,所以1FG EC ∥,且1FG EC .所以四边形1FGEC 为平行四边形.所以1C F EG ∥.又因为EG 平面ABE ,1C F 平面ABE ,所以1C F ∥平面ABE .(3)因为12AA AC,1BC,ABBC ,所以223AB AC BC.所以三棱锥EABC 的体积111133123323ABC VS AA △.【点评】本题考查线面平行、垂直的证明,考查三棱锥E ﹣ABC 的体积的计算,正确运用线面平行、垂直的判定定理是关键.(18)【2014年北京,文18,13分】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有62210名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[46),的有17人,频率为0.17,所以0.170.0852a 频率组距.课外阅读时间落在组[810),的有25人,频率为0.25,所以0.250.1252b频率组距.(3)样本中的100名学生课外阅读时间的平均数在第4组.【点评】本题考查了频率分布表与频率分布直方图,再频率分布直方图中频率=小矩形的面积=小矩形的高×组距=频数样本容量.(19)【2014年北京,文19,14分】已知椭圆22:24C xy.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y,点B 在椭圆C 上,且OAOB ,求线段AB 长度的最小值.解:(1)由题意,椭圆C 的标准方程为22142xy.所以24a,22b ,从而2222cab.因此2a,2c .故椭圆C 的离心率22c ea.组号分组频数1 02, 6 2 24,8 3 46,17 4 68,22 5 810,25 6 1012,12 7 1214, 6 81416, 2 9 1618, 2 合计100C 1B 1A 1FE C BAGC 1B 1A 1FECBA阅读时间ba频数组距18161412108642O;.(2)设点A ,B 的坐标分别为2t ,,00x y ,,其中00x ≠.因为OA OB ,所以0OA OB,即0020tx y ,解得002y tx .又22024xy,所以2222ABx ty 22000022y x y x 222002044y xyx220202024442xxxx22002084042x x x≤.因为22002084042x x x≥≤,且当204x时等号成立,所以28AB ≥.故线段AB 长度的最小值为22.【点评】本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算能力,属于中档题.(20)【2014年北京,文20,13分】已知函数3()23f x xx .(1)求()f x 在区间[2,1]上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()yf x 相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C 分别存在几条直线与曲线()yf x 相切?(只需写出结论).解:(1)由323f xxx 得263f x x.令0fx,得22x或22x.因为210f,222f,22112ff ,,所以f x 在区间21,上的最大值为222f.(2)设过点1P t ,的直线与曲线yf x 相切于点00x y ,,则300023y x x ,切线斜率2063kx ,所以切线方程为263yy x 0xx ,2000631ty x x .整理得324630x x t .设32463g xxxt,则“过点1P t ,存在3条直线与曲线yf x 相切”等价于“g x 有3个不同零点”.21212121g xxxx x .g x 与g x 的情况如下:x(0),0 (01), 1 (1),()g x 0 0()g x ↗3t ↘1t ↗所以,(0)3g t是()g x 的极大值,(1)1g t 是()g x 的极小值.当(0)30g t≤,即3t ≤时,此时()g x 在区间1,和(1),上分别至多有1个零点,所以()g x 至多有2个零点.当(1)10g t ≥,即1t ≥时,此时()g x 在区间(0),和0,上分别至多有1个零点,所以()g x 至多有2个零点.当00g 且10g ,即31t时,因为1702110gt g t ,,所以g x分别在区间10,,01,和12,上恰有1个零点.由于g x 在区间0,和1,上单调,所以g x 分别在区间0,和1,上恰有1个零点.综上可知,当过点1P t ,存在3条直线与曲线yf x 相切时,t 的取值范围是31,.(3)过点12A,存在3条直线与曲线yf x 相切;过点210B ,存在2条直线与曲线yf x 相切;过点02C ,存在1条直线与曲线yf x 相切.【点评】本题主要考查利用导数求切线方程及判断函数的单调性求最值等知识,考查转化划归思想及分类讨论思想的运用能力和运算能力,属难题.。
2014年普通高等学校招生全国统一考试北京卷文科数学(2014年北京市高考文科数学)
2014年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合A={0,1,2,4},B={1,2,3},则A∩B=().A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}答案:C解析:因为集合A,B中的公共元素为1,2,所以A∩B={1,2},应选C.2.下列函数中,定义域是R且为增函数的是().A.y=e﹣x B.y=x3C.y=ln x D.y=|x|答案:B解析:A项,函数y=e﹣x为R上的减函数;B项,函数y=x3为R上的增函数;C项,函数y=ln x为(0,+∞)上的增函数;D项,函数y=|x|在(﹣∞,0)上为减函数,在(0,+∞)上为增函数.故只有B项符合题意,应选B.3.已知向量a=(2,4),b=(﹣1,1),则2a﹣b=().A.(5,7)B.(5,9)C.(3,7)D.(3,9)答案:A解析:因为2a=(4,8),b=(﹣1,1),所以2a﹣b=(4﹣(﹣1),8﹣1)=(5,7).故选A.4.执行如图所示的程序框图,输出的S值为().A.1B.3C.7D.15答案:C解析:开始时k=0,S=0.第一次循环,k=0<3,S=0+20=1,k=0+1=1,第二次循环,k=1<3,S=1+21=3,k=1+1=2,第三次循环,k=2<3,S=3+22=7,k=3.此时不满足条件k<3,输出结果S,即输出7.故选C.5.设a,b是实数,则“a>b”是“a2>b2”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:D解析:当a=0,b=﹣1时,a>b成立,但a2=0,b2=1,a2>b2不成立,所以“a>b”是“a2>b2”的不充分条件.反之,当a =﹣1,b =0时,a 2=1,b 2=0,即a 2>b 2成立,但a>b 不成立,所以“a>b”是“a 2>b 2”的不必要条件.综上,“a>b”是“a 2>b 2”的既不充分也不必要条件,应选D . 6.已知函数f (x )=6x ﹣log 2x.在下列区间中,包含f (x )零点的区间是( ). A .(0,1) B .(1,2)C .(2,4)D .(4,+∞)答案:C解析:由题意知f (1)=61﹣log 21=6>0,f (2)=62﹣log 22=3﹣1=2>0,f (4)=64﹣log 24=32﹣2=﹣12<<0.故f (2)·f (4)<0.由零点存在性定理可知,包含f (x )零点的区间为(2,4).7.已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m>0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ). A .7 B .6 C .5 D .4 答案:B解析:因为A (﹣m ,0),B (m ,0)(m>0),所以使∠APB =90°的点P 在以线段AB 为直径的圆上,该圆的圆心为O (0,0),半径为m.而圆C 的圆心为C (3,4),半径为1.由题意知点P 在圆C 上,故两圆有公共点. 所以两圆的位置关系为外切、相交或内切, 故m ﹣1≤|CO|≤m +1,即m ﹣1≤5≤m +1,解得4≤m ≤6. 所以m 的最大值为6.故选B .8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ).A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟答案:B解析:由题中图象可知点(3,0.7),(4,0.8),(5,0.5)在函数图象上,因此有{0.7=a ×32+b ×3+c ,0.8=a ×42+b ×4+c ,0.5=a ×52+b ×5+c ,解得{a =﹣0.2,b =1.5,c =﹣2.故p =﹣0.2t 2+1.5t ﹣2,其对称轴方程为t =﹣1.52×(﹣0.2)=154=3.75.所以当t =3.75时,p 取得最大值.故选B .第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.若(x+i)i=﹣1+2i(x∈R),则x=__________.答案:2解析:由已知得x i+i2=﹣1+2i,即x i=2i,解得x=2.10.设双曲线C的两个焦点为(﹣√2,0),(√2,0),一个顶点是(1,0),则C的方程为__________.答案:x2﹣y2=1解析:由题意知双曲线的焦点在x轴上,且c=√2,设其方程为x 2a2−y2b2=1(a>0,b>0),又由顶点为(1,0)知a=1,所以b=√c2﹣a2=1.故所求双曲线的方程为x2﹣y2=1.11.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为__________.答案:2√2解析:由题中三视图可知,三棱锥的直观图如图所示,其中P A⊥平面ABC,M为AC的中点,且BM⊥AC.故该三棱锥的最长棱为PC.在Rt△P AC中,PC=√PA2+AC2=√22+22=2√2.12.在△ABC中,a=1,b=2,cos C=14,则c=__________;sin A=__________.答案:2√158解析:由余弦定理得c2=a2+b2﹣2ab cos C=12+22﹣2×1×2×14=4,故c=2.所以cos A=b 2+c2﹣a22bc=22+22﹣122×2×2=78.故sin A=√1﹣cos2A=√1﹣(78)2=√158.13.若x,y满足{y≤1,x﹣y﹣1≤0,x+y﹣1≥0,则z=√3x+y的最小值为__________.答案:1解析:如图,作出不等式组表示的平面区域(阴影部分所示),目标函数z =√3x +y 可化为y =﹣√3x +z ,作出直线l 0:y =﹣√3x 并平移.因为k AB =﹣1>﹣√3,所以当直线过点A 时,z 取得最小值. 由{x +y ﹣1=0,y =1,解得A (0,1),所以z 的最小值为z =√3×0+1=1.14.顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为__________个工作日. 答案:42解析:最短交货期为先由徒弟完成原料B 的粗加工,共需6天,然后工艺师加工该件工艺品,需21天;徒弟可在这几天中完成原料A 的粗加工;最后由工艺师完成原料A 的精加工,需15个工作日.故交货期为6+21+15=42个工作日.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n ﹣a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.分析:(1)先由等差数列{a n }中的a 1,a 4求出公差d ,即可求其通项a n ,然后根据b 1,b 4的值及{b n ﹣a n }为等比数列,从而求出该数列的第1项和第4项,得出其公比,从而写出其通项公式,即可求得{b n }的通项.(2)根据{b n }的通项公式的结构特征即可利用分组求和的方法求得{b n }的前n 项和. 解:(1)设等差数列{a n }的公差为d ,由题意得d =a 4﹣a 13=12﹣33=3.所以a n =a 1+(n ﹣1)d =3n (n =1,2,…). 设等比数列{b n ﹣a n }的公比为q ,由题意得q 3=b 4﹣a 4b 1﹣a 1=20﹣124﹣3=8,解得q =2.所以b n ﹣a n =(b 1﹣a 1)q n ﹣1=2n ﹣1.从而b n =3n +2n ﹣1(n =1,2,…).(2)由(1)知b n =3n +2n ﹣1(n =1,2,…). 数列{3n }的前n 项和为32n (n +1),数列{2n ﹣1}的前n 项和为1×1﹣2n 1﹣2=2n ﹣1.所以,数列{b n }的前n 项和为32n (n +1)+2n ﹣1.16.(本小题满分13分)函数f (x )=3sin (2x +π6)的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间[﹣π2,﹣π12]上的最大值和最小值.分析:(1)首先利用公式求得f (x )=3sin (2x +π6)的最小正周期,然后根据图形确定y 0,即f (x )的最大值,再根据x 0的位置即可求得其取值.(2)先根据x 的范围确定2x +π6的范围,进而求得f (x )的最值. 解:(1)f (x )的最小正周期为π.x 0=7π6,y 0=3.(2)因为x ∈[﹣π2,﹣π12], 所以2x +π6∈[﹣5π6,0].于是,当2x +π6=0,即x =﹣π12时,f (x )取得最大值0;当2x +π6=﹣π2,即x =﹣π3时,f (x )取得最小值﹣3.17.(本小题满分14分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点. (1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E ﹣ABC 的体积.分析:(1)首先利用侧棱垂直于底面得到BB 1⊥AB ,然后结合已知即可证得AB ⊥平面BCC 1B 1,最后利用面面垂直的判定定理即得结论.(2)取AB 的中点G ,然后利用三棱柱的性质和三角形中位线性质可得GF EC 1,进而转化为C 1F ∥EG ,最后利用线面平行的判定定理证得结论.(3)先求出△ABC 的三边长,由已知可得该三棱锥的高等于AA 1,然后代入锥体体积公式即得结果.(1)证明:在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥底面ABC .所以BB 1⊥AB .又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG.因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG.又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE.(3)解:因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =√AC 2﹣BC 2=√3.所以三棱锥E ﹣ABC 的体积V =13S △ABC ·AA 1=13×12×√3×1×2=√33.18.(本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整(1)12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)分析:(1)直接根据频率分布表中的数据求出相应事件的频数,然后代入频率公式求值.(2)先根据频率分布表中的数据求出相应范围内的频率,然后根据频率分布直方图中纵轴表示频率组距即可求出a ,b 的值.(3)根据频率分布直方图数据的分布情况即可估计平均数所在位置.解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1﹣10100=0.9.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9. (2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以a =频率组距=0.172=0.085.课外阅读时间落在组[8,10)的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组. 19.(本小题满分14分)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值. 分析:(1)先把方程化为标准方程,分别求出a ,c ,即可求其离心率e.(2)分别设出A ,B 两点的坐标,先利用OA ⊥OB 求出两点坐标之间的关系,然后用相应坐标表示出|AB|2,代入坐标之间的关系,根据代数式的结构特征求其最值. 解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2﹣b 2=2.因此a =2,c =√2. 故椭圆C 的离心率e =ca =√22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB ,所以OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即tx 0+2y 0=0,解得t =﹣2y0x 0.又x 02+2y 02=4,所以|AB|2=(x 0﹣t )2+(y 0﹣2)2=(x 0+2y 0x 0)2+(y 0﹣2)2=x 02+y 02+4y 02x 02+4=x 02+4﹣x 022+2(4﹣x 02)x 02+4=x 022+8x 02+4(0<x 02≤4).因为x 022+8x 02≥4(0<x 02≤4),且当x 02=4时等号成立,所以|AB|2≥8.故线段AB 长度的最小值为2√2.20.(本小题满分13分)已知函数f (x )=2x 3﹣3x. (1)求f (x )在区间[﹣2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (﹣1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)分析:(1)先求函数f (x )的导函数f'(x ),然后求出f'(x )=0的解,进而比较这些值与区间端点处的函数值的大小,即可求得最大值.(2)设出切点坐标(x 0,y 0),利用导数的几何意义表示出切线方程,由切点在曲线上及切线过点P 将切线方程化为关于x 0的三次方程,从而将已知转化为方程有三个解,构造相应函数,转化为函数图象与x 轴有三个交点,利用导数研究单调性和极值,利用极值和0的大小关系构造不等关系,从而求得t 的取值范围.(3)根据(2)中的结论,比较纵坐标与t 的大小,即可写出相应的结论. 解:(1)由f (x )=2x 3﹣3x 得f'(x )=6x 2﹣3,令f'(x )=0,得x =﹣√22或x =√22. 因为f (﹣2)=﹣10,f (﹣√22)=√2,f (√22)=﹣√2,f (1)=﹣1, 所以f (x )在区间[﹣2,1]上的最大值为f (﹣√22)=√2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 03﹣3x 0,且切线斜率为k =6x 02﹣3,所以切线方程为y ﹣y 0=(6x 02﹣3)(x ﹣x 0),因此t ﹣y 0=(6x 02﹣3)(1﹣x 0).整理得4x 03﹣6x 02+t +3=0, 设g (x )=4x 3﹣6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g'(x )=12x 2﹣12x =12x (x ﹣1). g (x )与g'(x )的情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.当g (0)=t +3≤0,即t ≤﹣3时,此时g (x )在区间(﹣∞,1]和(1,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (1)=t +1≥0,即t ≥﹣1时,此时g (x )在区间(﹣∞,0)和[0,+∞)上分别至多有1个零点,所以g (x )至多有2个零点.当g (0)>0,且g (1)<0,即﹣3<t<﹣1时,因为g (﹣1)=t ﹣7<0,g (2)=t +11>0,所以g (x )分别在区间[﹣1,0),[0,1)和[1,2)上恰有1个零点.由于g (x )在区间(﹣∞,0)和(1,+∞)上单调,所以g (x )分别在区间(﹣∞,0)和[1,+∞)上恰有1个零点.综上可知,当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(﹣3,﹣1). (3)过点A (﹣1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切.。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。
考试时长120分钟,。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的4个选项中,选出符合题目要求的一项。
1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.y x =C.ln y x =D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1 D.15输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分不必要条件6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
9.若()()12x i i i x R +=-+∈,则x = . 10.设双曲线C的两个焦点为(),),一个顶点式()1,0,则C 的方程为.11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.侧(左)视图正(主)视图12.在ABC ∆中,1a =,2b =,1cos 4C =,则c = ;sin A = . 13.若x 、y 满足11010y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则z y =+的最小值为 .14.顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这 项任务,每件颜料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都则最短交货期为 工作日.三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
15.(本小题满分13分)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.16.(本小题满分13分)函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示. (1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值. 17.(本小题满分14分)如图,在三棱柱111中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,=1BC ,E 、F 分别为11AC 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA18. (本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值; (3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论) 19. (本小题满分14分)已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.20. (本小题满分13分)已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)参考答案一、 选择题1.C [解析] A ∩B ={0,1,2,4}∩{1,2,3}={1,2}.2.B [解析] 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 3.A [解析] 2a -b =2(2,4)-(-1,1)=(5,7). 4.C [解析] S =20+21+22=7.5.D [解析] 当ab <0时,由a >b 不一定推出a 2>b 2,反之也不成立.6.C [解析] 方法一:对于函数f (x )=6x-log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).C 上存在点P 使∠APB =90°,即圆C 与以AB 为直径的圆有公共点,所1,即4≤m ≤6.8.B [解析] 由题意得⎩⎪⎨⎪9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值. 二、 填空题9.2 [解析] ∵(x +i)i =-1+x i =-1+2i ,∴x =2.10.221x y -= [解析] 由题意设双曲线的方程为x 2-y 2b2=1(b >0),又∵1+b 2=(2)2,∴b 2=1,即双曲线C 的方程为x 2-y 2=1.11.[解析] 该三棱锥的直观图如图所示,并且PB ⊥平面ABC ,PB =2,AB =2,AC =BC =2,P A =22+22=22,PC =22+(2)212.2,[解析] 由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2×2×1×14=4,即c =2;cos A =b 2+c 2-a 22bc =4+4-12×2×2=78,∴sin A =1-⎝⎛⎭⎫782=158.13.1 [解析] 可行域如图,当目标函数线z =y +3x 过可行域内A 点时,z 有最小值,联立⎩⎪⎨⎪⎧y =1,x +y -1=0,得A (0,1),故z min =3×0+1×1=1.14.42 [解析] 21+15=42个工作日. 三、 解答题15.解:(I )设等差数列{}n a 的公差为d ,由题意得:41123333a a d --===, 所以1(1)3(1,2,)n a a n d n n =+-==L , 设等比数列{}n nb a -的公比为q ,由题意得:344112012843b a q b a --===--,解得2q =.所以1111()2n n n n b a b a q ---=-=,从而132(1,2,)n n b n n -=+=L . (II )由(1)知,132(1,2,)n n b n n -=+=L ,数列{}3n 的前n 项和为3(1)2n n +,数列{}12n -的前n 项和为1212112n n -⨯=--, 所以数列{}n b 的前n 项和为3(1)212n n n ++-. 16.解:(I )()f x 的最小正周期为π,076x π=,03y =. (II )因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.17.解:(I )在三棱柱111ABC A B C -中,1BB ⊥底面ABC ,所以1BB ⊥AB , 又因为AB ⊥BC ,所以AB ⊥平面11B BCC ,所以平面ABE ⊥平面11B BCC . (II )取AB 中点G ,连结EG ,FG ,因为E ,F 分别是11AC 、BC 的中点,所以FG ∥AC ,且FG=12AC , 因为AC ∥11AC ,且AC=11AC ,所以FG ∥1EC ,且FG=1EC ,所以四边形1FGEC 为平行四边形,所以1//C F EG , 又因为EG ⊂平面ABE ,1C F ⊄平面ABE , 所以1//C F 平面ABE .(III )因为1AA =AC=2,BC=1,AB ⊥BC ,所以=所以三棱锥E ABC -的体积为:113ABC V S AA ∆=⋅=111232⨯⨯. 18.解:(I )根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有 6=2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为0.9. (II )课外阅读时间落在组[4,6)的有17人,频率为0.17,所以0.170.0852a ===频率组距, 课外阅读时间落在组[8,10)的有25人,频率为0.25,所以0.250.1252b ===频率组距. (III )估计样本中的100名学生课外阅读时间的平均数在第4组.19.解:(I )由题意,椭圆C 的标准方程为22142x y +=, 所以224,2a b ==,从而2222c a b =-=,因此2,a c =C的离心率c e a ==(II )设点A ,B 的坐标分别为00(,2),(,)t x y ,其中00x ≠,因为OA OB ⊥,所以0OA OB ⋅=uu r uu u r ,即0020tx y +=,解得002yt x =-,又220024x y +=,所以22200||()(2)AB x t y =-+-=2200002()(2)y x y x ++-=2220002044y x y x +++=2220002042(4)42x x x x --+++=22002084(04)2x x x ++<≤, 因为22002084(04)2x x x +≥<≤,且当204x =时间等号成立,所以2||8AB ≥,故线段AB长度的最小值为20.解:(I )由3()23f x x x =-得2'()63f x x =-,令'()0f x =,得x =或x =,因为(2)10f -=-,(2f -=,(2f =(1)1f =-,所以()f x 在区间[2,1]-上的最大值为(f =. (II )设过点P (1,t )的直线与曲线()y f x =相切于点00(,)x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为2000(63)()y y x x x -=--,因此2000(63)(1)t y x x -=--,整理得:32004630x x t -++=,设()g x =32463x x t -++,则“过点(1,)P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”, '()g x =21212x x -=12(1)x x -,()g x 与'()g x 的情况如下:当(0)30g t =+≤,即3t ≤-时,此时()g x 在区间(,1]-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当(1)10g t =+≥,1t ≥-时,此时()g x 在区间(,0)-∞和[0,)+∞上分别至多有1个零点,所以()g x 至多有2个零点.当(0)0g >且(1)0g <,即31t -<<-时,因为(1)70g t -=-<,(2)110g t =+>,所以()g x 分别为区间[1,0),[0,1)-和[1,2)上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和[1,)+∞上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是(3,1)--. (III )过点A (-1,2)存在3条直线与曲线()y f x =相切; 过点B (2,10)存在2条直线与曲线()y f x =相切; 过点C (0,2)存在1条直线与曲线()y f x =相切.。