概率论与数理统计在生活中的应用

合集下载

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用一:概率论1.概述概率论(probability theory)研究随机现象数量规律的数学分支。

随机现象是相对于决定性现象而言的。

在一定条件下必然发生某一结果的现象称为决定性现象。

例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。

随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。

每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。

随机现象的实现和对它的观察称为随机试验。

随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。

事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。

又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。

大数定律及中心极限定理就是描述和论证这些规律的。

在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。

例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。

随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。

2.简介事件的概率则是衡量该事件发生的可能性的量度。

虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。

又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用
概率论与数理统计是数学的一个重要分支,它在经济生活中有着广泛的应用。

在经济学领域,人们需要进行决策、预测和风险管理,而概率论与数理统计提供了一种科学的方法来处理这些问题。

本文将从概率论和数理统计在经济生活中的应用进行详细介绍,以帮助读者了解这两门学科在经济领域的重要作用。

让我们来看看概率论在经济生活中的应用。

概率论是研究随机现象的规律性和统计规律性的数学分支,它在经济生活中有着广泛的应用。

概率论可以帮助我们评估经济决策的风险。

在实际生活中,经济决策往往伴随着各种不确定性因素,这些不确定性因素可能会导致投资失败或者损失。

通过概率论,我们可以对这些不确定性因素进行量化和分析,从而为决策者提供科学的依据。

概率论还可以帮助我们进行市场预测。

经济市场的波动往往是不可预测的,但是概率论可以帮助我们对市场的变化进行预测,并提供一种科学的方法来降低投资风险。

让我们来看看数理统计在经济生活中的应用。

数理统计是以概率论为基础,研究怎样收集、整理、分析和解释数据信息的一门学科,它在经济生活中有着广泛的应用。

在经济学领域,数理统计可以帮助我们进行市场调查和数据分析。

通过数理统计的方法,我们可以对市场的需求、供应和价格进行调查和分析,从而为企业的市场营销和产品定价提供科学的依据。

数理统计还可以帮助我们进行风险管理。

在经济生活中,风险管理是非常重要的,它涉及到很多方面,比如财务风险、市场风险和操作风险。

通过数理统计的方法,我们可以对这些风险进行量化和分析,从而为企业的风险管理提供科学的依据。

概率论与数理统计在生活中的应用 (3)

概率论与数理统计在生活中的应用 (3)

生日概率问题【数学情境】 每个人都有自己的生日(指一年365天中某一天),随机相遇的两人的生日要在365天中的同一天,即使有也是很凑巧,但如果相聚的人数增多,可能性会增大;某次随机相遇无论男女、老幼,若人数达到了50人以上,形成一个团体(如集会、上课、旅游等)。

【提出问题】1.随意指定一个人,你猜某天正好是他的生日,猜对的可能性有多大?2.随意指定二个人,你猜他俩生日是同一天,猜对的可能性有多大?3.某一团体有一群人,我绝对可以肯定至少有2人生日相同,这群人人数至少要多少?4.如果某个随机而遇的团体有50人以上,我敢打贿,这个团体几乎可以肯定有生日相同的两个人,你相信吗?【问题解决】问题1.解:一年有365天,他某天生日概率 3651p =≈0.0027,故猜对的可能性微乎其微。

问题2.解:两个人生日,总共可能性有365×365种搭配,其中有365 种生日相同,故随意指定二个人,生日相同的概率365*365365p ==3651≈0.0027,故猜对的可能性仍旧微乎其微。

问题3. 解:某一团体中,绝对肯定至少有2人生日相同,即为必然事件,p =1.由抽屉原理可知,这群人至少要有366人。

问题4. 解:要解决这个概率问题,我们首先来计算一下,50个人生日的搭配一共有多少种可能情况。

第一个人生日,可以是一年中任何一天,一共有365种可能情况,而第二、第三及其它所有人生日也都有365种,这样50个人共有36550种可能搭配。

如果50人的生日无一相同,那么生日搭配可能情况就少得多了。

第一个人有365种可能,第二人因不能与第一个生日相同,只有364种可能,依次类推,如50人生日无一相同,其生日搭配情况只有365×364×363×……×317×316种,只占36550种情况中的3%,即p=36550316 *......363*364*365=3%。

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用1. 引言1.1 概率论与数理统计在经济生活中的重要性概率论与数理统计在经济生活中起着至关重要的作用。

概率论通过对随机现象进行量化分析,可以帮助经济学家预测市场变化、制定合理的经济政策。

数理统计则是对经济数据进行整理、分析和解释的重要工具,可以帮助人们更好地了解经济现象的规律和趋势。

在当今复杂多变的经济环境中,概率论和数理统计能够帮助经济决策者更加准确地评估风险和机会,做出明智的决策。

在投资领域,利用概率论和数理统计可以帮助投资者在股票市场中获取更高的回报;在商品定价中,可以根据市场需求和供应情况,利用概率论和数理统计来确定合理的价格;在风险管理中,可以借助数理统计的方法来评估和控制各种风险。

概率论和数理统计在经济生活中的应用非常广泛且必不可少。

它们不仅为经济决策提供了科学依据,还为经济学家和研究者提供了重要的工具和方法。

未来,随着经济环境的变化和发展,概率论和数理统计的应用前景将会更加广阔,对经济生活的影响也将更加深远。

1.2 本文的研究目的本文的研究目的是探讨概率论与数理统计在经济生活中的重要性并分析其在实际应用中的作用。

通过对市场预测、经济数据分析和风险管理等方面的案例进行深入研究,旨在揭示概率论与数理统计在经济领域中的广泛应用及其对决策制定和经济发展的影响。

通过对股票市场和商品定价等实例的案例分析,探讨概率论与数理统计在实际经济活动中的具体运用方式和效果。

最终总结本文的观点,展望概率论和数理统计在经济生活中的应用前景,并对其在促进经济增长和提高效率方面的潜力进行评估。

通过本文的研究,旨在为读者提供对概率论与数理统计在经济领域中的重要性和实际应用的全面理解,以促进经济学和统计学领域的进一步研究与应用。

2. 正文2.1 概率论在市场预测中的应用市场预测是经济生活中一个至关重要的领域,而概率论则为我们提供了一种科学的方法来进行市场预测。

通过对历史数据的分析和概率模型的建立,我们可以对未来市场走势进行预测。

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用概率论和数理统计是现代经济学中常见的数学工具,它们也可以应用在经济生活中,以支持各种经济决策。

今天,概率论和统计学已经广泛用于分析各种现象,为帮助我们应对各种经济问题提供了重要参考。

概率论可以用来计算不同互相关性的可能性,从而更加准确地了解某种现象发生的概率,并且为我们提供一些有效的策略,来帮助我们做出正确的经济决策。

例如,投资者在投资之前可以通过概率论来计算市场上股票投资的可能性,并做出更为明智的投资决策,从而避免投资风险。

数理统计也可以帮助我们更有效地进行经济决策。

数理统计使用不同的数据分析方法,如描述性统计、回归分析、分析、多元分析等,使我们能够对数据进行仔细分析,从而更准确地了解不同经济现象的发展趋势,并做出正确的经济决策。

例如,使用数理统计,经济学家可以分析某个行业的发展情况,从而更好地判断投资者应该采取哪种投资策略来实现最大回报。

在日常生活中,概率论和数理统计也可以帮助我们更好地应对市场上发生的变化。

例如,我们可以利用概率论来预测市场上发生的特定情况的可能性,或者使用数理统计来分析某种现象的发展趋势,从而使我们更加了解市场的运行状况,并做出更为明智的决定。

此外,概率论和数理统计也可以用来解决社会经济问题。

例如,研究人员可以利用概率论来分析社会现象,如就业、物价、赤字,并制定出更有效的政策措施。

同样,数理统计也可以帮助政府收集大量的数据,研究社会问题的发生原因,并从而制定出更有效的政策措施。

从以上可以看出,概率论和数理统计与经济生活密切相关,它们不仅可以帮助我们做出正确的经济决策,还可以用来解决社会经济问题。

随着我们社会经济水平的不断提高,概率论和数理统计在经济生活中的重要性也将越来越重要。

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用1. 引言1.1 概率论与数理统计的概念概率论是研究随机现象规律的数学分支,它研究的是各种可能发生的事件在相同条件下可能出现的次数的规律性。

而数理统计是利用数学和统计学原理进行信息搜集、整理、分析和推断的科学。

概率论与数理统计的概念在经济生活中有着重要的应用价值,通过对经济活动中的随机变量进行建模和分析,可以为经济决策提供科学依据。

概率论与数理统计的应用旨在通过收集和分析数据,揭示经济规律,指导企业和政府做出正确决策。

概率论与数理统计的基本概念包括随机变量、概率分布、期望、方差等,这些概念是经济生活中数据处理和分析的基础。

概率论与数理统计的方法被广泛运用于市场营销、金融、产业经济、供应链管理和公司经营等方面,为经济主体提供了重要的决策支持。

概率论与数理统计的研究成果不仅促进了经济学理论的发展,也为实践提供了重要参考。

概率论与数理统计的概念是经济生活中不可或缺的工具,它们为经济现象的认识和分析提供了科学方法,为经济决策提供了理论支持。

在当今信息时代,概率论与数理统计在经济生活中的应用将愈发重要,为经济发展和社会稳定提供可靠保障。

1.2 概率论与数理统计在经济生活中的重要性概率论与数理统计在经济生活中扮演着至关重要的角色。

随着现代经济的发展和复杂性增加,人们对风险、不确定性和数据的处理需求也越来越高。

而概率论与数理统计作为量化分析的重要工具,可以帮助我们更好地理解和应对经济生活中的各种挑战和机遇。

在市场营销中,概率论与数理统计可以帮助企业进行市场调研和预测。

通过对市场数据的分析和建模,企业可以更准确地了解消费者需求和市场趋势,从而制定更有效的营销策略和产品定位,提高销售业绩和市场占有率。

在金融领域,概率论与数理统计被广泛应用于风险管理。

通过对金融市场的波动性和风险进行量化分析,金融机构可以更好地评估和控制投资风险,避免金融风险事件的发生,保护投资者的利益。

在产业经济中,概率论与数理统计可以帮助企业进行效率分析。

浅谈概率论与数理统计在生活中的应用

浅谈概率论与数理统计在生活中的应用

浅谈概率论与数理统计在生活中的应用浅谈概率论与数理统计在生活中的应用一、引言概率论与数理统计是数学的重要分支,它们在生活中扮演着至关重要的角色。

概率论研究的是随机现象的规律性,而数理统计则通过对已知数据进行推理和分析来得出结论。

这两个学科的知识可以帮助我们更好地理解生活中的各种现象,并能够提供科学的决策依据。

本文将从多个角度探讨概率论与数理统计在生活中的应用。

二、金融投资中的风险控制金融投资是人们追求财富增值的一种方式,而风险控制是成功投资的关键。

概率论与数理统计的方法可以帮助投资者在制定投资策略时更全面地考虑风险因素。

例如,通过分析历史股价数据,可以使用统计模型来预测未来股价的波动情况,从而做出相应的投资决策。

此外,概率论还可以帮助投资者评估不同投资组合的风险和回报,选择最优的投资标的。

三、医学诊断中的准确判断在医学诊断中,准确判断患者的病情和预测疾病发展趋势对患者的治疗和康复至关重要。

概率论与数理统计的方法可以提供科学的依据来辅助医生进行准确判断。

例如,在进行疾病筛查时,可以通过统计模型计算出患病的概率,进而指导医生进行深入的检查和诊断。

此外,根据大量病例数据的统计分析,可以找到某种疾病的高危因素,并在早期进行预防和干预。

四、市场调查与产品开发市场调查和产品开发是企业决策的重要环节。

概率论与数理统计的方法可以帮助企业分析市场需求、预测产品销售量,并评估产品的风险与效益。

例如,通过抽样调查与统计分析,可以了解消费者对某种产品的需求状况,进而指导企业进行产品定位和市场营销策略的制定。

此外,概率论与数理统计还可以帮助企业评估产品的质量与可靠性,确保产品符合市场需求。

五、社会决策与公共政策制定社会决策和公共政策制定时需要考虑到各种不确定因素和风险。

概率论与数理统计的方法可以为决策者提供客观、科学的参考。

例如,在社会福利政策制定中,可以通过模型推断分析不同政策方案对于受益人的影响,从而选择最优的政策方案。

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用概率论与数理统计是数学中重要的分支学科,它们在经济生活中扮演着重要的角色。

在经济领域中,概率论与数理统计被广泛应用于风险分析、市场波动、经济预测、商业决策等方面,为经济学家、金融从业者提供了重要的分析工具和决策支持。

本文将从不同的角度探讨概率论与数理统计在经济生活中的应用。

在金融领域中,概率论与数理统计的应用尤为突出。

金融市场的波动性很大,价格的变动是不规律的,而概率论与数理统计正是用来分析这种不规律性的有效工具。

在股票市场中,投资者可以利用概率论与数理统计的方法对股票价格的波动进行分析,找出股票价格的概率分布,从而进行投资策略的制定。

在期权交易中,概率论与数理统计的方法也被广泛应用,例如布莱克-斯科尔斯定价模型就是基于概率论与数理统计的理论基础上建立的。

通过对金融市场的波动进行概率分析,投资者可以更好地把握市场走势,制定合理的投资策略,降低投资风险,获取更好的投资回报。

在商业决策中,概率论与数理统计也发挥着重要作用。

在企业经营中,面临的决策往往是不确定的,概率论与数理统计的方法可以帮助企业对风险进行量化分析。

在产品销售中,企业可以利用概率论与数理统计的方法对产品的需求量进行预测,并且通过统计分析来确定最佳的生产计划和库存水平,从而降低库存成本和避免销售风险。

在市场营销中,企业可以利用市场调查数据进行统计分析,从而得出潜在顾客的购买意向和消费行为,为企业的市场推广和产品定位提供重要参考。

在宏观经济层面上,概率论与数理统计也发挥着重要的作用。

每个国家都需要对宏观经济进行监测和预测,以制定相应的宏观经济政策。

概率论与数理统计的方法可以通过对宏观经济数据进行分析和建模,帮助政府制定更加科学合理的宏观经济政策。

通过对失业率、通货膨胀率、国内生产总值等经济指标的概率分析,政府可以及时了解经济的发展趋势,预测经济周期,及时采取相应的政策措施,稳定经济增长。

在风险管理中,概率论与数理统计也发挥着不可替代的作用。

试论概率论与数理统计在日常生活中的应用

试论概率论与数理统计在日常生活中的应用

试论概率论与数理统计在日常生活中的应用概率论和数理统计是数学领域中的两个分支,它们在各行各业都有着广泛的应用。

在日常生活中,我们也可以看到概率论和数理统计的身影。

下面,我将从各个方面来阐述这两个概念在我们日常生活中的应用。

一、医学领域概率论和数理统计对医学领域有着重要的应用,例如疾病的检测和诊断、药物的研发等领域。

在疾病检测和诊断方面,概率论和数理统计可以用来分析病例数据,从而确定疾病的患病率、传染率等参数,并帮助医生做出正确的判断。

在药物研发方面,概率论和数理统计可以帮助研究人员制定实验计划、分析实验数据,从而确定药物的有效性和安全性等参数,为研究人员提供科学依据。

二、金融领域概率论和数理统计在金融领域中应用广泛,例如股票和期货的交易、风险控制、市场预测等方面。

在股票和期货的交易方面,概率论和数理统计可以帮助投资者制定投资策略、分析市场变化、预测股票和期货的价格等。

在风险控制方面,概率论和数理统计可以分析市场波动、风险的大小和概率等因素,帮助企业和个人控制风险,在投资过程中保证资金安全。

在市场预测方面,概率论和数理统计可以对市场走势进行分析和预测,并为投资者提供参考意见。

三、教育领域概率论和数理统计在教育领域中也有重要应用,例如教育评估和学业预测等方面。

在教育评估方面,概率论和数理统计可以通过对学生考试成绩和教师教学评估数据的分析,评估学生和教师的教学质量,为学校提供改进教育质量的依据。

在学业预测方面,概率论和数理统计可以根据学生历史考试成绩和学习特点,预测学生未来的学业表现和成绩趋势,并提供帮助学生制定学习计划的建议。

四、环境保护概率论和数理统计在环境领域中也有着广泛的应用,例如环境数据的分析和污染事件的预测等方面。

在环境数据的分析方面,概率论和数理统计可以帮助环境保护部门分析大量环境监测数据,了解环境状况和污染源,并制定针对性保护措施。

在污染事件的预测方面,概率论和数理统计可以通过对污染源、气象条件、地形地貌等因素进行分析和模拟,预测污染事件的发生概率和持续时间,并提供相关的应急措施。

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用
概率论与数理统计是一门研究不确定性的科学,许多定性和定量的分析均以其理论为
基础。

现在,概率论与数理统计已经广泛地应用到日常生活之中,因此也可以改善很多日
常生活中的问题。

在金融领域,概率论和数理统计深深地影响着风险管理。

投资者通过概率分布和其他
技术来识别和控制风险,以提高投资收益。

此外,投资专业人员运用复杂的数理统计模型
来估计股市走势,从而决定投资的目的地。

在统计学中,概率论和数理统计是构建商业决策所必需的。

商业人士可以使用各种概
率分布、统计分析等技术,以便得出正确的业务结论,以更好地发展他们的企业。

他们还
可以使用这些技术来分析客户和市场信息,从而推出更好的产品和服务。

在教育领域,概率论和数理统计也扮演着重要的角色。

老师可以使用它们来确定教学
计划,以满足学生学习的要求。

学生们也可以通过使用这些技术学习如何采取决策和解决
问题,以及如何以科学的方式解决社会问题。

在医学领域,概率论和数理统计也被用来评估疾病模型和药物疗效,评估治疗策略,
指导疾病诊断和预测健康风险。

此外,这些原理也可以用于疾病预防,以及疾病流行病学
研究。

在众多领域,概率论与数理统计都被认为是一种有用的工具,能够帮助人们在复杂的
意义上理解世界。

它们的应用范围从金融到医疗,都能帮助人们更准确地分析和解决问题。

概率论与数理统计在日常生活中的运用

概率论与数理统计在日常生活中的运用

概率论与数理统计在日常生活中的运用概率论与数理统计是一门与日常生活紧密联系的学科,现今已有300余年的历史。

在日常生活中,赌博,彩票,天气,体育赛事,保险等都与概率学密切相关。

它运用在我们生活中的各个地方,随着社会的发展,他的运用也愈加重要,学习这门学科也会对我们的日常生活起到非常大的帮助。

在概率论与数理统计这门学科中最令人熟悉的莫过于掷硬币试验了。

硬币正反两面,问抛掷硬币,得到正面的概率为多少?这一问题在我们现在看来是十分简单的,答案当然是1/2。

那么,这是怎样得到的呢?根据反复多次试验,从开始的与1/2差距较大,到后来试验次数的增加得到的概率越来越靠近1/2。

由此证明,1/2的答案是正确的。

生活中,人们常常喜欢买彩票,那么一张彩票的中奖机会是多少呢?以双色球举例,双色球投注号码由6个红色球号码和1个蓝色球号码组成。

红色球号码从1-30中选6个,并从01-12更12个号码中选取2个号码为后区号码组合为一注彩票进行的基本投注。

头奖可能性情况:前区35*34*33*32*31/5*4*3*2*1=324632,后区:12*11/2=66,由此可计算出超级大乐透的中奖概率为1/324632*66=1/21425712。

也就是说,2000万中才有一注中奖。

除此之外,像大家比较喜欢的3D/排列三头奖和体彩概率就较高,为1/1000和1/26334。

除了在彩票当中有概率论的运用,在股票中的运用也很多。

股评对于股民的股票投资具有一定的指导作用,但往往真假难分,有时会因为一些因素影响,有失客观性。

看股评要有所依据,如果某个股评准确率达到80%,即为完全可信,也可跟着操作;为60%,即为可以参与;为50%,可以看一下;为30%,就没有看的必要了。

那么,以10只股票设计一个数学模型:结果如下如果,6只成功,利润率分别为:10%,20%,30%,50%,5%,6%;4只失败,全部以10%为止损:一10%,一10%,—10%,一10%;综上所述,如果全部以满仓操作,,那么累计的利润率=(1+10%)*(l+20%)*(l+30%)*(l+50%)*(l+5%)*(l+6%)*(l一l%)*(l一l%)*(l一l%)*(l一10%)一l=87%,累计利润率=87%,结果相当可观!因此,将概率论的相关理论应用于此,对于股民投资股票意义显得十分重大。

概率论与数理统计在生活中的应用(1)

概率论与数理统计在生活中的应用(1)

概率论与数理统计在生活中的应用(1)
概率论与数理统计在生活中的应用
概率论和数理统计是数学中的重要分支。

随着科技、生产力、资源等
各方面的发展,概率论和数理统计已经渗透到了我们的生活中。

1. 保险业
概率论和数理统计在保险业中有着重要的应用。

在保险业中,保险公
司主要通过概率论和数理统计来评估和管理风险。

通过大数据分析和
概率论的统计分析,保险公司可以确定产品定价、理赔、赔偿比例等
重要策略,从而保证自身的利益和风险防范。

2. 股票交易
股票市场是一个充满风险和不确定性的领域。

而概率论在股票交易中
扮演着重要的角色。

投资者通常通过概率分析来评估个股的发展趋势、风险和投资收益率,从而制定出相应的股票投资策略。

3. 金融保障
概率论和数理统计在金融领域的应用十分广泛。

在金融保障领域中,
银行、证券公司和投资机构等机构经常使用概率和统计分析方法,来
评价和管理理财产品和组合,以寻求更高的收益率和更少的风险。

4. 生活中的风险管理
在生活中,我们都会面对各种各样的风险。

概率论的应用可以帮助我
们理性的预估和管理这些风险。

例如,在购房时,我们可以通过概率分析来确定房价的涨跌趋势,从而制定出最合适的购房策略;在购买保险时,我们可以通过概率分析来确定个人的风险水平,选择最适合自己的保险产品。

总之,概率论与数理统计的应用与我们生活息息相关,这一领域的发展将不断为我们的生活带来便利和保障,促使我们从更客观和理性的角度看待和管理各种风险。

概率论与数理统计在日常生活中的应用毕业论文-V1

概率论与数理统计在日常生活中的应用毕业论文-V1

概率论与数理统计在日常生活中的应用毕业论文-V1概率论与数理统计在日常生活中的应用随着科技的不断发展和社会的变化,概率论与数理统计已经渗透到了我们日常生活的方方面面。

本文将从几个方面介绍概率论与数理统计在日常生活中的应用。

一、医学领域概率论和数理统计在医学领域中的应用是最广泛和重要的。

在医学领域,通过概率模型和统计分析,医生们可以预测一种疾病的流行情况以及预防措施的效果。

例如,对于一种疫苗的疗效验证,医生们需要进行临床试验,并将数据进行统计分析,以确定该疫苗的有效性和安全性。

概率论和数理统计也被广泛运用于研究疾病的产生机理,从而找到治疗和预防疾病的最佳方案。

二、金融领域在金融领域中,概率和统计方法是风险管理和金融产品设计的基础。

比如,在股票、期货、期权等投资领域,金融专家们需要使用概率和统计方法对市场波动进行预测和分析,从而制定最优策略。

另外,在信贷评估和风险控制中,概率和统计方法也被广泛运用。

银行和金融机构可以通过数据分析和建立风险模型,确保风险控制得当,做出更加明智的决策。

三、科学研究概率论和数理统计在科学研究领域也有广泛应用。

例如,在天文学中,概率和统计方法用来分析和解释天文数据,研究宇宙的起源和演化。

在社会科学领域,调查和问卷数据的统计分析可以为社会发展和公共政策提供重要的参考依据。

四、生活中的应用除了上述领域外,概率论和数理统计也在我们的日常生活中发挥着重要作用。

例如,我们可能需要基于天气预报,合理安排出行时间和交通方式。

我们也需要根据生活经验,分析和预测某些事件发生的概率。

此外,如果我们有一个数据集,我们也可以通过概率模型和统计分析来找到数据集中的规律或趋势。

在购物或旅游时,我们可能还需要使用一些概率和统计方法来制定预算和计划。

综上所述,概率论和数理统计已经成为现代社会的重要学科,广泛应用于医学、金融、科学研究和日常生活的方方面面,为人类社会的稳定和发展提供了重要支持。

概率论与数理统计在生活及教学中的应用

概率论与数理统计在生活及教学中的应用

概率论与数理统计在生活及教学中的应用
1、概率论在生活中的应用:
(1)投资领域:投资者可以利用概率论来分析投资风险,以便做出更明智的投资决策。

(2)保险领域:保险公司可以利用概率论来估计潜在的风险,以便设计出更合理的保险计划。

(3)游戏领域:游戏玩家可以利用概率论来预测游戏的结果,以便做出更明智的投注决策。

2、数理统计在生活中的应用:
(1)气象领域:气象学家可以利用数理统计的方法来研究天气变化的规律,以便准确预报天气。

(2)经济领域:经济学家可以利用数理统计的方法来研究经济变化的规律,以便准确预测经济发展趋势。

(3)社会领域:社会学家可以利用数理统计的方法来研究社会变化的规律,以便准确预测未来社会发展趋势。

3、概率论与数理统计在教学中的应用:
(1)概率论:在教学中,概率论可以用来帮助学生更好地理解抽样统计的基本原理,以及如何运用概率论来进行决策分析。

(2)数理统计:在教学中,数理统计可以用来帮助学生更好地理解统计学的基本原理,以及如何运用数理统计的方法来分析和解决实际问题。

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用
概率论和数理统计在生活中应用广泛,以下是一些例子:
1. 投资,包括股票和证券。

投资者需要评估不同股票和证券的风险和收益率。

概率论和数理统计可以帮助投资者预测股票和证券的未来表现。

2. 保险。

保险公司需要评估风险和确定保险费。

概率论和数理统计可以帮助保险公司确定保险费的最佳水平,同时仍然可以满足其保险计划的财务责任。

3. 运输。

航空公司,铁路公司和公路运输公司都需要评估其运输系统的效率和容量。

概率论和数理统计可以帮助他们预测交通瓶颈和需求峰值。

4. 质量控制。

制造商需要确定其产品的质量,以确保产品符合消费者期望和法律标准。

概率论和数理统计可以帮助制造商评估其生产过程的标准差,并识别可能导致批次缺陷的因素。

5. 医疗保健。

医生和研究人员需要评估药物和治疗方案的疗效和安全性。

概率论和数理统计可以帮助他们确定最佳治疗方法,并评估新药或治疗方法的效果和副作用。

总之,概率论和数理统计在各行各业中都有广泛的应用。

它们提供了工具和技术,可以帮助人们做出基于数据的决策,并更好地了解和管理风险。

浅谈概率论与数理统计在生活中的应用

浅谈概率论与数理统计在生活中的应用

浅谈概率论与数理统计在生活中的应用浅谈概率论与数理统计在生活中的应用随着社会的进步和科学技术的发展,概率论与数理统计在人们的日常生活中扮演着越来越重要的角色。

它们不仅是科学研究的重要工具,也是人们进行决策和判断的重要依据。

在本文中,我将以生活中的一些实际例子为基础,浅谈概率论与数理统计在我们日常生活中的应用。

首先,概率论与数理统计在我们的生活中广泛应用于风险评估和决策分析。

在我们面临各种决策时,例如购买保险、投资、制定健康计划等,通过运用概率论与数理统计的知识,我们可以对风险进行评估和分析,从而做出更明智的决策。

比如,在购买保险时,我们可以利用统计数据来计算出某一险种的风险事件发生的概率,从而选择适合自己的保险产品,减少潜在的经济损失。

此外,对于投资决策,我们可以通过统计分析历史数据,计算收益率、风险等指标,并进行风险和收益的权衡,以选择最优的投资组合。

其次,概率论与数理统计在医学领域也有着广泛的应用。

在医疗诊断和治疗方案制定中,概率论与数理统计的方法可以帮助医生进行疾病的风险评估和治疗效果分析。

以癌症筛查为例,医生可以通过统计分析大量的临床数据,计算出癌症的概率,并将高风险人群进行进一步检查。

同时,在制定治疗方案时,医生可以结合临床试验数据和概率论与数理统计的方法,评估各种治疗方案的效果和风险,并选择最合适的方案。

此外,概率论与数理统计还可以帮助医生进行药物疗效评估和不良反应的监测,从而提高治疗效果和减少不良事件的发生。

另外,概率论与数理统计在金融领域也有着重要的应用。

金融市场的波动和风险是不可避免的,而概率论与数理统计的方法可以帮助我们理解金融市场的规律,并进行风险管理。

例如,在股票和期货市场中,我们可以运用概率论与数理统计的方法来分析股价和期货价格的波动规律,计算风险价值和预期收益,从而制定合理的投资策略。

此外,概率论与数理统计还可以应用于金融风险评估、信用评级、衍生品定价等方面,对金融机构和投资者进行风险控制和决策支持。

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用

概率论与数理统计在经济生活中的应用概率论与数理统计是数学中的两个重要分支,它们对于经济生活具有重要意义。

概率论是研究随机现象规律性的学科,而数理统计是利用概率论研究数据的收集、整理、分析和解释的方法。

在经济生活中,概率论与数理统计可以帮助人们更好地理解经济现象、预测未来趋势、制定决策,从而对经济活动进行更加科学合理的管理。

本文将从风险管理、市场预测、经济政策制定等方面,探讨概率论与数理统计在经济生活中的应用。

一、风险管理风险是经济活动中不可避免的问题,如何科学有效地管理风险,对于企业和个人都是至关重要的。

概率论与数理统计可以帮助人们分析和评估风险,制定相应的风险管理策略。

在金融领域,可以利用概率论与数理统计的方法对金融市场的波动进行分析,评估不同投资组合的风险及收益,从而帮助投资者制定投资策略,降低投资风险。

对于保险公司来说,概率论与数理统计也是必不可少的工具,可以帮助其合理制定保费,评估赔偿风险,从而保障公司的长期稳健发展。

二、市场预测市场的变化是经济活动中的常态,如何准确预测市场变化对于企业和政府来说都具有重要意义。

概率论与数理统计可以帮助人们利用历史数据和现有信息,进行风险分析和市场预测。

概率论与数理统计可以帮助人们评估市场变动的概率,从而制定相应的市场营销策略。

概率论和数理统计还可以帮助人们进行市场需求的预测,根据不同因素对市场需求进行分析,帮助企业制定生产计划和库存管理策略。

概率论与数理统计还可以帮助政府预测宏观经济变化,制定相应的宏观调控政策,促进经济平稳发展。

三、经济政策制定概率论与数理统计在经济政策制定中也发挥着重要作用。

政府在制定宏观经济政策的过程中,需要对各种经济指标和变量进行分析和预测,以制定相应的政策措施,促进经济的稳定和发展。

概率论与数理统计可以通过分析历史数据和现有信息,对经济指标进行预测和评估,为政府制定政策提供科学依据。

概率论与数理统计还可以帮助政府进行政策效果的评估,及时调整政策,保障政策的有效实施。

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计在日常生活中的应用毕业论文————————————————————————————————作者:————————————————————————————————日期:中国地质大学2014届本科生毕业论文II概率论与数理统计在日常经济生活中的应用摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。

概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。

本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。

关键词:概率论数理统计经济生活随机变量贝叶斯公式中国地质大学2014届本科生毕业论文III Probability Theory and Mathematical StatisticsIn our daily economic lifeAbstract: As an instrumental discipline, Mathematics plays a very important role in our daily life and scientific research. Probability theory and mathematical statistics as an important part of mathematics in life has become increasingly widespread in recent years, probability theory and mathematical statistics knowledge is increasingly penetrate into economics, psychology, genetics and other disciplines, in addition to our everyday lives, are related to the probability of gambling, lottery, weather, sports and other school has a very close relationship. This article focuses on the theory of probability and mathematical statistics application in our lives, through the introduction of the first half of some basic knowledge of probability theory and mathematical statistics, numerical characteristics, including the fundamental nature of probability, random variables and their distributions, Bayesian formula , the central limit theorem, combined with the second half of the cases discussed the theory of probability and mathematical statistics in guiding role in our lives, we can say, probability theory and mathematical statistics is now one of the most active, the most widely used discipline .Key words: Probability Mathematical Statistics Economic Life Random Variables Bayesian Law目录摘要 (I)Abstract (II)第一章基本知识 (2)1.1 概率的基本性质 (2)1.2 随机变量的数字特征 (2)1.3 点估计 (4)1.4 贝叶斯公式 (5)1.5 中心极限定理 (6)1.6 随机变量及其分布 (7)第二章在日常生活中的应用 (9)2.1 在中奖问题中的应用 (9)2.2 在经济管理决策中的应用 (9)2.3 在经济损失估计中的应用 (10)2.4 在求解经济最大利润中的应用 (11)2.5 在保险问题中的应用 (11)2.6 在疾病诊断中应用 (12)第三章结束语 (13)致谢 (14)参考文献 (15)第一章 基本知识§1.1 概率的重要性质1.1.1定义设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。

【概率论】概率论与数理统计在生活中的应用

【概率论】概率论与数理统计在生活中的应用

【概率论】概率论与数理统计在生活中的应用
概率论和数理统计是数学科学的重要分支,在生活中有着广泛的应用,同时它们也被广泛应用于经济管理、医学、工程、军事、气象学等多个领域中。

首先,概率论和数理统计在企业和经济管理中的应用越来越广泛,它们可以帮助企业管理者更好地收集和处理各种数据,有助于他们进行更为客观地决策。

例如,通过使用概率模型可以对多种假设可能性进行预测,为决策者提供了相应的投资或战略策略的参考。

此外,数理统计也可以为企业制定产品促销计划,根据消费者购买力水平、市场定价等信息,确定营销活动的策略。

其次,概率论和数理统计也用于医学中,例如,可以用概率法则将病患呈现出的临床症状与疾病进行关联判断,有助于医生更精准地诊断病情并采取治疗措施,大幅提升病患抢救成功率。

此外,数理统计还可以应用于药物开发,通过大量的实验数据分析可以确定药物的有效性和安全性。

再次,概率论和数理统计在工程技术中同样可应用。

例如,在航天领域,可以利用概率论评估不同的设计方案,预测未来的飞行可能性,从而减少飞行风险。

另一方面,由于某些参数的不确定性,概率论可以提供统计技术,用于在可能的错误中确定潜在的市场理想结果。

最后,数理统计可以对诸如水资源分配、海洋活动研究等遥感技术应用的结果进行评估,帮助精确规划项目的实施方式。

总之,概率论和数理统计在现代生活中有着广泛的应用,它们可以帮助企业管理者、医生、工程师及研究者等得出更为合理、有效的决策。

概率论与数理统计的发展及在生活中的应用

概率论与数理统计的发展及在生活中的应用

概率论与数理统计的发展及在生活中的应用一.概率论与数理统计的起源与发展概率论的研究始于意大利文艺复兴时期,当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法,十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。

1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。

1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。

德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。

法国数学家拉普拉斯也独立的导出了该方程,对概率的意义如何抽象化做出了杰出的贡献,提出了概率的古典定义。

到19世纪末,概率论的主要研究内容已基本形成。

1933年苏联数学家柯尔莫科洛夫总结前人之大成,提出了概率论公理体系,即概率的公理化定义。

概率论里所说的极限定理,主要研究独立随机变量序列的各种收敛性问题,其中包括两种类型定理:一类是大数定律,一类是中心极限定理。

当代概率论的研究方向大致可分为极限理论,马尔可夫过程,平稳过程,随机微分方程等。

数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题做出推断或预测,为采取某种决策和行动提供依据或建议。

数理统计起源于人口统计、社会调查等各种描述性统计活动,其发展大致课分为古典时期、近代时期和现代时期三个阶段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计在生活中的应用单位:兴隆场初级中学姓名:姜宏琼摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。

生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。

数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。

关键字:概率、保险、彩票、统计、数据、应用由赌徒的问题引起,概率逐渐演变成一门严谨的科学。

1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。

在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。

这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。

他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。

然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。

在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。

赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。

帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。

他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。

前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得45个金币,乙15个。

虽然梅勒的计算方式不一样,但他的分配方法是对的。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯把这一问题置于更复杂的情形下,试图总结出更一般的规律,结果写成了《论掷骰子游戏中的计算》一书,这就是最早的概率论著作。

正是他们把这一类问题提高到了理论的高度,并总结出了其中的一般规律。

同时,他们的研究还吸引了许多学者,由此把赌博的数理讨论推向了一个新的台阶,逐渐建立起一些重要概念及运算法则,从而使这类研究从对机会性游戏的分析发展上升为一个新的数学分支。

所谓概率,通俗点说就是有多大的可能性。

生活中这类实例是很多的。

让我们先举一个简单的例子:投一枚正反两面的硬币,结果正面向上的概率是多少?不用计算就能知道,这种可能性为一半,也就是说其概率为1/2。

当然,即便生活中的概率问题也不都是这么简单,对于较复杂点的就需要我们动动脑筋了。

下面就让我们一起来看一看现实生活中有趣的几类问题吧!一.彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。

买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。

如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。

很简单,只要花2元的人民币,就可以拥有这么一次尝试的机会,试一下自己的运气。

但一张彩票的中奖机会有多少呢?让我们以大英帝国彩票为例来计算一下。

大英帝国彩票的规则是49选6,即在1至49的49个号码中选6个号码。

买一张彩票,你只需要选六个号、花1英镑而已。

在每一轮,有一个专门的摇奖机随机摇出6个标有数字的小球,如果6个小球的数字都被你选中了,你就获得了头等奖。

可是,当我们计算一下在49个数字中随意组合其中6个数字的方法有多少种时,我们会吓一大跳:从49个数中选6个数的组合有13983816种方法!这就是说,假如你只买了一张彩票,六个号码全对的机会是大约一千四百万分之一,这个数小得已经无法想象,大约相当于澳大利亚的任何一个普通人当上总统的机会。

如果每星期你买50张彩票,你赢得一次大奖的时间约为5000年;即使每星期买1000张彩票,也大致需要270年才一次六个号码全对的机会。

这几乎是单个人力不可为的,获奖仅是我们期盼的偶然而又偶然的事件。

那么为什么总有人能成为幸运儿呢?这是因为参与的人数是极其巨大的,人们总是抱着撞大运的心理去参加。

孰不知,彩民们就在这样的幻想中为彩票公司贡献了巨额的财富。

一般情况下,彩票发行者只拿出回收的全部彩金的45%作为奖金返还,这意味着无论奖金的比例如何分配,无论彩票的销售总量是多少,彩民平均付出的1元钱只能赢得0.45元的回报。

从这个平均值出发,这个游戏是绝对不划算的。

二.生日概率问题我们来看一个经典的生日概率问题。

【数学情境】每个人都有自己的生日(指一年365天中某一天),随机相遇的两人的生日要在365天中的同一天,即使有也是很凑巧,但如果相聚的人数增多,可能性会增大;某次随机相遇无论男女、老幼,若人数达到了50以上,形成一个团体(如集会、上课、旅游等)。

【提出问题】1.随意指定一个人,你猜某天正好是他的生日,猜对的可能性有多大?2,随意指定二个人,你猜他俩生日是同一天,猜对的可能性有多大?3.某一团体有一群人,我绝对可以肯定至少有2人生日相同,这群人人数至少要多少?4.如果某个随机而遇的团体有50人以上,我敢打贿,这个团体几乎可以肯定有生日相同的两个人,你相信吗?【问题解决】问题1. 解:一年有365天,他某天生日概率p=1365≈0.0027,故猜对的可能性微乎其微。

问题2. 解:两个人生日,总共可能性有365×365种搭配,其中有365种生日相同,故随意指定二个人,生日相同的概率p= 365365365⨯ = 1365 ≈0.0027,故猜对的可能性仍旧微乎其微。

问题3. 解:某一团体中,绝对肯定至少有2人生日相同,即为必然事件,p =1。

由抽屉原理可知,这群人至少要有366人。

问题4. 解:要解决这个概率问题,我们首先来计算一下,50个人生日的搭配一共有多少种可能情况。

第一个人生日,可以是一年中任何一天,一共有365种可能情况,而第二、第三及其它所有人生日也都有365种,这样50个人共有50365种可能搭配。

如果50人的生日无一相同,那么生日搭配可能情况就少得多了。

第一个人有365种可能,第二人因不能与第一个生日相同,只有364种可能,依次类推,如50人生日无一相同,其生日搭配情况只有365×364×363×……×317×316种只占50365种情况中的 3%,即p =50365364317316365⨯⨯⨯⨯ =3%。

即反面推至生日2人相同概率有97%。

同理可推算如果某群人有40人,至少两人生日相同概率有89%,如果有45人至少两人生日相同的概率达94%。

故这样赌局,几乎可以稳操胜券。

统计学的思想可归纳为:对某事做出决策之前,必须先收集数据,然后利用统计学技术分析它,最后做出决策。

应用统计学技术,不能无视必要的数学知识,但作为本课程,即社会经济统计学的原理来说,严密的数学论证完全是没有必要的。

因此,在教育教学过程中,避开繁琐的数学推导,把重点放在统计方法在学校教育领域中的应用。

这才能充分发挥心理与教育统计学的社会价值。

在人类社会的发展、人们的社会生活中,有许多问题需要统计信息。

例如,社会的人口总量;性别比;父辈与子辈的职业、文化教育程度是否相关(代际关系);人口质量状况;社会环境(气候)状况;城市污染指数;人民生活的恩格尔系数等,同样需要大量的统计数据进行分析、描述和评价。

当公共会计师事务所为其客户进行审计时,他们要利用统计抽样的方法,如,假定一家会计师事务所想要确定某客户资产负债表中所显示的应收帐款余额是否公允地反映了其真实地应收帐款余额。

通常应收帐款的笔数是如此之大以至于检查和判断每一帐户是否正确就会太浪费时间,而且也不经济。

在这种场合下,审计人员可根据一定的抽样方式抽取一部分帐户,对其正确性进行审查后,审计人员就可以得出关于该客户资产负债表中所列示的应收帐款余额是否属实的结论。

金融顾问们利用各种统计信息来引导投资。

拿股票投资来说,顾问们检查包括市盈率和红利在内的一系列金融数据。

通过将某只个股的数据与股票市场平均数进行比较,金融顾问们就能够判断该只股票的价值是被高估还是被套低估了。

例如,道·琼斯30家工业股票平均数的市盈率是20.1。

同一天,菲利浦·莫里斯公司股票的市盈率是14。

因此,关于市盈率的统计信息就表明:与道·琼斯30家股票平均数相比较,菲利浦·莫里斯股价偏低。

金融顾问们可以得出这样的结论:菲利浦·莫里斯的市价被低估了。

这方面和其他一些有关菲利浦·莫里斯公司信息还将帮助顾问们做出买入、卖出还是继续持有该股的建议。

相关文档
最新文档