java实现图论中的经典算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.最短路的笛杰斯特拉算法
/**
*
* @author Administrator
*/
//这个算法用来解决无向图中任意两点的最短路径,同时输出路径(起点到所有点的) public class MinPath {
public static String dijkstra(int[][] W1, int start, int end) {
System.out.println("起点:" + start + "终点:" + end);
boolean[] isLabel = new boolean[W1[0].length];// 是否标号
int[] indexs = new int[W1[0].length];// 所有标号的点的下标集合,以标号的先后顺序进行存储,实际上是一个以数组表示的栈
int i_count = -1;// 栈的顶点
int[] distance = W1[start].clone();// v0到各点的最短距离的初始值
int index = start;// 从初始点开始
int presentShortest = 0;// 当前临时最短距离
indexs[++i_count] = index;// 把已经标号的下标存入下标集中
isLabel[index] = true;
while (i_count < W1[0].length) {
// 第一步:得到与原点最近的某个点
int min = Integer.MAX_V ALUE;
for (int i = 0; i < distance.length; i++) {
if (!isLabel[i] && distance[i] != -1 && i != index) {
// 如果到这个点有边,并且没有被标号
if (distance[i] < min) {
min = distance[i];
index = i;// 把下标改为当前下标
}
}
}
i_count = i_count + 1;
if (i_count == W1[0].length) {
break;
}
isLabel[index] = true;// 对点进行标号
indexs[i_count] = index;// 把已经标号的下标存入下标集中
if (W1[indexs[i_count - 1]][index] == -1
|| presentShortest + W1[indexs[i_count - 1]][index] > distance[index]) { // 如果两个点没有直接相连,或者两个点的路径大于最短路径
presentShortest = distance[index];
} else {
presentShortest += W1[indexs[i_count - 1]][index];
}
// 第二步:加入vi后,重新计算distance中的距离
for (int i = 0; i < distance.length; i++) {
// 如果vi到那个点有边,则v0到后面点的距离加
if (distance[i] == -1 && W1[index][i] != -1) {// 如果以前不可达,则现在可达了
distance[i] = presentShortest + W1[index][i];
} else if (W1[index][i] != -1 && presentShortest + W1[index][i] < distance[i]) {
// 如果以前可达,但现在的路径比以前更短,则更换成更短的路径
distance[i] = presentShortest + W1[index][i];
}
}
}
getRoute(W1, indexs, end);
return "最短距离是:" + (distance[end] - distance[start]);
}
public static void main(String[] args) {
// 建立一个权值矩阵
int[][] W1 = { // 测试数据1
{0, 1, 4, -1, -1, -1},
{1, 0, 2, 7, 5, -1},
{4, 2, 0, -1, 1, -1},
{-1, 7, -1, 0, 3, 2},
{-1, 5, 1, 3, 0, 6},
{-1, -1, -1, 2, 6, 0}};
// System.out.println("f" + W1[0][4]);
int[][] W = { // 测试数据2
{0, 1, 3, 4},
{1, 0, 2, -1},
{3, 2, 0, 5},
{4, -1, 5, 0}};
System.out.println(dijkstra(W1, 5, 0)); // (int[][] W1, int start, int end) }
// indexs:1,0,2,4,3,5 放顶点的顺序
// end:最后要的顶点名称:5
// routeLength:长度:8
/**
* seven 输出路径(起点到所有点的)
*/
public static String getRoute(int[][] WW, int[] indexs, int end) {
String[] routeArray = new String[indexs.length];