最小二乘法的本原理和多项式拟合
用最小二乘法求一次和二次拟合多项式
用最小二乘法求一次和二次拟合多项式
最小二乘法是一种常用的数学分析方法,其主要功能是对一些数据点进行拟合,找出最符合这些数据点的函数或曲线。
在实际应用中,最小二乘法经常被用来进行一次和二次拟合多项式。
一次拟合多项式是指通过一系列数据点,找出一条直线,使得这条直线与这些点的距离最小。
而二次拟合多项式则是指通过这些数据点,找出一个二次函数,使得这个函数与这些点的距离最小。
在进行最小二乘法拟合时,有一些重要的概念需要了解。
首先是残差,即每个数据点在拟合函数上的垂直距离。
其次是平方误差,即所有残差的平方和。
最小二乘法的目标就是要使平方误差最小。
对于一次拟合多项式,我们可以将其表示为y = a+bx的形式,其中a和b为待求参数。
我们需要通过最小二乘法来求出这两个参数,使得平方误差最小。
具体方法是通过求导来得到a和b的值,然后代入公式中计算平方误差,最后得到最小值。
对于二次拟合多项式,我们可以将其表示为y = a+bx+cx2的形式,其中a、b和c为待求参数。
同样,我们需要通过最小二乘法来求出这三个参数,使得平方误差最小。
具体方法是通过求导来得到a、b和c的值,然后代入公式中计算平方误差,最后得到最小值。
最小二乘法是一种常用的数据拟合方法,其优点在于可以对复杂的
函数进行拟合,并且可以通过求解方程组的形式来求出最优解。
在实际应用中,最小二乘法经常被用来进行一次和二次拟合多项式,以便更好地预测和分析数据的变化趋势。
最小二乘法在数学建模中的应用
最小二乘法在数学建模中的应用最小二乘法是一种常见的统计学方法,用于寻找一条最佳拟合曲线或平面,使得这个拟合曲线或平面与实际数据的误差最小。
最小二乘法在科学研究和工程学中都有广泛的应用。
在数学建模中,最小二乘法也是非常重要的一种方法。
本文将从数学建模的角度讨论最小二乘法的应用,包括基本原理、应用案例和如何使用计算机实现最小二乘法。
一、最小二乘法的基本原理在数学建模中,我们经常需要通过给定的数据来求解某些模型的参数。
例如,我们可能需要从一组数据中找到一条直线或曲线,使得这个模型与实际数据的误差最小。
最小二乘法就是一种常见的方法,它通过拟合一个具有数学解析式的模型来达到这个目标。
最小二乘法的基本思想就是,通过最小化误差平方和来求解模型中的参数。
误差平方和是指实际数据的点与模型直线或曲线之间的距离的平方和。
最小二乘法的做法是,对于每一个数据点,计算它与模型的距离,并将这些距离的平方相加。
然后,通过求取这个误差平方和的极小值,可以求得最佳拟合曲线或平面的参数。
二、最小二乘法的应用案例最小二乘法在数学建模中的应用非常广泛,下面列举一些应用案例。
1.线性回归线性回归是最小二乘法的一个经典应用。
在线性回归中,我们需要拟合一条直线,使得这条直线与实际数据的误差最小。
通常我们使用简单的线性方程y=ax+b来描述这条直线,而最小二乘法就是用来求解a和b的。
例如,我们有一组数据{(1,2),(2,5),(3,6),(4,8)},我们想找到一条直线y=ax+b,使得误差平方和最小。
我们可以将这个问题转化为求解a和b使得误差平方和最小。
具体做法是,计算每个数据点与直线的距离,然后将这些距离的平方相加。
最后,通过求取误差平方和的偏导数使其为0,可以求解出a和b的值。
2.多项式拟合最小二乘法还可以用于多项式拟合。
在多项式拟合中,我们需要拟合一个多项式模型,使得这个模型与实际数据的误差最小。
例如,我们有一组数据{(1,2),(2,5),(3,6),(4,8)},我们想找到一个二次函数y=ax^2+bx+c,使得误差平方和最小。
多项式插值和最小二乘法拟合在原理上的差别
多项式插值和最小二乘法拟合在原理上的
差别
多项式插值和最小二乘法拟合是两种常见的数据拟合方法,它们在原理上有着一些差别。
多项式插值是一种通过已知数据点来构造一个多项式函数的方法,使得该函数在这些数据点上的函数值与给定的数据点相同。
多项式插值的基本思想是通过已知数据点构造一个多项式函数,使得该函数在这些数据点上的函数值与给定的数据点相同。
多项式插值的优点是可以精确地拟合数据,但是当数据点数量较多时,多项式插值的计算量会变得非常大,同时过度拟合的风险也会增加。
最小二乘法拟合是一种通过最小化误差平方和来拟合数据的方法。
最小二乘法拟合的基本思想是通过已知数据点构造一个函数,使得该函数在这些数据点上的误差平方和最小。
最小二乘法拟合的优点是可以在一定程度上避免过度拟合的问题,同时计算量也相对较小。
但是最小二乘法拟合的缺点是无法精确地拟合数据,因为它只是通过最小化误差平方和来寻找一个最优解,而不是通过精确地拟合每个数据点来得到一个解。
因此,多项式插值和最小二乘法拟合在原理上的差别主要在于它们的目标不同。
多项式插值的目标是精确地拟合每个数据点,而最小二乘法拟合的目标是通过最小化误差平方和来得到一个最优解。
在实际应用中,我们需要根据具体的数据特点和需求来选择合适的拟
合方法。
如果数据点数量较少且需要精确地拟合每个数据点,那么多项式插值可能是更好的选择;如果数据点数量较多或需要避免过度拟合的问题,那么最小二乘法拟合可能更适合。
最小二乘法的原理及在建模中的应用分析
最小二乘法的原理及在建模中的应用分析最小二乘法(least squares method)是一种数学优化方法,用于解决线性回归和非线性回归问题,通过求取使得误差平方和最小化的参数估计值。
它的原理是寻找一条最佳拟合曲线或平面,使得观测值与拟合值之间的误差最小。
在线性回归问题中,最小二乘法可以用来估计回归模型的参数。
假设我们有n个样本点{(x1, y1), (x2, y2), ..., (xn, yn)},其中yi是对应的观测值,我们想要找到一个线性模型y = ax + b,使得拟合值与观测值之间的误差最小。
这个问题可以通过最小化误差平方和来求解。
误差平方和定义为E(a, b) = Σ(yi - (axi + b))^2,我们需要找到使得E(a, b)最小的a和b。
∂E/∂a = -2Σ(xi(yi - (axi + b))) = 0∂E/∂b = -2Σ(yi - (axi + b)) = 0将上述方程进行化简,可以得到如下的正规方程组:Σ(xi^2)a + Σ(xi)b = Σ(xi yi)Σ(xi)a + nb = Σ(yi)解这个方程组,可以得到最小二乘估计的参数值。
1.线性回归分析:最小二乘法可以用于估计线性回归模型的参数。
通过最小二乘估计,可以得到最佳拟合直线,并用这条直线来预测因变量。
2.时间序列分析:最小二乘法可以用于拟合时间序列模型。
通过寻找最佳拟合函数,可以识别出序列中的趋势和周期性变化。
3.统计数据处理:最小二乘法可以用于数据平滑和滤波处理。
通过拟合一个平滑曲线,可以去除数据中的噪声和不规则波动,从而提取出数据中的趋势信息。
4.多项式拟合:最小二乘法可以用于多项式拟合。
通过最小二乘估计,可以拟合出多项式函数,将其用于数据拟合和函数逼近。
5.曲线拟合:最小二乘法可以用于非线性曲线拟合。
通过选择合适的函数形式,并通过最小二乘估计求解参数,可以拟合出复杂的非线性曲线。
总之,最小二乘法是一种常用的参数估计方法,可以用于线性回归、非线性拟合、时间序列分析等多种建模问题。
多项式最小二乘拟合
多项式最小二乘拟合是一种常见的数学方法,可以用于解决数据分析和预测问题。
本文将详细介绍的原理、应用以及注意事项。
一、原理是一种基于最小二乘法的数学方法。
最小二乘法是一种寻找函数与数据拟合的方法,它试图寻找一个函数来最小化数据点和该函数之间的距离之和。
最小二乘法通常用于数据拟合、回归分析、统计模型构建和信号处理等领域。
是在多项式模型的基础上使用最小二乘法拟合数据。
多项式模型一般形式为:y = a0 + a1*x + a2*x^2 + …… + an*x^n其中y为因变量,x为自变量,a0、a1、a2……an是待定系数,n为多项式的阶数。
的目标是寻找一组系数a0、a1、a2……an,使得对于给定的数据点(xi, yi),拟合函数f(xi)与实际值yi的偏差最小。
二、应用可以应用于很多领域,例如:1. 数据分析:可以用于分析数据,找出数据中的规律和趋势。
2. 预测分析:可以用于预测未来的趋势和走势。
3. 信号处理:可以用于处理信号,找出信号中的噪声和信号。
4. 工程应用:可以应用于工程设计、系统优化等领域。
三、注意事项1. 数据要求:需要一组数据来进行拟合计算,因此数据质量很重要。
数据应该尽量准确、完整、真实。
2. 模型选择:中的多项式阶数对于模型的精度和复杂度有很大的影响。
因此,在选择模型时应该考虑到模型与数据的适应性和效率。
3. 拟合误差:中的误差也是需要考虑的问题。
拟合误差越小,模型的预测精度就越高。
当拟合误差过大时,需要重新检验数据和模型选择。
四、总结是一种基于最小二乘法的数学方法,可以用于解决数据分析和预测问题。
在实际应用中,应该注重数据的质量、模型的选择和拟合误差的控制,以确保拟合结果的准确性和可靠性。
最小二乘法多项式拟合原理
最小二乘法多项式拟合原理最小二乘法多项式拟合原理最小二乘法是一种数学方法,用于寻找一个函数,使得该函数与已知数据点的残差平方和最小化。
尤其在数据分析和统计学中广泛应用,其中特别重要的应用是曲线拟合。
本文将介绍最小二乘法在多项式拟合中的原理。
多项式拟合多项式拟合是一种常见的曲线拟合方法,它将数据点逼近为一个固定次数的多项式。
假设有N个数据点(x1,y1),(x2,y2),…,(xN,yN),希望找到一个关于x的M次多项式函数y=a0+a1x+a2x^2+...+aMx^M,最小化拟合曲线与数据点之间的残差平方和,即S(a0,a1,…,aM)=∑i=1N(yi−P(x))2其中P(x)=a0+a1x+a2x^2+...+aMx^M。
最小二乘法最小二乘法是一种优化方法,通过最小化残差平方和,寻找最优的拟合函数参数。
在多项式拟合中,残差平方和的最小值可以通过相应的求导数为零来计算拟合函数参数。
设残差平方和S的导数为零得到的方程组为∑xi0,…,xiMaM=∑yi⋅xi0,…,xiM,其中M+1个未知量为a0,a1,…,aM,共有M+1个方程,可以使用线性代数解决。
拟合错误与选择问题使用较高次数的多项式进行拟合,可能会导致过度拟合,使得拟合函数更接近每个数据点,因此更难以预测它们之间的关系。
另一方面,使用过低次数的多项式无法反映出数据点之间的较细节的关系。
因此,在实践中,我们需要权衡多项式次数和误差,以找到一个最合适的拟合结果。
总结最小二乘法是一种常用的曲线拟合方法,在多项式拟合中广泛应用。
通过最小化残差平方和,可以找到最优的拟合函数参数,权衡多项式次数和误差,可以得出最合适的拟合结果。
最小二乘法的应用及原理解析
最小二乘法的应用及原理解析最小二乘法,英文称为 Least Squares Method,是一种经典的数学优化技术,广泛应用于数据拟合、信号处理、机器学习、统计分析等领域。
本文将从应用角度出发,介绍最小二乘法的基本原理、优缺点以及实际应用中的具体操作流程。
一、最小二乘法的基本原理最小二乘法的基本思路是:已知一组样本数据(x1,y1),(x2,y2),...(xn,yn),要求找到一条曲线(如直线、多项式等),使得该曲线与样本数据的误差平方和最小。
其数学表示式为:$min {\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$其中,$\hat{y}_i$是曲线在$x_i$处的预测值,代表曲线对样本数据的拟合程度。
显然,当误差平方和最小时,该曲线与样本数据的拟合效果最好,也就是最小二乘法的优化目标。
最小二乘法的求解方法有多种,比较常用的有矩阵求导法、正规方程法、QR分解法等。
这里以正规方程法为例进行介绍。
正规方程法的思路是:将目标函数中的误差平方和展开,取它的一阶导数为零,求得最优解的系数矩阵。
具体过程如下:1.将样本数据表示为矩阵形式,即 $X=[1,x_1,x_2,...,x_n]^T$。
2.构建方程组 $X^TX\beta=X^TY$,其中$\beta=[\beta_0,\beta_1,...,\beta_p]$是待求系数矩阵。
3.求解方程组,得到最优解的系数矩阵 $\beta$。
最小二乘法的优点是:对于线性问题,最小二乘法是一种解析解,可以求得精确解。
同时,最小二乘法易于理解、简单易用,可以快速拟合实际数据,避免过度拟合和欠拟合。
二、最小二乘法的优缺点最小二乘法虽然有很好的拟合效果,但是也存在一些不足之处:1.对异常值敏感。
最小二乘法基于误差平方和的最小化,如果样本中存在离群值或噪声,会对最终结果产生较大影响,导致拟合结果不准确。
2.对线性假设敏感。
最小二乘法只适用于线性问题,如果样本数据的真实规律是非线性的,则拟合效果会大打折扣。
加权最小二乘法 拟合多项式 matlab
加权最小二乘法(Weighted Least Squares, WLS)是一种经典的拟合方法,用于处理数据中的噪声和异常值。
在拟合多项式的过程中,加权最小二乘法能够更好地适应不同的数据权重,从而得到更准确、更可靠的拟合结果。
结合Matlab强大的数学计算和可视化工具,我们可以更方便、更高效地实现加权最小二乘法拟合多项式。
一、加权最小二乘法的基本原理1. 加权最小二乘法的概念在拟合多项式过程中,常常会遇到数据噪声较大或者部分数据异常值较大的情况。
此时,普通的最小二乘法可能无法有效地拟合数据,因此需要引入加权最小二乘法。
加权最小二乘法通过为每个数据点赋予不同的权重,对异常值和噪声进行更有效的处理。
2. 加权最小二乘法的数学原理加权最小二乘法的数学原理主要是在最小化误差的基础上,引入权重矩阵来调整不同数据点的重要性。
通过优化残差的加权和,可以得到适应不同权重的拟合结果。
二、Matlab中的加权最小二乘法1. Matlab工具Matlab提供了丰富的数学计算和拟合工具,通过内置的polyfit函数和curve fitting工具箱,可以方便地实现加权最小二乘法拟合多项式。
Matlab还提供了丰富的可视化工具,可以直观展示加权最小二乘法的拟合效果。
2. 加权最小二乘法的实现在Matlab中,可以通过指定权重向量来调用polyfit函数,实现加权最小二乘法拟合多项式。
利用Matlab内置的拟合评估工具,可以对拟合效果进行全面评估和优化。
三、实例分析以实际数据为例,我们可以在Matlab环境下进行加权最小二乘法的拟合多项式实例分析。
通过构建数据模型、指定权重、调用polyfit函数并结合可视化工具,可以全面了解加权最小二乘法在拟合多项式中的应用效果。
四、个人观点和总结在实际工程和科学研究中,加权最小二乘法拟合多项式是一种非常有效和重要的数据处理方法。
结合Matlab强大的数学计算和可视化工具,可以更方便、更高效地实现加权最小二乘法拟合多项式。
最小二乘法的原理
最小二乘法的原理
最小二乘法是一种统计学中常用的参数估计方法,用于拟合数据并找到最适合数据的数学模型。
其原理是通过最小化实际观测值与预测值之间的误差平方和,来确定模型参数的取值。
具体而言,假设有一组数据点,其中每个数据点包括自变量(即输入值)和因变量(即输出值)的配对。
我们要找到一条最佳拟合曲线(或者直线),使得曲线上的预测值尽可能接近实际观测值。
而最小二乘法的目标就是使得残差的平方和最小化。
假设要拟合的模型为一个一次多项式:y = β0 + β1*x,其中β0和β1是待估计的参数,x是自变量,y是因变量。
我们要找到
最优的β0和β1,使得拟合曲线的误差最小。
为了使用最小二乘法,我们首先需要构建一个误差函数。
对于每个数据点,误差函数定义为实际观测值与预测值之间的差,即e = y - (β0 + β1*x)。
我们的目标是最小化所有误差的平方和,即最小化Sum(e^2)。
通过对误差函数求导,并令导数为0,可以得到最小二乘法的
正规方程组。
解这个方程组可以得到最优的参数估计值,即
β0和β1的取值。
最终,通过最小二乘法,我们可以得到一条最佳拟合曲线(或直线),使得曲线的预测值与实际观测值的误差最小。
这条拟
合曲线可以用于预测新的因变量值,或者理解自变量与因变量之间的关系。
最小二乘拟合多项式
最小二乘拟合多项式最小二乘拟合多项式导言在数学和统计学中,最小二乘法是一种常见的数学优化和统计估计技术。
它被广泛应用于曲线拟合、参数估计和回归分析等领域。
其中,最小二乘拟合多项式是最常见和基础的应用之一。
本文将深入探讨最小二乘拟合多项式的原理、应用以及其在实际问题中的意义。
一、最小二乘法简介1.1 原理最小二乘法是一种通过最小化误差平方和来确定模型参数的方法。
在最小二乘法中,通过寻找最佳的参数估计使得模型预测值与观测值之间的差异最小化。
这样,我们可以得到一个最优的拟合曲线或函数,以便能够更好地描述观测到的数据。
1.2 应用最小二乘法在各个领域中都有广泛的应用。
在物理学中,最小二乘法常被用于拟合实验数据以确定物理定律的参数。
在工程学中,最小二乘法可用于估计信号的隐含参数,如音频信号处理中的频率分量估计。
在金融学、经济学和生物学等领域,最小二乘法也被用于回归分析、模式识别和图像处理等问题中。
二、最小二乘拟合多项式原理2.1 多项式拟合多项式拟合是最小二乘法的一种应用,用于构建一个多项式函数来拟合观测数据。
通过选择最适合的多项式次数,我们可以更好地逼近数据,并获得最优的拟合结果。
2.2 最小二乘拟合多项式最小二乘拟合多项式的目标是选择最佳的多项式来拟合给定的数据。
具体而言,它通过最小化残差平方和来确定最优的多项式系数,使得拟合曲线与观测数据之间的误差最小化。
这样,我们可以得到一个最优的拟合多项式,以便更好地描述数据的分布和趋势。
三、最小二乘拟合多项式的应用3.1 数据拟合最小二乘拟合多项式在数据拟合问题中有着广泛的应用。
通过拟合数据点,我们可以通过最小二乘法来估计数据的分布规律以及趋势。
这对于数据分析和预测具有重要意义,能够帮助我们更好地理解和利用数据。
3.2 预测与模型验证除了数据拟合,最小二乘拟合多项式还可以用于预测和模型验证。
通过构建拟合多项式,我们可以预测未来的数值或事件,并验证模型的准确性和可靠性。
递推最小二乘法
递推最小二乘法递推最小二乘法是一种避免精度损失的迭代计算方法,在最小二乘法的基础上加以改进,主要用于拟合复杂的数据,解决拟合时出现精度下降问题。
一、什么是递推最小二乘法递推最小二乘法是一种迭代计算方法,利用多项式曲线拟合曲线数据,对于某个曲线,只需要实施最小二乘法的迭代计算,而不需要考虑精度的损失。
递推最小二乘法的主要工作是根据给定的拟合曲线,把它拟合到数据集中,从而使数据集距离拟合曲线最小。
二、递推最小二乘法的原理递推最小二乘法的核心原理是,利用多项式拟合曲线,按照“最小二乘法”的原理,以当前拟合曲线为参照,不断进行前进和后退,以达到拟合曲线将数据集中的数据最佳拟合的目的。
这个最佳拟合目标就是实现拟合曲线与数据集之间的最小误差,其中,最小误差就是拟合曲线与实际数据集之间的最小差值。
递推最小二乘法的实现方式主要有两种,一种是基于递推的方式,另一种是基于函数的方式。
前者大致的实现方法是:先计算出多项式拟合曲线的每一个系数,然后再利用这些系数计算出多项式拟合曲线的最终拟合曲线,最后比较拟合曲线与实际数据集之间的实际差异,根据差异再调整系数,不断循环,直到最后拟合曲线与实际数据集之间的实际差异达到预期值为止。
函数的实现方式也很类似,只是在计算过程中,会使用函数的方式,将拟合曲线的系数表示为函数的形式,然后再比较拟合曲线与实际数据集之间的实际差异,根据差异再调整函数系数,最后实现拟合曲线与实际数据集之间的最小差异。
三、应用递推最小二乘法在实际应用中可以用来拟合复杂的数据曲线,以求得更好的拟合效果,解决拟合时出现精度下降问题。
它具有计算量小、运算简单、拟合结果较好的优点,因此在实际应用中得到了广泛的使用,比如在众多植物物种的遗传分析中,用递推最小二乘法来拟合植物的遗传规律,以获得更准确的估计结果;在探测地球大气层时,也可以用最小二乘法来拟合大气层中的湿度数据,以获取更加准确的湿度数据;在搜索引擎中,对查询结果也可以用最小二乘法拟合出来,以获得更准确的查询结果等等。
最小二乘法拟合原理
最小二乘拟合最小二乘拟合在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:这类问题通常有两种情况:这类问题通常有两种情况:一一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。
需要找出它们之间的经验公式。
后一种情后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
采用类似于前一种情况的处理方法。
一、最小二乘法原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x ,而把所有的误差只认为是y 的误差。
设x 和y 的函数关系由理论公式函数关系由理论公式y =f (x ;c 1,c 2,……c m ) (0-0-10-0-1)) 给出,其中c 1,c 2,……c m 是m 个要通过实验确定的参数。
对于每组观测数据(x i ,y i )i =1,2,……,,……,N N 。
都对应于xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m 组测量值代入式(组测量值代入式(0-0-10-0-10-0-1)),便得到方程组,便得到方程组y i =f (x ;c 1,c 2,……c m ) (0-0-20-0-2)) 式中i =1,2,……,,……,m.m.m.求求m 个方程的联立解即得m 个参数的数值。
显然N<m 时,参数不能确定。
不能确定。
在N>m 的情况下,式(的情况下,式(0-0-20-0-20-0-2)成为矛盾方程组,不能直接用解方程的方法求得)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。
(完整word版)最小二乘法(word文档良心出品)
最小二乘法基本原理:成对等精度测得一组数据,试找出一条最佳的拟合曲线,使得这条曲线上的各点值与测量值的平方和在所有的曲线中最小。
我们用最小二乘法拟合三次多项式。
最小二乘法又称曲线拟合,所谓的“拟合”就是不要求曲线完全通过所有的数据点,只要求所得的曲线反映数据的基本趋势。
曲线的拟合几何解释:求一条曲线,使所有的数据均在离曲线的上下不远处。
第一节 最小二乘法的基本原理和多项式拟合 一最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)常用的方法有以下三种:一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir02的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=m i ir 02=[]∑==-mi ii y x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。
函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。
Φ可有不同的选取方法.6—1二多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。
最小二乘法的基本原理和多项式拟合
最小二乘法的基本原理和多项式拟合1. 建立模型:首先需要确定要拟合的模型形式,可以选择线性模型或多项式模型等适应数据的形式。
多项式拟合是其中一种常见的形式。
多项式模型是一种多项式方程,表示为:y = a0 + a1x + a2x^2 + ... + anx^n,其中y是因变量,x是自变量,a0, a1, ..., an是要估计的参数。
2.确定误差:通过计算观测值与模型预测值之间的差异,来度量拟合程度。
误差可以通过残差来表示,即实际观测值与预测值之间的差异。
对于多项式拟合,可以使用观测点的纵坐标与拟合曲线的纵坐标之间的距离来描述误差。
3. 构建目标函数:通过最小化误差的平方和来确定最佳拟合曲线。
这可以通过构建一个目标函数来实现,该函数是误差平方和的函数。
目标函数是一个关于参数a0, a1, ..., an的函数,通过选择合适的参数值,可以使得目标函数达到最小值。
4.最小化目标函数:通过计算目标函数对参数的偏导数,设置偏导数为零,得到关于参数的一系列线性方程。
通过求解这个线性方程组,可以得到最佳参数的估计值。
5.进行拟合:将得到的最佳参数估计值带入模型中,得到最佳拟合曲线。
这条曲线将是观测值与预测值之间的最佳拟合线。
多项式拟合是一种常见的最小二乘法应用。
它的基本原理是通过拟合多项式函数来逼近数据点。
多项式拟合可以通过设置多项式的阶数来调整拟合的灵活性。
较低阶数的多项式可能无法很好地拟合数据,而较高阶数的多项式则可能会产生过拟合问题。
多项式拟合具体的步骤包括:1.选择多项式阶数:首先需要选择合适的多项式阶数。
低阶的多项式通常比较简单,但可能无法很好地拟合数据。
高阶的多项式可以更好地适应数据,但可能会存在过拟合问题。
选择合适的多项式阶数需要在简单性和拟合度之间进行权衡。
2. 构建多项式模型:根据选择的多项式阶数,构建多项式模型。
多项式模型是一个多项式方程,表示为:y = a0 + a1x + a2x^2 + ... + anx^n。
线性最小二乘法拟合
线性最小二乘法拟合
线性最小二乘法(Linear Least Squares,LLS)是一种用来对观测数据建立数学模型的最常见的统计学方法,它可以有效地从数据中恢复出一组最优参数值。
它可以用来拟合各种类型的多项式曲线,甚至可以应用到混合型曲线,并且具有良好的拟合效果。
一、线性最小二乘法的定义
线性最小二乘法是一种数学方法,记为$argmin \ \sum_{i=1}^{n} (Y_i - f(X_i))^2$,表明最小二乘法通过最小化残差(残差是指观测值与实际值的差异)的平方和,来估计参数模型的参数。
二、线性最小二乘法的原理
线性最小二乘法即最小误差平方和法,即参数估计问题关于误差平方和有最小值时参数向量,该参数向量即构成最小二乘解。
另外,在假定数据舍入误差符合高斯分布的情况下,最小二乘法可以被认为是可行统计方法的最优的一种。
三、线性最小二乘法的应用
(1)拟合函数式在数学及工程中,最小二乘法非常常见,主要用于拟合函数式,特别是二元一次函数式,如曲线或抛物线;
(2)计算未知参数线性最小二乘法可以用来解决只有已知数据,而求解未知参数的最小二乘问题,它除了可以拟合多项式表达式,还可以拟合非线性方程;
(3)建立数据模型经过数据分析处理,可以使用最小二乘法的方法建立数据模型,来求解某些复杂的问题。
四、线性最小二乘法的优缺点
(1)优点:算法简单,收敛速度快,适用于线性拟合;
(2)缺点:模型不一定适用所有数据,受输入噪声影响,不适用高次函数拟合。
线性最小二乘法是广泛用于统计学和工程领域的有效方法,它不仅可以提供良好的拟合效果,而且可以有效地恢复出参数模型的最优参数值,可以满足许多不同的场景的需求,也被广泛认可和使用。
最小二乘法的原理及应用
最小二乘法的原理及应用
最小二乘法是一种常用的数学方法,用于拟合数据和解决回归问题。
它的基本原理是通过最小化误差平方和来找到最佳拟合曲线或直线。
在实际应用中,最小二乘法被广泛应用于各种领域,如经济学、物理学、工程学等。
最小二乘法的原理
最小二乘法的核心思想是通过最小化误差平方和来找到最佳拟合曲线或直线。
误差平方和是指实际观测值与拟合值之间的差的平方和。
最小二乘法的目标是找到一条曲线或直线,使得误差平方和最小。
最小二乘法的应用
最小二乘法在实际应用中有着广泛的应用。
以下是一些常见的应用: 1. 线性回归
线性回归是最小二乘法的一种应用。
它用于建立一个线性模型,以预测一个因变量与一个或多个自变量之间的关系。
最小二乘法可以用来确定最佳拟合直线,以最小化误差平方和。
2. 曲线拟合
最小二乘法可以用于拟合各种类型的曲线,如多项式曲线、指数曲
线、对数曲线等。
通过最小二乘法,可以找到最佳拟合曲线,以最小化误差平方和。
3. 数据分析
最小二乘法可以用于数据分析,以确定数据之间的关系。
例如,可以使用最小二乘法来确定两个变量之间的相关性,或者确定一个变量如何随时间变化。
4. 信号处理
最小二乘法可以用于信号处理,以估计信号的参数。
例如,可以使用最小二乘法来估计信号的频率、幅度和相位。
总结
最小二乘法是一种常用的数学方法,用于拟合数据和解决回归问题。
它的基本原理是通过最小化误差平方和来找到最佳拟合曲线或直线。
在实际应用中,最小二乘法被广泛应用于各种领域,如经济学、物理学、工程学等。
多项式插值和最小二乘法拟合在原理上的差别
多项式插值和最小二乘法拟合在原理上的差别
多项式插值和最小二乘法是统计学中常见的两种拟合方法,它们都可以通过数学模型来拟合样本数据,但它们的原理却有很大的差别。
首先,多项式插值是基于拉格朗日插值法或牛顿插值法的,在已知一些数据点的情况下,需要找到一条连接这些点的光滑曲线。
多项式插值的原理是使用一个多项式来拟合这些点,其中多项式的系数可以通过求解方程组得到。
多项式插值的优点是可以完美地通过给定的数据点,而且拟合的曲线不会超过这些点。
然而,多项式插值也有它的局限性。
首先,多项式插值只是在给定数据点之间进行插值,并不能在数据点范围之外拟合数据。
其次,高阶多项式插值在数据过于偏离给定点时会出现振荡情况,造成过拟合的问题。
相反,最小二乘法拟合是一种更加灵活的方法,可以通过参数来拟合任何形状的曲线,而不受数据点所限制。
基于最小二乘法的拟合,目标是通过最小化残差平方和来找到最适合的曲线,从而通过给定的数据点来建立一个数学模型。
最小二乘法拟合的优点是可以对任意函数进行拟合,并且对数据的无噪声和有噪声错误的处理有很好的鲁棒性和准确性。
另外,最小二乘法拟合也可以通过增加复杂度来解决多项式插值的局限性,如引入正则化项。
总的来说,多项式插值和最小二乘法拟合都是统计学中经典的拟合方法,它们拥有各自的优缺点,在实际应用中需根据具体的问题和数据进行选择。
最小二乘法多项式曲线拟合原理与实现
最小二乘法多项式曲线拟合原理与实现一、引言最小二乘法多项式曲线拟合是一种常用的数据拟合方法,它可以通过一组离散的数据点来拟合出一个多项式函数,从而达到对数据进行预测和分析的目的。
本文将详细介绍最小二乘法多项式曲线拟合的原理与实现。
二、最小二乘法最小二乘法是一种数学优化方法,它可以通过最小化误差平方和来求解未知参数。
在多项式曲线拟合中,我们需要求解多项式函数中各个系数的值,使得该函数与给定数据点之间的误差平方和最小。
三、多项式曲线拟合多项式曲线拟合是指通过一组离散的数据点来拟合出一个多项式函数,该函数能够较好地描述这些数据点之间的关系。
在实际应用中,我们通常使用低阶的多项式函数来进行拟合,例如一次、二次或三次多项式函数。
四、最小二乘法多项式曲线拟合原理假设我们有n个离散的数据点(x1,y1),(x2,y2),...,(xn,yn),其中xi表示自变量,yi表示因变量。
我们希望通过这些数据点来拟合出一个m次多项式函数y=f(x),其中m为多项式的阶数。
我们可以将多项式函数表示为如下形式:f(x)=a0+a1x+a2x^2+...+amxm其中a0,a1,...,am为待求解的系数。
我们需要通过最小二乘法来求解这些系数的值。
首先,我们需要定义误差平方和E(a0,a1,...,am):E(a0,a1,...,am)=∑i=1n(yi−f(xi))^2然后,我们需要求解使得误差平方和最小的系数值。
为了方便计算,我们可以将误差平方和展开:E(a0,a1,...,am)=∑i=1n(yi−a0−a1xi−a2xi^2−...−amxm)^2接下来,我们需要对误差平方和进行求导,并令导数等于零,从而得到使得误差平方和最小的系数值。
具体来说,我们需要分别对每个系数进行求导:∂E/∂a0=−2∑i=1n(yi−a0−a1xi−a2xi^2−...−amxm)∂E/∂a1=−2∑i=1n(xi(yi−a0−a1xi−a2xi^2−...−amxm))...∂E/∂am=−2∑i=1n(xmi(yi−a0−a1xi−a2xi^2−...−amxm))然后,我们将每个导数等于零,得到一个线性方程组:∑j=0maijaj=∑i=1nyi×xi^j其中aij表示第j个系数的第i次幂。
最小二乘法的基本原理
最小二乘法的基本原理
最小二乘法是一种常用的数据拟合方法,通过最小化观测值与理论模型值之间的残差平方和来确定模型中的未知参数。
其基本原理如下:
1. 建立模型:首先需要根据问题的特点建立一个数学模型,其中包含了待求的未知参数。
2. 收集数据:通过实验或者观测,收集到一组数据,这些数据包括自变量和对应的因变量。
3. 假设函数形式:假设要拟合的函数形式,通常是一个线性函数或者多项式函数。
4. 构建观测方程:根据所建立的模型和假设的函数形式,将观测数据代入方程中,得到一个由未知参数构成的方程组。
5. 设置目标函数:以观测方程中的残差平方和作为目标函数,定义为所有观测数据的残差平方之和。
6. 最小化目标函数:通过最小化目标函数,求解出最优的未知参数,使得观测方程的残差平方和最小。
7. 模型评估:检验拟合效果,包括残差分析、计算决定系数等。
最小二乘法常用于解决各种问题,如数据拟合、曲线拟合、参数估计等。
它的优点是计算简便、结果稳定可靠,但也有一些
限制和假设条件,如误差满足独立同分布、误差服从正态分布等。
在实际应用中,需要根据具体问题和数据情况选择适合的模型和方法。
最小二乘法的基本原理和多项式拟合
最小二乘法的基本原理和多项式拟合Document number:NOCG-YUNOO-BUYTT-UU986-1986UT最小二乘法的基本原理和多项式拟合一最小二乘法的基本原理从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即=从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。
函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类可有不同的选取方法.6—1二多项式拟合假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。
特别地,当n=1时,称为线性拟合或直线拟合。
显然为的多元函数,因此上述问题即为求的极值问题。
由多元函数求极值的必要条件,得(2)即(3)(3)是关于的线性方程组,用矩阵表示为(4)式(3)或式(4)称为正规方程组或法方程组。
可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。
从式(4)中解出 (k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。
我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2) 列表计算和;(3) 写出正规方程组,求出;(4) 写出拟合多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 最小二乘法的基本原理和多项式拟合一 最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)的大小,常用的方法有以下三种:一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir02的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir 02=[]∑==-mi i i y x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。
函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类Φ可有不同的选取方法.6—1二 多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。
特别地,当n=1时,称为线性拟合或直线拟合。
显然∑∑==-=m i nk i k i k y x a I 02)(为n a a a ,,10的多元函数,因此上述问题即为求),,(10n a a a I I =的极值 问题。
由多元函数求极值的必要条件,得n j x y x a a Im i j i nk i k i k j ,,1,0,0)(200 ==-=∂∂∑∑== (2)即nj y x a xn k mi i j i k mi k j i,,1,0,)(0==∑∑∑===+ (3)(3)是关于n a a a ,,10的线性方程组,用矩阵表示为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n i m i n i m i n i mi n i m i i m i imi n i m i i y x y x y a a a x x x x x x x x m 000100201001020001 (4) 式(3)或式(4)称为正规方程组或法方程组。
可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。
从式(4)中解出k a (k=0,1,…,n),从而可得多项式∑==nk kk n x a x p 0)( (5)可以证明,式(5)中的)(x p n 满足式(1),即)(x p n 为所求的拟合多项式。
我们把[]∑=-mi i i ny x p2)(称为最小二乘拟合多项式)(x p n 的平方误差,记作[]∑=-=mi i i n y x p r0222)(由式(2)可得∑∑∑===-=mi nk mi i k i k i y x a y r222)( (6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2) 列表计算∑==mi j in j x)2,,1,0( 和∑==mi ij in j y x)2,,1,0( ;(3) 写出正规方程组,求出n a a a ,,10;(4) 写出拟合多项式∑==nk kk n x a x p 0)(。
在实际应用中,m n <或m n ≤;当m n =时所得的拟合多项式就是拉格朗日或牛顿插值多项式。
例1 测得铜导线在温度i T (℃)时的电阻)(Ωi R 如表6-1,求电阻R 与温度 T 的近似函数关系。
i 0 1 2 3 4 5 6i T (℃))(Ωi R解 画出散点图(图6-2),可见测得的数据接近一条直线,故取n=1,拟合函数为T a a R 10+=列表如下i i T i R 2i Ti i R T 0 1 2 3 4 5 6 ∑正规方程组为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡445.200295.56583.93253.2453.245710a a解方程组得921.0,572.7010==a a故得R 与T 的拟合直线为T R 921.0572.70+=利用上述关系式,可以预测不同温度时铜导线的电阻值。
例如,由R=0得T=,即预测温度T=℃时,铜导线无电阻。
6-2i 0 1 23 4 5 6 7 8 i x1 3 4 5 6 7 8 9 10 iy10 5 4211234试用最小二乘法求它的二次拟合多项式。
解 设拟合曲线方程为2210x a x a a y ++= 列表如下I i x i y2i x3i x4i xi i y x i i y x 20 1 10 1 1 1 10 10 1 3 5 9 27 81 15 45 2 4 4 16 64 256 16 64 3 5 2 25 125 625 10 50 4 6 1 36 216 1296 6 36 5 7 1 49 343 2401 7 49 6 8 2 64 512 4096 16 128 7 9 3 81 729 6561 27 243 8 104 100 1000 10000 40 400 ∑53 32 381 3017 25317 147 1025得正规方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡102514732253173017381301738152381529210a a a解得2676.06053.3,4597.13210=-==a a a故拟合多项式为22676.06053.34597.13x y +-=*三 最小二乘拟合多项式的存在唯一性定理1 设节点n x x x ,,,10 互异,则法方程组(4)的解存在唯一。
证 由克莱姆法则,只需证明方程组(4)的系数矩阵非奇异即可。
用反证法,设方程组(4)的系数矩阵奇异,则其所对应的齐次方程组⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n i m i n i m i n i mi n i m i i m i imi n i m i i y x y x y a a a x x x x x x x x m 000100201001020001 (7) 有非零解。
式(7)可写为nj a xn k k mi k j i ,,1,0,0)(0==∑∑==+ (8)将式(8)中第j 个方程乘以ja (j=0,1,…,n),然后将新得到的n+1个方程左右两端分别 相加,得 ∑∑∑===+=⎥⎦⎤⎢⎣⎡nj n k k m i k j i j a x a 00000)(因为[]∑∑∑∑∑∑∑∑∑∑=======+===+===⎥⎦⎤⎢⎣⎡m i m i mi in n k ki k n j j i j n j n k k j i j k nj n k k m i k j i j x p x a x a x a a a x a 00020000000)())(()( 其中: ∑==nk kk n x a x p 0)(所以0)(=i n x p (i=0,1,…,m))(x p n 是次数不超过n 的多项式,它有m+1>n 个相异零点,由代数基本定理,必须有010===n a a a ,与齐次方程组有非零解的假设矛盾。
因此正规方程组(4)必有唯一解 。
定理2 设n a a a ,,1,0 是正规方程组(4)的解,则∑==nk kk n x a x p 0)(是满足式(1)的最小二乘拟合多项式。
证 只需证明,对任意一组数nb b b ,,1,0 组成的多项式∑==nk kk n x b x Q 0)(,恒有[][]∑∑==-≥-mi i i n mi i i ny x p y x Q22)()(即可。
[][][][][][]()∑∑∑∑∑∑∑∑∑∑==========⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎥⎦⎤⎢⎣⎡-⋅-+≥-⋅-+-=---n j mi j i n k i k i k j j m i nj n k i ki k ji j j i i n mi i n i n m i i n i n mi ii n mi i i n x y x a a b y x a x a b y x p x p x Q x p x Q y x p y x Q 00000002222)(20)()()(2)()()()(因为k a (k=0,1,…,n)是正规方程组(4)的解,所以满足式(2),因此有[][]0)()(022≥---∑∑==mi i i n mi i i ny x p y x Q故)(x p n 为最小二乘拟合多项式。
*四 多项式拟合中克服正规方程组的病态在多项式拟合中,当拟合多项式的次数较高时,其正规方程组往往是病态的。
而且:①正规方程组系数矩阵的阶数越高,病态越严重;②拟合节点分布的区间[]m x x ,0偏离原点越远,病态越严重; ③i x (i=0,1,…,m)的数量级相差越大,病态越严重。
为了克服以上缺点,一般采用以下措施:①尽量少作高次拟合多项式,而作不同的分段低次拟合;②不使用原始节点作拟合,将节点分布区间作平移,使新的节点i x 关于原 点对称,可大大降低正规方程组的条件数,从而减低病态程度。
平移公式为:mi x x x x mi i ,,1,0,20 =+-= (9)③对平移后的节点i x (i=0,1,…,m),再作压缩或扩张处理:m i x p x i i ,,1,0,==* (10) 其中r mi rix m p 202)()1(∑=+=,(r 是拟合次数) (11)经过这样调整可以使*i x 的数量级不太大也不太小,特别对于等距节点),,1,0(0m i ih x x i =+=,作式(10)和式(11)两项变换后,其正规方程组的系数矩阵设 为A ,则对1~4次多项式拟合,条件数都不太大,都可以得到满意的结果。