2006年江苏省高考试题(数学)全解全析版
2002至2006江苏高考数学试卷及答案
2002年普通高等学校招生全国统一考试(江苏卷)数学第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)函数xxx f cos 2sin )(=的最小正周期是( )。
A.2πB. πC. π2D. π4 (2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。
A.21B. 23C. 1D.3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD.}11|{-≠<x x x 且(4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A. )45,()2,4(ππππ⋃ B. ),4(ππ C. )45,4(ππ D. )23,45(),4(ππππ⋃ (5)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则( )A. N M =B. N M ⊂C. N M ⊃D. φ=N M (6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。
A.43 B. 54 C. 53 D. 53- (7)函数b a x x x f ++=||)(是奇函数的充要条件是( ) A.ab=0 B. a+b=0 C. a=b D. 022=+b a (8)已知10<<<<a y x ,则有( )。
A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy aA(9)函数111--=x y A. 在(+∞-,1)内单调递增 B. 在(+∞-,1)内单调递减 C. 在(+∞,1)内单调递增 D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与1cos =θρ(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )。
2006年江苏省高考试题(数学)含详解汇总
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年高考.江苏卷.数学试题及详细解答
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式:一组数据的方差])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (5)10)31(x x -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )a a a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A)1个 (B )2个(C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
江苏精品解析202006年高考调研测试数学试题
2006 年佛山市高中毕业班高考调研会考
数学科试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150 分.考试用时 120 分 钟.
注意事项: 1. 答卷前,考生务必将自己的姓名、考生号,用钢笔或签字笔填写在答题卡密封线内。 2. 选择题每小题选出答案后,用 2B 型铅笔把答题卡上对应题目的答案标号涂黑,如需改
地区为危险区,城市 B 在 A 的正东 40 千米处,B 城市处于危险区内的时间为
A 0.5 小时
B 1 小时
C 1.5 小时
D 2 小时
第Ⅱ卷(非选择题,共 100 分)
二、填空题:本题共 4 小题,共 20 分.
(11)已知lim ax2 bx 1 3, 1
A. p :函数 y 1 在 R 上是增函数; q :函数 y x2 在 R 上连续; x
B. p :导数为零的点一定是极值点; q :最大值点的导数一定为零;
C. p :互斥事件一定是对立事件; q :对立事件一定是互斥事件; D. p :复数 (1 i)i 与复数 1 i 对应点关于 y 轴对称; q :复数 1 i 是纯虚数.
1 i
高三数学调研测试第 1 页(共 4 页)
2
2
(4)已知点 P(x,y)在线性区域
A3
B4
x≥0,
y≥0, 内,则点 P 到点 A(4,3)的最短距离为 x+4y≤1
12
C5
D
5
(5)盒中装有大小相同的黑、白两色小球,黑色小球 15 个,白色小球 10 个。现从中随机
取出两个,若两个同色则甲获胜,若两个不同色则乙获胜。则甲、乙获胜的机会是
…,得到点列 Pn xn , yn , 试回答下列问题:
2006年全国数学题与评析
2006年全国高考数学试题Ⅲ的评析一、2005年高考全国卷数学试题的特点在《2005年高考数学大纲》中明确指出:数学科的考试将会按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,据此,教育部考试中心命制的全国卷1、全国卷2、全国卷3三套试卷,分文、理科共六份试题.试题的设计体现了数学学科的特点,突出了知识的基础性,注意了在知识网络交汇点设题,着力反映了概念性、思辩性、量化的灵活性、解法的多样性及应用的广泛性,在数学思想方法及数学理性思维方面作了比较深入的考查。
试题“温和平缓”,既似曾相识,又推陈出新;既符合考生实际,又符合高考对选拔的要求。
相比之下,“全国卷1”比“全国卷2”和“全国卷3”要难些,但没有使学生望而生畏的题目,新题不难,难题不怪,“纯净淡雅”,平易近人。
既全面的考查了基础知识,又突出了对重点内容的考查;既关注了考查数学的基本方法和技巧,又注重了对能力的考查和思维能力的提升。
所有这些,对中学数学都具有很好的导向作用。
二、全国高考数学试题Ⅲ的评析2005年高考甘肃采用的高考数学试题模版是全国卷Ⅲ,试卷题量与2004年相同。
2005年高考数学试卷总体呈现平稳,没有出现难题、偏题和怪题。
命题凸现了高中数学的主干知识,以“死题”考知识,用“活题”考能力,加强了数学运算能力的考查。
文理科试卷的差异较往年缩小了。
从定量上看,此套试卷继续保持2004年在全国卷Ⅲ在文理差异上的风格,即减少相同题,减少姊妹题增加不同题,但不同题的数量较2004年有所减少,其中,选择题相异的有1道,填空题差异有2道,(而且这3道试题都是因为文理考试知识的不同要求命制的)解答题差异的有2.5道。
总体的感觉是:数学试题整体不难,应该说成绩优秀的学生得高分并不困难。
1、选择题:平淡中考知识,创新中考能力选择题都是容易题和中等题,大多数题属于“一捅就破”的题型,主要考查了数学的基本概念、基本知识和基本的计算、解题方法。
2006年普通高等学校招生全国统一考试(江苏卷)含详解
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||MN MP MN NP ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A)1个 (B )2个 (C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
2006年江苏高考数学试题(理科)及答案
C 6.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为(A )28y x = (B )28y x =- (C )24y x = (D )24y x =- 7.若A 、B 、C 为三个集合,A B B C =,则一定有 (A )A C ⊆ (B)C A ⊆ (C)A C ≠ (D)A =∅8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是(A )||||||a b a c b c -≤-+- (B )2211aa a a +≥+(C )1||2a b a b-+≥- (D 9.两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面与正方体的某一面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
接收器与信号源在一个串联线路中时,就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所得六组中每级的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )445 (B )136 (C )415 (D )815O1O二.填空题:本大题共6小题,每小题5分,共30分。
不需要写出解答过程,请把答案直接填写在答题卡相应.....位置上...。
11.在ABC ∆中,已知12,60,45BC A B ==︒=︒,则AC= 12.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,则23z x y =+的最大值为13.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。
14.cot 20cos10tan702cos40︒︒︒︒-︒= 15.对正整数n ,设曲线(1)n y x x =-在2x =处的切线与y 轴交点的纵坐标为na ,则数列{}1na n +的前n 和的公式是16.不等式21log (6)3x x++≤的解集为 三.解答题:本大题共5小题,共70分。
2006年普通高等学校夏季招生考试数学(文理合卷)江苏卷(新课程)
2005年普通高等学校夏季招生考试数学(文理合卷)江苏卷(新课程)参考公式: 一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )6 (6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点, 满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)下图中有一个信号源和五个接收器。
2006年全国各地高考数学试题及解答分类大全(集合)
2006年全国各地高考数学试题及解答分类大全(集合)一、选择题:1. (2006春招上海) 若集合131,11,2,01A y y x x B y y x x ⎧⎫⎧⎫⎪⎪==-≤≤==-<≤⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,则A ∩B 等于( ) (A )]1,(∞-. (B )[]1,1-. (C )∅. (D )}1{.2.(2006安徽文)设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8}2.解:{1,3,5,6}S T ⋃=,则()U C S T ⋃={2,4,7,8},故选B3.(2006安徽理)设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B 等于( ) A .R B .{},0x x R x ∈≠ C .{}0 D .∅3.解:[0,2]A =,[4,0]B =-,所以(){0}R R C AB C =,故选B 。
4.(2006北京文)设集合A ={}312<+x x ,B ={}23<<x x -,则A ⋂B 等于( ) (A) {}13<<x x - (B) {}21<<x x (C){x|x >-3} (D) {x|x <1} 4.解:集合A ={}312<+x x ={x|x <1},借助数轴易得选A5.(2006福建文、理)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于( )(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)- 5.全集,U R =且{}|12{|1或3},A x x x x x =->=<->{}2|680{|24},B x x x x x =-+<=<< ∴ ()U A B =(2,3],选C.6..(2006湖北文)集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =( )A.{-2,2}B.{-2,2,-4,4}C.{-2,0,2}D.{-2,2,0,-4,4}6. 解:P ={x |x 2-16<0}={x |-4<x <4},故P Q ={-2,0,2},故选C7..(2006湖北理)有限集合S 中元素的个数记做()card S ,设,A B 都为有限集合,给出下列命题: ①A B =∅的充要条件是()()()card A B card A card B =+;②A B ⊆的充要条件是()()card A card B ≤;③A B 的充要条件是()()card A card B ≤;④A B =的充要条件是()()card A card B =;其中真命题的序号是 ( )A .③④B .①②C .①④D .②③7. 解:①A B =∅⇔集合A 与集合B 没有公共元素,正确②A B ⊆⇔集合A 中的元素都是集合B 中的元素,正确③A B ⇔集合A 中至少有一个元素不是集合B 中的元素,因此A 中元素的个数有可能多于B 中元素的个数,错误④A B =⇔集合A 中的元素与集合B 中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,错误选B8. (2006江苏)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A8.【思路点拨】本题主要考查.集合的并集与交集运算,集合之间关系的理解。
2006年高考数学试题之2006年高考数学试题(江苏卷)
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式:一组数据的方差])()()[(1222212x x x x x x n S n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一...项.是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A)0 (B)1 (C)-1 (D)±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A)x -y =0 (B)x +y =0 (C)x =0 (D)y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A)1 (B)2 (C)3 (D)4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A)向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B)向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C)向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D)向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A)0 (B)2 (C)4 (D)6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为(A)x y 82= (B)x y 82-= (C)x y 42= (D)x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A)C A ⊆ (B)A C ⊆ (C)C A ≠ (D)φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A)||||||c b c a b a -+-≤- (B)aa a a 1122+≥+ (C)21||≥-+-ba b a (D)a a a a -+≤+-+213 (9)两相同的正四棱锥组成如图1所示的几何体,可放棱长为的正方体内,使正四棱锥的底面ABCD 平面平行,且各顶点...均在正方体的面上,体积的可能值有 (A)1个 (B)2个 (C)3个 (D)无穷多个(10)右图中有一个信号源和五个接收器。
2006年江苏省苏州市高考数学试卷
2006年江苏省苏州市高考数学试卷一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项是符合题目要求的。
1. 已知a R ∈,函数()sin ||,f x x a x R =-∈为奇函数,则a = (A )0(B )1(C )1-(D )1±2.圆22(1)(1x y -+=的切线方程中有一个是 (A )0x y -= (B )0x y += (C )0x =(D )0y =3.某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y ,已知这组数据的平均数为10,方差为2,则||x y -的值为 (A )1 (B )2 (C )3 (D )44.为了得到函数2sin(),36x y x R π=+∈的图象,只需把函数2sin ,y x x R =∈的图象上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5.101)3x-的展开式中含x 的正整数指数幂的项数是 (A )0(B )2 (C )4 (D )66.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点,满足||||0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为 (A )28y x =(B )28y x =- (C )24y x =(D )24y x =- 7.若A 、B 、C 为三个集合,A B B C = ,则一定有(A )A C ⊆ (B)C A ⊆ (C)A C ≠ (D)A =∅8.设,,a b c 是互不相等的正数,则下列不等式中不恒成立....的是 (A )||||||a b a c b c -≤-+- (B )2211a a a a+≥+ (C )1||2a b a b-+≥-(D ≤9.两个相同的正四棱锥组成如图1所示的几何体,可放入棱长为的正方体内,使正四棱锥的底面ABCD 各顶点均在正方体的面上,则这样的几何体体积的可能值有(A )1个 (B )2个(C )3个 (D )无穷多个10.右图中有一信号源和五个接收器。
2006年全国统一高考数学试卷(文科)(全国卷二)及答案
2006年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量=(4,2),向量=(x,3),且∥,则x=()A.9 B.6 C.5 D.32.(5分)已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A.∅B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}3.(5分)函数y=sin2x•cos2x的最小正周期是()A.2πB.4πC.D.4.(5分)如果函数y=f(x)的图象与函数y′=3﹣2x的图象关于坐标原点对称,则y=f(x)的表达式为()A.y=2x﹣3 B.y=2x+3 C.y=﹣2x+3 D.y=﹣2x﹣35.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.126.(5分)已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.4007.(5分)如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A.2:1 B.3:1 C.3:2 D.4:38.(5分)已知函数f(x)=lnx+1(x>0),则f(x)的反函数为()A.y=e x+1(x∈R)B.y=e x﹣1(x∈R)C.y=e x+1(x>1)D.y=e x﹣1(x>1)9.(5分)已知双曲线=1(a>0,b>0)的一条渐近线方程为y=x,则双曲线的离心率为()A.B.C.D.10.(5分)若f(sinx)=2﹣cos2x,则f(cosx)等于()A.2﹣sin2x B.2+sin2x C.2﹣cos2x D.2+cos2x11.(5分)过点(﹣1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0 B.3x﹣y+3=0 C.x+y+1=0 D.x﹣y+1=012.(5分)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()A.150种B.180种C.200种D.280种二、填空题(共4小题,每小题4分,满分16分)13.(4分)在的展开式中常数项为(用数字作答).14.(4分)圆O1是以R为半径的球O的小圆,若圆心O1到球心O的距离与球半径面积S1和球O的表面积S的比为S1:S=2:9,则圆心O1到球心O的距离与球半径的比OO1:R=.15.(4分)过点的直线l将圆(x﹣2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.16.(4分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.三、解答题(共6小题,满分74分)17.(12分)在△ABC中,∠B=45°,AC=,cosC=,(1)求BC的长;(2)若点D是AB的中点,求中线CD的长度.18.(12分)设等比数列{a n}的前n项和为S n,S4=1,S8=17,求通项公式a n.19.(12分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.20.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(I)证明:ED为异面直线BB1与AC1的公垂线;(II)设,求二面角A1﹣AD﹣C1的大小.21.(14分)设a∈R,二次函数f(x)=ax2﹣2x﹣2a.若f(x)>0的解集为A,B={x|1<x<3},A∩B≠∅,求实数a的取值范围.22.(12分)已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.2006年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅱ)已知向量=(4,2),向量=(x,3),且∥,则x=()A.9 B.6 C.5 D.3【分析】本题考查向量共线的充要条件,坐标形式的充要条件容易代错字母的位置。
2006年江苏卷数学
2006年江苏卷数学一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4 (4)为了得到函数Rx x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||M N M P M N N P ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa aa 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个 (C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
2008年普通高等学校招生全国统一考试数学卷(江苏卷)全解全析版
绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共14小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω ▲ 2.一个骰子连续投2次,点数和为4的概率 ▲3.),(11R b a bi a ii∈+-+表示为的形式,则b a += ▲ 4.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素5.b a ,的夹角为120,1,3a b == ,则5a b -= ▲6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,下表是50位老人日睡眠时间频率分布表:则输出的S 的值为 . 8.直线b x y +=21是曲线ln (0)y x x =>的一条切线,则实数b 的值为 ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2006年高考江苏卷数学试题及参考答案
走私、贩卖、运输、制造毒品罪,是指明知是毒品而故意实施走私、贩卖、运输、制造的行为。
本罪是选择性罪名,凡实施了走私、贩卖、运输、制造毒品行为之一的,即以该行为确定罪名。
凡实施了其中两种以上行为的,如运输、贩卖毒品,由定为运输、贩卖毒品罪,不实行数罪并罚。
运输、贩卖同一宗毒品的,毒品数量不重复计算;不是同一宗毒品的,毒品数量累计计算。
居间介绍买卖毒品的,不论是否获利,均以贩卖毒品罪的共犯论处。
走私毒品,又走私其他物品构成犯罪的,按走私毒品和构成的其他走私罪分别定罪,实行数罪并罚。
对多次走私、贩卖、运输、制造毒品,未经处理的,毒品数量累计计算。
所谓“未经处理”的既包括未经刑罚处理,也包括未作行政处理。
但对于犯罪已过追诉时效的,则毒品数量不再累计计算。
已作过处理的,应视为已经结案。
一立案标准我国刑法第347条规定:走私、贩卖、运输、制造毒品,无论数量多少,都应当追究刑事责任,予以刑事处罚。
走私、贩卖、运输、制造毒品,有下列情形之一的,处十五年有期徒刑、无期徒刑或者死刑,并处没收财产:(一)走私、贩卖、运输、制造鸦片一千克以上、海洛因或者甲基苯丙胺五十克以上或者其他毒品数量大的;(二)走私、贩卖、运输、制造毒品集团的首要分子;(三)武装掩护走私、贩卖、运输、制造毒品的;(四)以暴力抗拒检查、拘留、逮捕,情节严重的;(五)参与有组织的国际贩毒活动的。
走私、贩卖、运输、制造鸦片二百克以上不满一千克、海洛因或者甲基苯丙胺十克以上不满五十克或者其他毒品数量较大的,处七年以上有期徒刑,并处罚金。
走私、贩卖、运输、制造鸦片不满二百克、海洛因或者甲基苯丙胺不满十克或者其他少量毒品的,处三年以下有期徒刑、拘役或者管制,并处罚金;情节严重的,处三年以上七年以下有期徒刑,并处罚金。
单位犯第二款、第三款、第四款罪的,对单位判处罚金,并对其直接负责的主管人员和其他直接责任人员,依照各该款的规定处罚。
利用、教唆未成年人走私、贩卖、运输、制造毒品,或者向未成年人出售毒品的,从重处罚。
2006年全国统一高考数学试卷(理科)(全国卷一)及解析
2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅B.M∩N=M C.M∪N=M D.M∪N=R2.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x 对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)3.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.4.(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.5.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.6.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C. D.7.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π8.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.39.(5分)设平面向量1、2、3的和1+2+3=0.如果向量1、2、,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,3则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=010.(5分)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.7511.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm212.(5分)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.14.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.15.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).16.(4分)设函数.若f(x)+f′(x)是奇函数,则φ=.三、解答题(共6小题,满分74分)17.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.18.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.19.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.20.(12分)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.21.(14分)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.22.(12分)设数列{a n}的前n项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.2.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f (x)是y=e x的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.3.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.4.(5分)(2006•全国卷Ⅰ)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.【分析】注意到复数a+bi(a∈R,b∈R)为实数的充要条件是b=0 【解答】解:复数(m2+i)(1+mi)=(m2﹣m)+(1+m3)i是实数,∴1+m3=0,m=﹣1,选B.5.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C6.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C. D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.7.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.8.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y ﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.9.(5分)(2006•全国卷Ⅰ)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=0 【分析】三个向量的和为零向量,在这三个向量前都乘以相同的系数,我们可以把系数提出公因式,括号中各项的和仍是题目已知中和为零向量的三个向量,当三个向量都按相同的方向和角度旋转时,相对关系不变.【解答】解:向量1、2、3的和1+2+3=0,向量1、2、3顺时针旋转30°后与1、2、3同向,且|i|=2|i|,∴1+2+3=0,故选D.10.(5分)(2006•全国卷Ⅰ)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.【解答】解:{a n}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选B.11.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.12.(5分)(2006•全国卷Ⅰ)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【分析】解法一,根据题意,按A、B的元素数目不同,分9种情况讨论,分别计算其选法种数,进而相加可得答案;解法二,根据题意,B中最小的数大于A中最大的数,则集合A、B 中没有相同的元素,且都不是空集,按A、B中元素数目这和的情况,分4种情况讨论,分别计算其选法种数,进而相加可得答案.【解答】解:解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;总计有49种,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B 集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°14.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y ﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.15.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:240016.(4分)(2006•全国卷Ⅰ)设函数.若f(x)+f′(x)是奇函数,则φ=.【分析】对函数求导结合两角差的正弦公式,代入整理可得,,根据奇函数的性质可得x=0时函数值为0,代入可求φ的值【解答】解:,则f(x)+f′(x)=,为奇函数,令g(x)=f(x)+f′(x),即函数g(x)为奇函数,g(0)=0⇒2sin(φ)=0,∵0<φ<π,∴φ=.故答案为:.三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A 为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为18.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:∴数学期望Eξ=3×=.19.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.20.(12分)(2006•全国卷Ⅰ)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.【分析】(1)利用相关点法求轨迹方程,设P(x0,y0),M(x,y),利用点M的坐标来表示点P的坐标,最后根据x0,y0满足C的方程即可求得;(2)先将用含点M的坐标的函数来表示,再利用基本不等式求此函数的最小值即可.【解答】解:(I)椭圆方程可写为:+=1式中a>b>0,且得a2=4,b2=1,所以曲线C的方程为:x2+=1(x>0,y>0).y=2(0<x<1)y'=﹣设P(x 0,y0),因P在C上,有0<x0<1,y0=2,y'|x=x0=﹣,得切线AB的方程为:y=﹣(x﹣x0)+y0.设A(x,0)和B(0,y),由切线方程得x=,y=.由=+得M的坐标为(x,y),由x0,y0满足C的方程,得点M 的轨迹方程为:+=1(x>1,y>2)(Ⅱ)||2=x2+y2,y2==4+,∴||2=x2﹣1++5≥4+5=9.且当x2﹣1=,即x=>1时,上式取等号.故||的最小值为3.21.(14分)(2006•全国卷Ⅰ)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.【分析】(Ⅰ)根据分母不为0得到f(x)的定义域,求出f'(x),利用a的范围得到导函数的正负讨论函数的增减性即可得到f(x)的单调区间;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1即要讨论当0<a≤2时,当a>2时,当a≤0时三种情况讨论得到a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,1)∪(1,+∞).对f (x)求导数得f'(x)=e﹣ax.(ⅰ)当a=2时,f'(x)=e﹣2x,f'(x)在(﹣∞,0),(0,1)和(1,+∞)均大于0,所以f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅱ)当0<a<2时,f'(x)>0,f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅲ)当a>2时,0<<1,令f'(x)=0,解得x1=,x2=.当x变化时,f′(x)和f(x)的变化情况如下表:f (x )在(﹣∞,),(,1),(1,+∞)为增函数,f (x )在(,)为减函数. (Ⅱ)(ⅰ)当0<a ≤2时,由(Ⅰ)知:对任意x ∈(0,1)恒有f (x )>f (0)=1.(ⅱ)当a >2时,取x 0=∈(0,1),则由(Ⅰ)知f (x 0)<f (0)=1(ⅲ)当a ≤0时,对任意x ∈(0,1),恒有>1且e﹣ax ≥1,得f (x )=e ﹣ax ≥>1. 综上当且仅当a ∈(﹣∞,2]时,对任意x ∈(0,1)恒有f (x )>1.22.(12分)(2006•全国卷Ⅰ)设数列{a n }的前n 项的和,n=1,2,3,…(Ⅰ)求首项a 1与通项a n ;(Ⅱ)设,n=1,2,3,…,证明:.【分析】对于(Ⅰ)首先由数列{a n }的前n 项的和求首项a 1与通项a n ,可先求出S n ﹣1,然后有a n =S n ﹣S n ﹣1,公比为4的等比数列,从而求解;对于(Ⅱ)已知,n=1,2,3,…,将a n=4n﹣2n代入S n=a n﹣×2n+1+,n=1,2,3,得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)然后再利用求和公式进行求解.【解答】解:(Ⅰ)由S n=a n﹣×2n+1+,n=1,2,3,①得a1=S1=a1﹣×4+所以a1=2.再由①有S n﹣1=a n﹣1﹣×2n+,n=2,3,4,将①和②相减得:a n=S n﹣S n﹣1=(a n﹣a n﹣1)﹣×(2n+1﹣2n),n=2,3,整理得:a n+2n=4(a n﹣1+2n﹣1),n=2,3,因而数列{a n+2n}是首项为a1+2=4,公比为4的等比数列,即:a n+2n=4×4n﹣1=4n,n=1,2,3,因而a n=4n﹣2n,n=1,2,3,(Ⅱ)将a n=4n﹣2n代入①得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)=×(2n+1﹣1)(2n﹣1)T n==×=×(﹣)所以,=﹣)=×(﹣)<(1﹣)。
2006年江苏高考数学试卷及答案
2020年最新绝密★启用前220年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:一组数据的方差 ])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有一项....是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0(B )1(C )-1(D )±1(2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 (A )1(B )2(C )3(D )4(4)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(xx -的展开式中含x 的正整数指数幂的项数是(A )0(B )2(C )4(D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足MP MN MP MN ⋅+⋅|||| =0,则动点P (x ,y )的轨迹方程为 (A )x y 82=(B )x y 82-= (C )x y 42=(D )x y 42-=(7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆(B )A C ⊆ (C )C A ≠ (D )φ=A(8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有 (A )1个 (B )2个(C )3个(D )无穷多个(10)右图中有一个信号源和五个接收器。
2005年江苏省高考试题(数学)全解全析版
2005年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=- 一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()x y x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A(B(C(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++(C )6sin()33B π++ (D )6sin()36B π++(6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A (B )13 (C)2(D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年普通高等学校招生全国统一考试数 学(江苏卷)参考公式: 一组数据的方差 ])()()[(1222212x x x x x x nS n -++-+-=其中x 为这组数据的平均数一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有..一项..是符合题目要求的。
(1)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =(A )0 (B )1 (C )-1 (D )±1 (2)圆1)3()1(22=++-y x 的切线方程中有一个是(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0(3)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为(A )1 (B )2 (C )3 (D )4 (4)为了得到函数Rx x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(5)10)31(x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6(6)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足||||M N M P M N N P ⋅+⋅=0,则动点P (x ,y )的轨迹方程为(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= (7)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa aa 1122+≥+(C )21||≥-+-ba b a (D )a a a a -+≤+-+213(9)两相同的正四棱锥组成如图1为1的正方体内,使正四棱锥的底面ABCD 某一个平面平行,且各顶点...的几何体体积的可能值有(A )1个 (B )2个 (C )3个 (D )无穷多个(10)右图中有一个信号源和五个接收器。
接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是 (A )454 (B )361(C )154 (D )158二、填空题:本大题共6小题,每小题5分,共30分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上........。
(11)在△ABC 中,已知BC =12,A =60°,B =45°,则AC = ▲(12)设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 ▲(13)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 ▲种不同的方法(用数字作答)。
(14)︒-︒︒+︒︒40cos 270tan 10sin 310cos 20cot = ▲(15)对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n 的前n 项和的公式是 ▲(16)不等式3)61(log 2≤++xx 的解集为▲三、解答题:本大题共5小题,共70分。
请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分,第一小问满分5分,第二小问满分7分) 已知三点P (5,2)、1F (-6,0)、2F (6,0). (Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程。
(18)(本小题满分14分)请您设计一个帐篷。
它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。
试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?(19)(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分) 在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA=CP:PB =1:2(如图1)。
将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2) (Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小;(Ⅲ)求二面角B -A 1P -F 的大小(用反三角函数表示)(20)(本小题满分16分,第一小问4分,第二小问满分6分,第三小问满分6分) 设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。
(Ⅰ)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t )(Ⅱ)求g (a )(Ⅲ)试求满足)1()(a g a g =的所有实数a(21)(本小题满分14分)设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…), 证明}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)1【思路点拨】本题考查函数的奇偶性,三角函数sinx 的奇偶性的判断,本题是一道送分的概念题【正确解答】解法1由题意可知,()()f x f x =--得a=0解法2:函数的定义域为R,又f(x)为奇函数,故其图象必过原点即f(0)=0,所以得a=0,AFECBA 1EFCPB解法3由f(x)是奇函数图象法函数画出()R x a x x f ∈-=,sin 的图象选A【解后反思】对数学概念及定理公式的深刻理解是解数学问题的关健,讨论函数的奇偶性,其前提条件是函数的定义域必须关于原点对称.若函数f(x)为奇函数()()()f x f x y f x ⇔-=-⇔=的图象关于原点对称. 若函数f(x)为偶函数()()()f x f x y f x ⇔-=⇔=的图象关于y 轴对称.2【思路点拨】本题主要考查圆的切线的求法,直线与圆相切的充要条件是圆心到直线的距离等于半径.【正确解答】直线ax+by=022(1)(1x y -++=与相切1=,由排除法,选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。
【解后反思】直线与圆相切可以有两种方式转化(1)几何条件:圆心到直线的距离等于半径(2)代数条件:直线与圆的方程组成方程组有唯一解,从而转化成判别式等于零来解.3【思路点拨】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法【正确解答】由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x 、y ,只要求出y x -,设x=10+t, y=10-t, 24x y t -==,选D 【解后反思】4【思路点拨】本题主要考三角函数的图象变换,这是一道平时训练的比较多的一种类型。
【正确解答】先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像【解后反思】由函数sin ,y x x R =∈的图象经过变换得到函数sin(),y A x x R ωφ=+∈ (1).y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的(2)函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)(3)函数y =sin(x +ϕ),x ∈R (其中ϕ≠0)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时=平行移动|ϕ|个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)可以先平移变换后伸缩变换,也可以先伸缩变换后平移变换,但注意:先伸缩时,平移的单位把x 前面的系数提取出来。
5【思路点拨】本题主要考查二项式展开通项公式的有关知识.【正确解答】1031⎪⎭⎫⎝⎛-x x 的展开式通项为31010102121011()()33r r r r rr C C x x ---=,因此含x 的正整数次幂的项共有2项.选B【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.6【思路点拨】本题主要考查平面向量的数量积运算,抛物线的定义.【正确解答】设(,)P x y ,0,0x y >>,(2,0),(2,0)M N -,4M N =则(2,),(2,)M P x y N P x y =+=-由0=⋅+NP MN ,则4(2)0x -=, 化简整理得x y 82-= 所以选B【解后反思】向量的坐标表示和数量积的性质在平面向量中的应用是学习的重点和难点.也是高考常常考查的重要内容之一.在平时请多多注意用坐标如何来表示向量平行和向量垂直,既要注意它们联系,也要注意它们的区别.7【思路点拨】本题主要考查.集合的并集与交集运算,集合之间关系的理解。
【正确解答】因为A A B C B C ⊆⊆ 且A B C B = 由题意得A C ⊆所以选A 【解后反思】对集合的子、交、并、补运算,以及集合之间的关系要牢固掌握。