七年级数学整式的乘法2

合集下载

七年级下 整式的乘法(二)

七年级下 整式的乘法(二)

第七讲 整式的乘法(二)一、多项式×多项式【例1】计算:()1(1)(0.6)x x --;()2(2)()x y x y +-; ()3(2)(3)(1)(2)x y x y ++-+-.【变式】计算:()21(23)x -+; ()22(231)(2)(1)(2)a a a a a --+-++.【例2】若2(5)(20)x x x mx n -+=++求m 和n 的值.【变式】若2(2)(34)812x a x x x b -+=-+,则a =____,b =____.【例3】若215(3)()x nx x x m +-=+-,,m n 求的值.【变式】已知22()()2mx y x y x nxy y +-=+-,求,m n 的值.【例4】李先生设计了一幅长方形壁画,已知其长为2xcm ,宽比长少4cm ,若将壁画长和宽都增加3cm,求面积增加了多少?【变式】已知一个梯形,上底长为a,下底长为b,高为h,若上底减少为原来的一半,下底增加为原来的两倍,高增加为3倍,则梯形面积会增加多少?【例5】先化简,再求值:2(32)(51)(65)(35),a a a a-+++-+其中17a=.【变式】化简求值:(72)(321)(43)(96)x y x y x y x y----++,其中2,1x y==-.二、整式的乘法之提高篇【例6】若2(321)()x x x b -++中不含2x 项,求b 的值.【变式】1、若22()(57)x ax b x x ++-+的展开式中不含3x 和2x 项,求,a b 的值.2、在()()b x ax b ax x -++-22的展开式中,x 2的系数是1,x 的系数是9,求整数a 、b 的值.【例7】计算:⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++413121514131211514131214131211.【变式】求()()()()n n n n a a a a a a a a a a a a +⋯+++⋯++-+⋯+++⋯++--2113232121的值,其中103122==n a a ,.【课后练习】1、三个连续奇数,若中间一个为n ,则它们的积为( )A .36n n -B .34n n -C .34n n -D .3n n -2、已知,4,a b m ab +==化简(2)(2)a b --的结果是_______.3、若2()()x a x b x kx ab ++=-+,则k 的值为________.4、若2||6(2)(3)x x x x +-=+-成立,则x 为________.5、若215x x ++=,则(7)(8)x x -+的值为_______.6、设210m m +-=,则3222007___m m ++=.7、已知22(8)(3)x px x x q ++-+的展开式中不含2x ,3x 项,求p 、q 值.8、解方程:(3)(25)(21)(8)41x x x x +--+-=.9、计算:①(4)(4)x x +-;②2(1)(1)x x x -++.10、若当2a b a b b ≥⊕=时,;当a b <,a b a ⊕=,当2x =时,(1)(3)x x x ⊕⋅-⊕的值为________.11、运用你所发现的规律:(1)(1)x x -+=__________; 2(1)(1)x xx -++=__________; 32(1)(1)x x x x -+++=__________;432(1)(1)x x x x x -++++=_______;……………………………………12(1)(1)n n x x x x x --++++= __________;你能总结出什么规律吗?。

七年级数学下册第一章整式的乘除4整式的乘法(第2课时)整式的乘法(二)课件(新版)北师大版

七年级数学下册第一章整式的乘除4整式的乘法(第2课时)整式的乘法(二)课件(新版)北师大版

(B)
A. m=5,n=6
B. m=1,n=-6
C. m=1,n=6
D. m=5,n=-6
6. 若(x+m)与(x+3)的乘积中不含x的一次项,则m
的值为
(A )
A. -3
B. 3
C. 0
D. 1
7. 计算:(a+2b)(2a-4b)=__2_a_2_-_8_b_2__.
8. 计算:(x-7)(x+3)-x(x-2). 解:原式=x2-4x-21-x2+2x=-2x-21.
3. 如果(x-2)(x+3)=x2+px+q,求p+q的值. 解:因为(x-2)(x+3)=x2+x-6=x2+px+q, 所以p=1,q=-6. 则p+q=1+(-6)=-5.
课后作业
夯实基础
新知 多项式与多项式相乘的运算法则
1. 如果(x-2)(x-3)=x2+px+q,那么p,q的值是
(A )
C. p=7,q=12
D. p=7,q=-12
3. 已知a2-a+5=0,则(a-3)(a+2)的值是__-_1_1____.
4. 计算:(3x-1)(2x+1)=__6_x_2_+_x_-_1__. 5. 如图1-4-1中的四边形均为矩形.根据图形,写出一 个正确的等式:__(__m_+_n_)__(__a_+_b_)__=_m_a_+_m_b_+_n_a_+_n_b____.
课堂讲练
新知 多项式与多项式相乘的运算法则
典型例题
【例1】计算:x(x2+x-1)-(2x2-1)(x-4).

北师版初一数学整式的乘法2

北师版初一数学整式的乘法2
患者,甲状腺肿大不明显,但食欲亢进、消瘦、血糖增高,医师忽视了甲状腺功能亢进的有关检查,最容易被误诊为()。A.结核病B.糖尿病C.恶性肿瘤D.败血症E.吸收不良综合征 [单选]VHF接收机选取有用信号的工作是由()以前的各级谐振回路来完成。A.前置中放B.检波C.低放 [问答题,案例分析题]某建设项目的一期工程基坑土方开挖任务委托给某机械化施工公司。该场地自然地坪标高-0.60m,基坑底标高-3.10m,无地下水,基坑底面尺寸为20&times;40(m2)。经甲方代表认可的施工方案为:基坑边坡1:m=1:0.67(Ⅲ类土),挖出土方量在现场附近堆放。挖土采用 [多选]下面哪几项是酒店运管七定式“对你人生受用4W”?()A、第一问:我要什么?B、第二问:我有什么?C、第三问:我缺什么?D、第四问:我要做什么? [单选]()以社会利益和社会责任为最高法则,立足社会整体,以大多数人的意志和利益为重,属于社会本位法。A.民商法B.民法C.经济法D.行政法 [填空题]基础的埋置深度一般不宜小于()m,且基础顶面应低于设计地面()mm以上,以免基础外露。 [单选,A2型题,A1/A2型题]珠蛋白生成障碍性贫血最常见下列哪种异常形态红细胞增多()A.球形红细胞B.破碎红细胞C.靶形红细胞D.泪滴形红细胞E.镰形红细胞 [单选]热泵能将低温物体的能量向高温物体转移,而()。A.外界无需消耗功B.外界需要消耗功C.根据高温物体和低温物体的温差大小确定是否需要消耗功D.外界获得电能 [单选,A2型题,A1/A2型题]为了鉴别巨幼细胞贫血与红白血病,最好的染色方法是()ACP染色B.PAS染色C.&alpha;-NAE染色D.NAP染色E.POX染色 [单选]安全审计是保障计算机系统安全的重要手段之一,其作用不包括()A.检测对系统的入侵B.发现计算机的滥用情况C.发现系统入侵行为和潜在的漏洞D.保证可信网络内部信息不外泄 [单选,A2型题,A1/A2型题]患者体内由于抗原抗体反应导致血管内溶血,主要是由于()A.巨噬细胞的作用B.Ca2+和Mg2+的作用C.补体的作用D.血小板的作用E.T细胞的作用 [单选,A2型题,A1/A2型题]MRI检查须注意的问题不包括()A.了解MRI检查适应证与禁忌证,特别是禁忌证B.确保扫描室内安全C.密切观察病人是否有心理变化D.正确选用线圈、摆置病人位置E.认真核对检查申请单 [单选,A1型题]新生儿期特点及保健要点,错误的是()A.极易患各种疾病,如麻疹、败血症等B.对外界环境适应性差C.新生儿居室温度易保持在16~22℃D.鼓励及早母乳喂养E.注意对新生儿皮肤、脐带等的护理 [单选]痹证所以有风寒湿痹与热痹,大多数医家认为取决于()A.感邪性质的不同B.病变部位的不同C.感邪季节的不同D.地理、气候、环境的不同E.人体素质的阳气盛衰不同 [单选,A2型题,A1/A2型题]患者右面神经周围性瘫,双眼不能向右侧凝视,左侧偏瘫,左侧Babinski征阳性,病变在()。A.左侧内囊B.右侧内囊C.左侧脑桥D.右侧脑桥E.内囊病变延及桥脑 [单选,A2型题,A1/A2型题]遗传性出血性毛细血管扩张症的治疗宜采用()。A.局部注射硬化剂B.鼻中隔黏膜划痕C.面部转移全层皮瓣鼻中隔植皮成形术D.血管栓塞法E.血管结扎法 [单选,A2型题,A1/A2型题]以下自杀的相关因素不正确的是()A.重大的负性应激事件可能成为自杀的直接原因或诱因B.独身、离婚、丧偶者自杀率高于婚姻状况稳定者C.从事专门职业的医生、律师、作家、音乐家等的自杀率低于普通人群D.西方国家的自杀率大多是男多于女,而我国则相差不大 [问答题,简答题]货运检查作业基本程序检查作业有何规定? [填空题]乐府收集民歌的范围很广,北起(),南至()(长江以南),西起(),东到()。 [问答题,简答题]面谈主持的技巧有哪些? [填空题]准确度的大小用()来表示,精密度的大小用()来表示. [单选]下列哪种疾病不是眼部疾病活检适应证()A.眼球及眼附属器异常组织、结节或肿块B.不典型的&quot;麦粒肿&quot;或&quot;霰粒肿&quot;C.晶状体病变D.角膜感染性炎症或溃疡E.因视力丧失或伴疼痛摘除的眼球 [填空题]茄科有()、()、()、() [判断题]对依法履行反洗钱职责或者义务获得的客户身份资料和交易信息,应当予以保密;非依法律规定,不得向任何单位和个人提供。A.正确B.错误 [单选,A型题]新中国成立后,哪年颁布了第一部《中国药典》A、1950年B、1953年C、1957年D、1963年E、1977年 [问答题,简答题]再生气出蒸汽加热器的温度低的原因及解决措施? [问答题,简答题]已知:某汽油机的气缸数目i=6,冲程数t=4,气缸直径D=100[mm],冲程S=115[mm],转速n=3000[r/min],有效功率Ne=100[kW],每小时耗油量Gt=37[kg/h],燃料低热值hu=44100[kJ/kg],机械效率hm=0.83。求:平均有效压力,有效扭矩,有效燃料消耗率,有效热效率,升功率 [单选]人体的血液循环路径是().A、左心室&mdash;动脉&mdash;毛细血管&mdash;静脉&mdash;右心房B、左心室&mdash;静脉&mdash;毛细血管&mdash;动脉&mdash;右心房C、右心房&mdash;动脉&mdash;毛细血管&mdash;静脉&mdash;左心室 [多选]关于转岗交易,下列说法正确的是()。A.岗位交接用于不超过十四天(含生效当天)的柜员岗位的交接,B.包括全部岗位权限的转交,含授权权限和交易权限。C.岗位交接后,授权人原有的岗位权限被停用封存。D.若转岗位期间转授权人未主动收回岗位,系统将于设定收回日期的日终批 [名词解释]船长L [单选]下列对于性病性淋巴肉芽肿的诊断有意义,但除了()A.有不洁性交史或配偶感染史B.衣原体培养阳性C.男性龟头、包皮处可见小丘疹、疱疹,无自觉症状D.低丙种球蛋白血症 [单选,A2型题,A1/A2型题]下列有关医患关系中的自愿原则,叙述错误的是()。A.患者有选择医师的权利,医师有权利接受自己的服务对象B.患者有权依自主决定诊治方案C.医患间的协议约定可在不违背医疗法规的情况下自愿约定D.医患当事人可以对要约内容进行变更E.医患双方可以协议解除 [单选,A2型题,A1/A2型题]自杀意念是指()A.有寻死的愿望,但没有采取任何实际行动B.有毁灭自我的行为,但并未导致死亡C.采取有意毁灭自我的行为,并导致了死亡D.有意或故意伤害自己生命的行为E.反映死亡愿望并不强烈的一种行为 [单选]从企业角度,ERP项目可以分成三个阶段,前期准备阶段、合同项目执行阶段、巩固完善阶段。而其中,在前期准备阶段,软件公司处于什么阶段?()A.售前工作B.项目准备C.蓝图设计D.系统实现 [判断题]预拌砼常用掺合料分别是(粉煤灰)和(磨细矿粉),它们掺入砼中后对和易性的影响是(改善砼和易性),对早期抗压强度的影响是(降低砼的早期强度)。A.正确B.错误 [单选,A2型题,A1/A2型题]后鼻孔填塞纱球的底部留置丝线主要作用是()。A.固定纱球B.取出纱球时牵引用C.填塞纱球时牵拉纱球用D.固定于前鼻孔牵拉纱球用E.以上均不正确 [单选]有关患者隐私权保护的理解错误的是()A.患者既往的疾病史、生活史、婚姻史即其家族疾病史、生活史、情感史属于患者隐私B.披露患者隐私造成严重后果的,由县级以上人民政府卫生行政部门给予警告或者责令暂停6个月以上1年以下执业活动,情节严重的,吊销执业证书C.即使患者已 [单选]某职工月工资为4800元,“工资”是()。A.品质标志B.数量标志C.变量值D.指标 [问答题,简答题]对各设备及开关进行填料及检修时,必须保证哪些条件方可操作? [单选,A2型题,A1/A2型题]透明大体标本的制作中有关填充剂及其配制,下面的描述不妥当的是()。A.填充剂包括:明胶填充剂和乳胶填充剂B.填充剂配制时根据需要添加染料C.加染料时,边加边搅拌直到染色满意为止D.配制填充剂时,不必过滤即可使用E.配制填充剂时,通常用纱布过滤后使

七年级数学北师大版下册初一数学--第一单元 《整式的乘法》第二课时参考课件

七年级数学北师大版下册初一数学--第一单元 《整式的乘法》第二课时参考课件

3
2
(4)(12xy2 10x2 y 21y3 )(6xy3 )
例2 计算:
(2a2 ) (ab b2) 5a(a2b ab2)
单项式与多项式相乘的步骤: ①按乘法分配律把乘积写成单项式与
单项式乘积的代数和的形式; ②转化为单项式的乘法运算; ③把所得的积相加.
解题时需要Байду номын сангаас意的问题
①单项式乘多项式的积仍是多项式,其项数与原 多项式的项数相同。
②单项式分别与多项式的每一项相乘时,要注意积 的各项符号的确定,多项式中的每一项前面的符 号是性质符号,同号相乘得正,异号相乘得负, 最后写成省略加号的代数和的形式.
③单项式要乘以多项式的每一项,不要出现漏乘 现象。
④混合运算中,要注意运算顺序,结果有同类项 的要合并同类项 。
3. 求证对于任意自然数n,代数式 n(n+7)-n(n-5)+6的值都能被6整除。
今天你有什么收获?
本节课你学到了什么? 发现了什么? 有什么收获? 还存在什么没有解决的问题?
(3)2xy2 (x2 2y2 1) (4) 2a4b7c (3 a3bc 3 ac2 1)
5
2
(5)3xy2xy x( y 2) x (6) an1(an1 an1 an 3)
3. 先化简,再求值:
2a(a-b)-b(2a-b)+2ab,其中a=2,b= -3 解: 原式=2a2–2ab –2ab+b2+2ab
1. 判断正误:
(1)m(a+b+c+d)=ma+b+c+d
()
(2) 1 a(a2 a 2) 1 a3 1 a2 1

1.4整式的乘法(第2课时)教学课件北师大版中学数学七年级(下)

1.4整式的乘法(第2课时)教学课件北师大版中学数学七年级(下)
化为单项式乘单项式)
单项式与多项式的乘法法则
单项式与多项式相乘,就是根据乘法分配律用单项
式去乘多项式的每一项,再把所得的积相加.
用字母表示如下:p(a+b+c)=pa+pb+pc
注意:(1)根据是乘法分配律;
(2)积的项数与多项式的项数相同.
知识讲授
例1
ቤተ መጻሕፍቲ ባይዱ
计算:
(1)2ab(5ab2+3a2b);
1
2
2
注意:(1)多项式每一项要包括前面的符号;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致;
(3)单项式系数为负时,改变多项式每项的符号.
随堂训练
4.计算:
-22·( + 2)-5(-)
解:原式=- − − +
=- − − +
=-7 + .
随堂训练
5.先化简,再求值3a(2a2-4a+3)-2a2(3a+4),其中
a=-2.
解:3a(2a2-4a+3)-2a2(3a+4)
=6a3-12a2+9a-6a3-8a2
=-20a2+9a.
当a=-2时,原式=-20×(-2)2+9×(-2)=-98.
随堂训练
6.如果(-3x)2(x2-2nx+2)的展开式中不含x3 项,
注 意
(2)不要出现漏乘现象
(3)运算要有顺序:先乘方,再乘除,最后加减
(4)对于混合运算,注意最后应合并同类项
别相乘,其余字母连同它的指数不变,作为积的因式.
2. 什么叫多项式的项?
在多项式中,每个单项式叫做多项式的项。

中山市七中七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算课件新版湘教版3

中山市七中七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算课件新版湘教版3

学习目标
(1)会利用合并同类项的方法解一元一次方程,体 会等式变形中的化归思想.
(2)能够从实际问题中列出一元一次方程,进一步 体会方程模型思想的作用及应用价值.
推进新课 知识点1 合并同类项
数学小资料
约公元820年 , 中亚细亚数学家阿尔-花拉子米 写了一本代数书 , 重点论述怎样解方程.这本书的 拉丁文译本取名为【対消与还原]. 〞対消”与〞 还原”是什么意思呢 ?
探究新知
〔1〕(x+1)(x2+1)(x-1); 〔2〕(x+y+1)(x+y-1).
你能用简单的方法计算上面的式子吗?
(x + y + 1)(x + y-1) =[(x + y) + 1][(x + y)-1] = (x + y)2-1 = x2 + 2xy + y2-1
把 x+y 看做一个整体
运用乘法公式计算 : ( a + b + c )2 . 解: ( a + b + c )2
= [(a + b) + c]2 = (a + b)2 + 2c(a + b) + c2 = a2 + 2ab + b2 + 2ac + 2bc + c2 = a2 + b2 + c2 + 2ab + 2ac + 2bc 遇到多项式的乘法时 , 我们要先观察式子的特征 , 看 能否运用乘法公式 , 以到达简化运算的目的.
第一个数为x , 第二个数为 x
9
方程 x xx1701
3
93

七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算习题课件新版湘教版

七年级数学下册第2章整式的乘法2.2乘法公式2.2.3运用乘法公式进行计算习题课件新版湘教版
2.2.3 运用乘法公式进行计算
一、平方差公式 1.公式表示:(a+b)(a-b)=_a_2_-_b_2 . 2.说明:字母a,b不仅可以代表单个的数或字母,也可代表一个 单项式或一个_多__项__式__. 3.特征:左边两个多项式相乘,在这两个多项式中,一部分项 _完__全__相__同__,另一部分项互为相反数.右边等于_完__全__相__同__的__项__的 平方减去_互__为__相__反__数__的__项__的平方.
4.计算:(1)592=_____.(2)712=_____. 【解析】(1)592=(60-1)2=3 600-120+1=3 481. (2)712=(70+1)2=4 900+140+1=5 041. 答案:(1)3 481 (2)5 041
乘法公式的综合运用 【例2】(6分)计算:(m-2n+3t)(m+2n-3t). 【规范解答】原式=[m-(2n-3t)][m+(2n-3t)] ……………………………………………………………………1分 =m2-(2n-3t)2 ……………………………………………………4 分 =m2-(4n212nt+9t2) ……………………………………………5分 =m2-4n2+12nt-9t2. ……………………………………………6
【规律总结】 完全平方公式适用的前提是两项式的平方,故在利用完全平
方公式时,有时需把一项拆成两项的和或差,有时需把某几项 结合在一起,当作一项,只有把题目变形,具备完全平方公式 的特征时,才可使用.
【跟踪训练】 1.(2012·白银中考)如图,边长为(m+3)的正方形纸片,剪出一 个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重 叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )

七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版

七年级数学下册第2章整式的乘法2.2乘法公式教学课件新版湘教版

3.计算: (1)202×198;
(2)49.8×50.2.
答案:(1)39996;(2)2499.96.
我思 我进步
通过本节课,你有什么收获? 你还存在哪些疑问,和同伴 交流。
2.2.2 完全平方公式
思考
计算下列各式,你能发现什么规律: ( a+1 )2=( a+1 )( a+1 )=a2+a+a+12=a2+2·a·1+12, ( a+2 )2=( a+2 )( a+2 )=a2+2a+2a+22=a2+2·a·2+22, ( a+3 )2=( a+3 )( a+3 )=a2+3a+3a+32=a2+2·a·3+32, ( a+4 )2=( a+4 )( a+4 )=a2+4a+4a+42=a2+2·a·4+42. 我们用多项式乘法来推导一般情况: ( a+b )2=( a+b )=a2+ab+ab+b2=a2+2ab+b2.
(2)1982.
解:(1)1042=( 100+4 )2 (2)1982=( 200-2 )2
= 1002+2×100×4+42
= 2002-2×200×2+22
= 10000+800+16
= 40000-800+16
= 10816.
= 39204.
练习
1.运用完全平方公式计算: (1)( -2a+3 )2; (3)( -x2-4y )2;

整式的乘法第2课时单项式与多项式相乘课件北师大版数学七年级下册

整式的乘法第2课时单项式与多项式相乘课件北师大版数学七年级下册

ab·(abc + 2x) = ab·abc+ab·2x = a2b2c+2abx
乘法分配律
如何单项式与多项 式相乘的运算?
c2·(m + n – p) = c2m+c2n – c2p
归纳
单项式与多项式的乘法法则 单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一 项,再把所得的积相加.
解:原式 = 3x2 - x3 + x3 - 2x2 + 1 = x2+1. 当 x = -3 时, 原式 = (-3)2 + 1 = 9 + 1 = 10.
你答对了吗?
在计算时要注意先化简然后再代值计算.
温馨提示
1. 注意活用乘法分配律,将积的问题转化为和的问题,不要漏项; 2. 注意确定积的每一项的符号时,既要看单项式的符号,又要看 多项式每一项的符号; 3. 注意单项式与多项式相乘,其积仍是多项式且积的项数与多项 式的项数相同.
(3)-2x2·(xy+y2)-5x(x2y-xy2). 解:原式 = ( -2x2) ·xy+(-2x2) ·y2+(-5x) ·x2y+(-5x)·(-xy2)
= -2x3y+(-2x2y2)+(-5x3y)+5x2y2 = -7x3y+3x2y2.
5.先化简,再求值:-a(a2 - 2ab - b2) - b(ab + 2a2 - 4b2),其中 a = 2,
=10m2n2+15m3n - 5m2n3;
解:(4)2 ( x+y2z+xy2z3 )·xyz = (2x +2y2z+2xy2z3) ·xyz =2x·xyz+2y2z·xyz+2xy2z3·xyz =2x2yz+2xy3z2+2x2y3z4 .

第07讲 整式的乘法(二)-【暑假自学课】2023年新七年级数学暑假精品课(沪教版,上海专用)

第07讲 整式的乘法(二)-【暑假自学课】2023年新七年级数学暑假精品课(沪教版,上海专用)

第07讲 整式的乘法(二)1、单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数.同底数幂分别相乘的积作为积的因式.注:单项式乘法中若有乘方、乘法等混合运算,应按“先乘方、再乘法”顺序进行.例如:()()()22224245234312xy x y x y x y x y ⋅-=⋅-=-.2、单项式与多项式相乘法则:单项式与多项式相乘,用单项式乘以多项式的每一项.再把所得的积相加.例如:()m a b c ⋅++=ma mb mc ++.3、多项式乘以多项式法则:多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.用公式表示:()()()()m n a b m n a m n b ma na mb nb ++=+++=+++.1. 化简x(2x -1)-x 2(2-x)的结果是( )A. -x 3-xB. x 3-xC. -x 2-1D. x 3-12. 化简a (b ﹣c )﹣b (c ﹣a )+c (a ﹣b )的结果是()的为A. 2ab +2bc +2acB. 2ab ﹣2bcC. 2abD. ﹣2bc3. 计算:()()2223469x y x xy y -++的正确结果是( )A. ()223x y - B. ()223x y + C. 33827x y - D. 33827x y +4. 若()()28x x m x -+-中不含x 的一次项,则m 的值为( )A. 8 B. 8- C. 0 D. 8或8-5. 计算:()221196432x y x xy y ⎛⎫++= ⎪-⎝⎭___________.6. 计算:()()()()2222a b a ab b a b a ab b -++-++=___________.7. 根据()()()2x a x b x a b x ab ++=+++,直接计算下列题:(1)1149x x ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭;(2)()()82xy a xy a -+.8. 解方程()()()()322365115x x x x --=+-+.9. 解方程组:()()()()()()121211264x y x y x y y x ⎧-+=+-⎪⎨+-=-⎪⎩.10. 如果442215,3x y x y xy +=-=-,那么4422242323x y xy x y xy y --+++的值.11. 在长为32a +,宽为23b +的长方形铁片上,挖去长为1b +,宽为1a -的小长方形铁片,求剩余部分的面积.12. 画出长方形,用长方形的面积分别表示下列各式及运算结果.(1)()a b c d ++;(2)()()a b c m n +++.13. 若()22133x px x x q ⎛⎫+--+ ⎪⎝⎭的积中不含x 项与3x 项:(1)求p 、q 的值.(2)求代数式()()2122015201623p q pq p q --++的值.14. 如果()()2233y ay y y b ++-+的展开式中不含2y 和3y 项,求代数式:()()322122a a b a ab b ⎛⎫--+-+ ⎪⎝⎭的值.(2022秋·上海静安·七年级上海田家炳中学校考期中)15. 下列计算正确的是( )A. a 3•a =a 3B. (a 2)3=a 5C. 4a •(﹣3ab )=﹣12a 2bD. (﹣3a 2)3=﹣9a 6(2022秋·上海·七年级专题练习)16. 若x 2+px +q =(x ﹣3)(x ﹣5),则p +q 的值为( )A. 15B. 7C. ﹣7D. ﹣8(2022秋·上海·七年级专题练习)17. 下列运算正确的是( )A. 325426x x x ⋅= B. 236326x x x ⋅=C. ()()25293212x x x -⋅-=- D. ()312319()x x x x -⋅--=-(2022秋·上海长宁·七年级上海市第三女子初级中学校考期中)18. 四个学生一起做乘法()()3x x a +-,其中a 是正数,那么最后得出下列四个结果中正确的结果是( )A. 2215x x +-B. 2215x x --C. 2815x x ++D. 2815x x -+(2022秋·上海黄浦·七年级统考期中)19. 现有下列算式:(1)235a a a +=;(2)236236a a a ×=;(3)325()b b =;(4)3393)9b b =(;其中错误的有( )A. 1个B. 2个C. 3个D. 4个(2022秋·上海奉贤·七年级统考期中)20. 如果计算()(2)x a x +-的结果是一个二项式,那么a 的值是( )A. 1B. 2或0C. 3D. 4(2022秋·上海宝山·七年级校考期中)21. 若关于x 的多项式223x x -+与多项式22x x a +-的积中不含一次项,则常数a 的值为( )A. 3- B. 3C. 4D. 4-(2022秋·上海闵行·七年级校联考期中)22. 如果多项式1x -与多项式2x ax b +-相乘,乘积不含一次项以及二次项,那么a ,b 的值分别是( )A. 1,1;B. 1,-1;C. -1,-1;D. -1,1;(2022秋·上海·七年级专题练习)23. 已知三角形的一边长为a 米,这边上的高比这边少1米,那么这个三角形的面积为__________________平方米(用含a 的的代数式表示).(2022秋·上海·七年级专题练习)24. 计算:()()13x x -+=________.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)25. 有若干张如图所示的正方形和长方形卡片,如果要拼一个长为()2a b +,宽为()a b +的矩形,则需要A 类卡片___________张,B 类卡片___________张,C 类卡片___________张,请你在右下角的大矩形中画出一种拼法.(标上卡片名称)(2022秋·上海青浦·七年级校考期中)26. 已知()()2222235x ax bx x x -++-+的展开式中不含三次项和四次项,则展开式中二次项和一次项的系数之和为______.(2022秋·上海·七年级专题练习)27. 已知关于x y 、的两个多项式22mx x y -+与2323x x y -++的差中不含2x 项,则代数式231m m ++的值为___________.(2022秋·上海·七年级专题练习)28. 如果x 2+mx +6=(x ﹣2)(x ﹣n ),那么m +n 的值为_____.(2022秋·上海静安·七年级新中初级中学校考期末)29. 如果二次三项式26x px +-可以分解为()(2)x q x +-,则2()p q -=__________.(2022秋·上海·七年级专题练习)30. 如图,要设计一幅长为3xcm ,宽为2ycm 的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm ,竖彩条的宽度为bcm ,问空白区域的面积是_____.(2022秋·上海宝山·七年级校考期中)31. 图1是一个长方形窗户ABCD ,它是由上下两个长方形(长方形AEFD 和长方形EBCF )的小窗户组成,在这两个小窗户上各安装了一个可以朝一个方向水平方向拉伸的遮阳帘,这两个遮阳帘的高度分别是a 和2b (即DF =a ,BE =2b ),且b >a >0.当遮阳帘没有拉伸时(如图1),窗户的透光面积就是整个长方形窗户(长方形ABCD )的面积.如图2,上面窗户的遮阳帘水平方向向左拉伸2a 至GH .当下面窗户的遮阳帘水平方向向右拉伸2b 时,恰好与GH 在同一直线上(即点G 、H 、P 在同一直线上).(1)求长方形窗户ABCD 的总面积;(用含a 、b 的代数式表示)(2)如图3,如果上面窗户的遮阳帘保持不动,将下面窗户的遮阳帘继续水平方向向右拉伸b 至PQ 时,求此时窗户透光的面积(即图中空白部分的面积)为多少?(用含a 、b 的代数式表示)(3)如果上面窗户的遮阳帘保持不动,当下面窗户的遮阳帘拉伸至BC 的中点处时,请通过计算比较窗户的透光的面积与被遮阳帘遮住的面积的大小.(2022秋·上海·七年级专题练习)32. 多项式3228A x mx x =++-、3B x n =-,A 与B 的乘积中不含有3x 和x 项.(1)试确定m 和n 的值;(2)求3A ﹣2B .(2022秋·上海静安·七年级上海市市西中学校考期中)33. 知识再现:我们知道幂的运算法则有4条,分别是:①m nm n a a a +⋅=,②()n m mn a a =,③()n n n ab a b =,④m n m n a a a -÷=,反过来,这4条运算法则可以写成:①m n m n a a a +=⋅,②()=n mn m a a ,③()n n n a b ab =,④m n m n a a a -=÷.问题解决:已知20222022110.753a ⎛⎫=-⨯ ⎪⎝⎭,且b 满足等式()212273b =,(1)求代数式a 、b 的值;(2)化简代数式()()22x y x xy y -++,并求当x a =,y b =时该代数式的值.34. 如图①,现有边长为b 和a b +的正方形纸片各一张,长和宽分别为b 、a 的长方形纸片一张,其中a b <.把纸片I 、III 按图②所示的方式放入纸片II 内,已知图②中阴影部分的面积满足128S S =,则a ,b 满足的关系式为( )A. 34b a =B. 23b a =C. 35b a =D. 2b a =35. 已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个A. 4B. 5C. 8D. 1036. 观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x --+=-;()324(1)11x x x x x -+++=-;……根据前面各式的规律可得到()12(1)1n n n x x x x x ---+++++= ________.37. 计算:()22221252a ab b a a b ab ⎛⎫-+-- ⎪⎝⎭=_____________38. 试用整式的运算说明:当10y z +=时,我们计算xy xz ⨯可以将十位数字与十位数字加一相乘的结果顺次写在千位和百位,将两个数个位数字的乘积顺次写在十位和个位,如果乘积不足两位数可以用0补齐十位.(例:计算3139⨯时,可以口算3412⨯=,199⨯=,则最终结果为1209)39. 已知代数式()()2324ax x x b -+--化简后,不含有2x 项和常数项.(1)求a ,b 的值.(2)求()()()()22b a a b a b a a b ---+---+的值.第07讲 整式的乘法(二)1、单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数.同底数幂分别相乘的积作为积的因式.注:单项式乘法中若有乘方、乘法等混合运算,应按“先乘方、再乘法”的顺序进行.例如:()()()22224245234312xy x y x y x y x y ⋅-=⋅-=-.2、单项式与多项式相乘法则:单项式与多项式相乘,用单项式乘以多项式的每一项.再把所得的积相加.例如:()m a b c ⋅++=ma mb mc ++.3、多项式乘以多项式法则:多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.用公式表示为:()()()()m n a b m n a m n b ma na mb nb ++=+++=+++.【1题答案】【答案】B 【解析】【分析】原式利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】原式=2x 2−x−2x 2+x 3=x 3−x ,故答案选B.【点睛】本题考查的知识点是单项式乘多项式,解题的关键是熟练的掌握单项式乘多项式.【2题答案】【答案】B【解析】【分析】原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:a (b ﹣c )﹣b (c ﹣a )+c (a ﹣b )=ab ﹣ac ﹣bc +ab +ac ﹣bc=2ab ﹣2bc .故选:B .【点睛】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.【3题答案】【答案】C【解析】【分析】利用多项式乘以多项式展开,然后合并同类项即可求解.【详解】解:()()2223469x y x xy y -++32222381218121827x x y xy x y xy y =++---33827x y =-,故选:C .【点睛】本题主要考查学生对多项式乘以多项式法则的运用,熟练掌握运算法则是解答的关键.【4题答案】【答案】B【解析】【分析】先根据多项式乘以多项式把式子化简,然后根据题意,求出m ,即可.【详解】()()28x x m x -+-322888x x mx x x m=-+-+-()32988x x m x m =-++-,∴含x 的一次项为:()8m x +,∴当不含x 的一次项时,80m +=,∴8m =-.故选:B .【点睛】本题主要考查多项式与多项式相乘的乘法法则,计算时注意待定系数法的运用.【5题答案】【答案】3223553223x x y xy y +-+【解析】【分析】根据多项式乘以多项式的运算,即可.【详解】()221196432x y x xy y ⎛⎫+-+ ⎪⎝⎭32222349323232x x y xy x y xy y =-++-+3223553223x x y xy y =+-+故答案为:3223553223x x y xy y +-+.【点睛】本题考查了整式的乘法,解的关键是掌握多项式乘以多项式的运算.【6题答案】【答案】66a b -【解析】【分析】观察代数式特点,再进行分组相乘,最后利用平方差公式即可求解.【详解】原式()()()()2222a b a ab b a b a ab b ⎡⎤⎡⎤=+-+-++⎣⎦⎣⎦,()()322223322223a a b ab a b ab b a a b ab a b ab b =-++-+++---,()()3333a b a b =+-,()()2332a b =-,66a b =-.故答案为:66a b -【点睛】本题考查的是多项式乘法法则的运用,解题的关键熟练掌握运算法则,计算时注意正负号.【7题答案】【答案】(1)21313636x x -+ (2)222616x y axy a --【解析】【分析】根据题目给出一个新算法直接进行求值计算即可求解.【小问1详解】解:2211111131(4949363636x x x x x x ⎛⎫⎛⎫--=+--+=-+ ⎪⎪⎝⎭⎝⎭;【小问2详解】解:()()22222282(82)16616xy a xy a x y a a xy a x y axy a -+=+-+-=--.【点睛】本题考查了多项式的乘法,本题类似于给出一个新算法根据新算法直接进行求值.【8题答案】【答案】13x =-【解析】【分析】先把方程两边变形,然后再整理计算即可.【详解】()()()()322365115x x x x --=+-+226946665515x x x x x x --+=-+-+226946656515x x x x x x ---+-=--+124x -=13x =-.【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【9题答案】【答案】11x y =⎧⎨=⎩【解析】【分析】先对方程组进行化简整理,然后用加减消元即可求解.【详解】由()()()()()()121211264x y x y x y y x ⎧-+=+-⎪⎨+-=-⎪⎩整理得:2212222264xy x y xy x y x xy xy y +--=-+-⎧⎨+-=-⎩;34102460x y x y -+=⎧⎨+-=⎩①②;+①②得:550x -=,解得:1x =,把1x =代入①得:1y =,∴方程组的解是:11x y =⎧⎨=⎩【点睛】本题主要考查整式的乘法在求方程组的解中的运用和解二元一次方程组,解题的关键是熟练掌握整式的乘法运算和二元一次方程组的解法.【10题答案】【答案】12【解析】【分析】先进行整式加减运算,然后分组,最后整体代入求值即可.【详解】()()442224442244222323x y xy x y xy y x y xy x y x y x y xy --+++=+-+=++-,,,∵442215,3x y x y xy +=-=-,∴原式()15312+-=-.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,在计算时注意整体代入思想的运用.【11题答案】【答案】5857ab a b +++【解析】【分析】设大长方形的面积为1S ,小长方形的面积为2S ,剩余部分的面积为S ,根据大长方形的面积减去小长方形的面积即可求解.【详解】解:设大长方形的面积为1S ,小长方形的面积为2S ,剩余部分的面积为S ,则12S S S =-(32)(23)(1)(1)a b b a =++-+-69461ab a b ab b a =+++-+-+5857ab a b =+++【点睛】本题主要考查长方形面积公式,多项式的乘法运算的应用,根据题意列出代数式是解题的关键.【12题答案】【答案】(1)见解析;ab ac ad ++(2)见解析;am an bm bn cm cn+++++【解析】【分析】根据单项式乘多项式,多项式乘多项式的乘法法则,进行求解作答即可.【小问1详解】解:如图(1),∴()a b c d ab ac ad ++=++;【小问2详解】解:如图2,∴()()a b c m n am an bm bn cm cn +++=+++++;【点睛】本题主要考查了单项式乘多项式,多项式乘多项式的乘法法则的面积验证.解题的关键在于熟练掌握割补法的简单运用以及整式的乘法法则.【13题答案】【答案】(1)13,3p q ==- (2)36【解析】【分析】(1)将原式根据多项式乘以多项式法则展开后合并同类项,由积中不含x 项与3x 项,可知x 项与3x 项的系数均等于0,可得关于p q 、的方程组,解方程组即可;(2)由(1)中p q 、的值得1pq =-,将原式整理变形,再将p q pq 、、的值代入计算即可.【小问1详解】解:()()()224321113331333x px x x q x p x q p x qp x q ⎛⎫⎛⎫+--+=+-+--++- ⎪ ⎪⎝⎭⎝⎭,∵积中不含x 项与3x 项,3010p qp ∴-=+=,,133p q ∴==-,;【小问2详解】解:()()2122015201623p q pq p q --++()()()212015223p q pq pq q -=-++()22015121112333333-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-⨯⨯-+-+⨯-⨯- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 311363=-+36=.【点睛】本题考查了多项式乘以多项式的运算,负整数指数幂、积的乘方,幂的乘方等知识,掌握相关运算法则是解题的关键,【14题答案】【答案】5832-【解析】【分析】直接利用多项式乘法运算法则化简进而得出2y 和3y 项的系数为零进而得出答案.【详解】解:()()2233y ay y y b ++-+=43232233393y y by ay ay aby y y b-++-++-+=()()()43233393y a y b a y ab y b+-+-++-+∵不含有2y 和3y 项,∴30a -=且330b a -+=,∴36a b ==,;当36a b ==,时,()()322122a a b a ab b ⎛⎫--+-+ ⎪⎝⎭3(6)3(91818)=-⨯⨯-+5832=-.【点睛】本题考查了整式的乘法,本题一方面涉及幂的运算以及积的乘方,另一方面注意对乘积中不含2y 和3y 项的理解和应用.(2022秋·上海静安·七年级上海田家炳中学校考期中)【15题答案】【答案】C【解析】【分析】由同底数幂的乘法运算判断,A 由幂的乘方运算判断,B 由单项式乘以单项式判断,C 由积的乘方运算判断,D 从而可得答案.【详解】解:34,a a a = 故A 选项不符合题意;()632,a a = 故B 选项不符合题意;()24312,a ab a b -=- 故C 选项符合题意;()326327,a a -=- 故D 选项不符合题意;故选:.C 【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方运算,单项式乘以单项式,掌握以上知识是解题的关键.(2022秋·上海·七年级专题练习)【16题答案】【答案】B【解析】【分析】直接利用多项式乘多项式运算法则得出p ,q 的值,进而得出答案.【详解】解:∵x 2+px +q =(x ﹣3)(x ﹣5),∴x 2+px +q =x 2﹣8x +15,故p =﹣8,q =15,则p +q =﹣8+15=7故选:B .【点睛】本题考查了多项式乘多项式,正确的计算是解题的关键.(2022秋·上海·七年级专题练习)【17题答案】【答案】C【解析】【分析】根据单项式乘以单项式法则,逐项判断即可求解.【详解】解:A 、325428x x x ⋅=,故本选项错误,不符合题意;B 、235326x x x ⋅=,故本选项错误,不符合题意;C 、()()()()252945323412x x x x x -⋅-=-⋅=-,故本选项正确,符合题意;D 、()()312329221()x x x x x x x -⋅--=-⋅⋅-=,故本选项错误,不符合题意;故选:C 【点睛】本题主要考查了单项式乘以单项式,熟练掌握单项式乘以单项式法则是解题的关键.(2022秋·上海长宁·七年级上海市第三女子初级中学校考期中)【18题答案】【答案】B【解析】【分析】利用多项式与多项式相乘的法则求解即可.【详解】解:()()23)3(3x a x x a x a =+--+-,∵0a > ,∴315a -=-∴5a =∴3352a -=-=-∴()()25321x x x x a +-=--故选:B .【点睛】本题主要考查了多项式乘多项式,解题的关键是正确的计算.(2022秋·上海黄浦·七年级统考期中)【19题答案】【答案】C【解析】【分析】根据积的乘方、合并同类项、单项式乘单项式、幂的乘方运算法则进行计算,然后作出判断即可.【详解】解:(1)235a a a +=,此运算正确;(2)235236a a a =⋅,此运算错误;(3)326()b b =,此运算错误;(4)()339327b b =,此运算错误;综上分析可知,错误的有3个,故C 正确.故选:C .【点睛】本题主要考查了整式的运算,解题的关键是熟练掌握积的乘方、合并同类项、单项式乘单项式、幂的乘方运算法则.(2022秋·上海奉贤·七年级统考期中)【20题答案】【答案】B【解析】【分析】先根据多项式乘多项式法则展开,再合并同类项,根据结果是一个二项式,即可求出a 的值.【详解】解:2()(2)(2)2x a x x a x a +-=+-- 是一个二项式,20a ∴-=或20a -=,2a ∴=或0,故选:B .【点睛】本题考查了多项式乘多项式、二项式的定义,理解二项式的含义是解题的关键.(2022秋·上海宝山·七年级校考期中)【21题答案】【答案】A【解析】【分析】先把两多项式相乘,再令一次项的系数等于0即可得出a 的值.【详解】解:()()22232x x x x a -++-()()4221263x a x a x a=+--++-∵多项式与多项式的积中不含一次项则260a +=即3a =-故选A.【点睛】本题考查了多项式的系数,多项式的乘法,根据多项式的积中不含一次项列出关于x 的方程是解答此题的关键.(2022秋·上海闵行·七年级校联考期中)【22题答案】【答案】B【解析】【分析】根据多项式乘法法则,先将两个多项式相乘得出结果,再根据结果不含一次项和二次项,说明一次项系数和二次项系数为0,从而建立关于a 、b 的方程,即可求解.【详解】()()21+--x x ax b =322+---+x ax bx x ax b=()()321+--++x a x a b x b∵乘积不含一次项以及二次项∴10a -=,()=0-+a b 解得=1a ,1b =-故选B.【点睛】本题考查多项式乘法,除了掌握多项式乘法公式外,本题还需要掌握乘积不含一次项以及二次项即一次项系数和二次项系数为0.(2022秋·上海·七年级专题练习)【23题答案】【答案】22a a -【解析】【分析】先根据三角形的面积公式列出算式,再根据单项式乘多项式的运算法则进行计算即可.【详解】解:∵三角形的一边长为a 米,这边上的高比这边少1米,∴此三角形的高为(a-1)米,∴根据三角形的面积公式得:21(1)22a a a a -⨯⨯-=(平方米);故答案为:22a a -.【点睛】此题考查了单项式乘多项式以及三角形的面积公式,熟练掌握单项式乘多项式的运算法则是解题的关键.(2022秋·上海·七年级专题练习)【24题答案】【答案】223x x +-【解析】【分析】根据多项式乘以多项式法则进行计算即可得到答案.【详解】()()13x x -+=233x x x +--=223x x +-,故答案为:223x x +-.【点睛】此题考查多项式乘以多项式法则:用一个多项式的每一项乘以另一个多项式中的每一项,再将结果合并同类项,熟记乘法法则是解题的关键.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)【25题答案】【答案】2;1;3;见解析【解析】【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和,进行分析所需三类卡片的数量.【详解】解:长为()2a b +,宽为()a b +的矩形面积为:()()22223a b a b a ab b ++=++,A 图形面积为2a ,B 图形面积为2b ,C 图形面积为ab ,则可知需要A 类卡片2张,B 类卡片1张,C 类卡片3张.故答案为:2;1;3.【点睛】本题主要考查的内容是整式的运算与几何的综合题,方法较新颖,注意对此类问题的深入理解,是解题的关键.(2022秋·上海青浦·七年级校考期中)【26题答案】【答案】2-【解析】【分析】利用多项式乘多项式法则将原式展开,根据题意展开式中不含三次项和四次项,可得220a -=,3320a b -++=,求解即可得,a b 的值,然后代入求值可确定展开式中二次项和一次项的系数,求和即可得答案.【详解】解:()()2222235x ax bx x x -++-+4324323222352352354610x x x ax ax ax bx bx bx x x =-+-+-+-++-+432(22)(332)(5534)(56)10a x ab x a b x b x =-+-+++--++-+根据题意,展开式中不含三次项和四次项,∴220a -=,3320a b -++=,解得 1a =,0b =,∴55345513044a b --+=-⨯-⨯+=,565066b -=⨯-=-,即展开式中二次项系数为4,一次项的系数为6-,∴展开式中二次项和一次项的系数之和为4(6)2+-=-.【点睛】本题主要考查了多项式乘多项式运算、多项式相关概念、代数式求值等知识,熟练掌握多项式乘多项式运算法则,正确展开原式是解题关键.(2022秋·上海·七年级专题练习)【27题答案】【解析】【分析】要求231m m ++的值就必须知道m 的值,而m 的值通过两个多项式22mx x y -+与2323x x y -++作差合并后不含2x 的项意味着2x 系数为0而求得.【详解】222222(323)2323(3)42mx x y x x y mx x y x x ym x x y-+--++=-++--=+--∵不含2x 项∴30m +=∴3m =-代入231m m ++中,得2(3)3(3)11-+⨯-+=【点睛】本题主要考查合并同类项、去括号以及代数式求值,利用两个多项式的差不含2x 项得出2x 的系数为0是解题关键.(2022秋·上海·七年级专题练习)【28题答案】【答案】-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m 、n 的值,之后可计算m+n 的值.【详解】解:∵(x ﹣2)(x ﹣n )=x 2﹣(2+n )x +2n ,∴m =﹣(2+n ),2n =6,∴n =3,m =﹣5,∴m +n =﹣5+3=﹣2.故答案为﹣2.【点睛】本题考查了因式分解的十字相乘法,我们可以直接套用公式()()()2x p q x pq x p x q +++=++即可求解.(2022秋·上海静安·七年级新中初级中学校考期末)【29题答案】【解析】【分析】根据多项式的乘法运算,把()(2)x q x +-展开,再根据对应项的系数相等进行求解即可.【详解】()2()(2)=22x q x x q x q+-+-- 2,26q p q ∴-==1,3p q ∴==()22()134p q ∴-=-=故答案为:4.【点睛】此题考查多项式的乘法,解题关键在于展开式对应项的系数相等.(2022秋·上海·七年级专题练习)【30题答案】【答案】(6xy ﹣6xa ﹣4by+4ab )cm 2【解析】【分析】可设想将彩条平移到如图所示的长方形的靠边处,则该长方形的面积就是空白区域的面积,这个大长方形长(3x ﹣2b )cm ,宽为(2y ﹣2a )cm ,根据矩形的面积公式求解即可.【详解】解:可设想将彩条平移到如图所示的长方形的靠边处,将9个小矩形组合成“整体”,一个大的空白长方形,则该长方形的面积就是空白区域的面积.而这个大长方形长(3x ﹣2b )cm ,宽为(2y ﹣2a )cm .所以空白区域的面积为(3x ﹣2b )(2y ﹣2a )cm 2.即(6xy ﹣6xa ﹣4by+4ab )cm 2.故答案为:(6xy ﹣6xa ﹣4by+4ab )cm 2.【点睛】本题考查了空白区域面积的问题,掌握平移的性质、矩形的面积公式是解题的关键.(2022秋·上海宝山·七年级校考期中)【31题答案】【答案】(1)22264a ab b ++;(2)262ab b -(3)遮阳帘遮住的面积大于窗户的透光的面积【解析】【分析】(1)根据题意求得长方形窗户的长为22FH EH a b +=+,高为2+a b ,即可求得面积;(2)窗户透光的面积等于总面积减去遮阳帘的面积即可;(3)先求得下窗户的遮阳帘的长,进而求得遮阳帘遮住的面积,根据(1)的总面积减去遮阳帘遮住的面积即可得到窗户的透光的面积,进而根据整式的加减作出比较即可求解.【详解】(1) 长方形窗户的长为22FH EH a b +=+,高为2+a b ,∴长方形窗户ABCD 的总面积为:()()222a b a b ++222424a ab ab b =+++22264a ab b =++(2)上面窗户遮阳帘的面积为222a a a ⨯=下面窗户的遮阳帘的面积为()2226b b b b ⨯+=∴窗户透光的面积为22264a ab b ++-()2226a b +222226426a ab b a b =++--262ab b =-(3)22BC a b=+ 如果上面窗户的遮阳帘保持不动,当下面窗户的遮阳帘拉伸至BC 的中点处时,则下面遮阳帘的长为()112222BC a b a b =⨯+=+∴上面窗户遮阳帘的面积为222a a a ⨯=下面窗户的遮阳帘的面积为2()b a b ⨯+222ab b =+∴遮阳帘遮住的面积为22222a ab b ++窗户的透光的面积为()2222264222a ab b a ab b ++-++242ab b =+()22222242a ab b ab b ++-+ 222a ab=-2()a ab =- b >a >0a b ∴-<∴遮阳帘遮住的面积大于窗户的透光的面积【点睛】本题考查了列代数式,多项式的乘法,整式的加减的应用,根据题意列出代数式是解题的关键.(2022秋·上海·七年级专题练习)【32题答案】【答案】(1)n =﹣12,m =﹣4(2)323231248A B x x -=--【解析】【分析】(1)先计算A 与B 的乘积,合并同类型后,由乘积中不含有3x 和x 项可得,3x 和x 项的系数为0,列方程解方程即可得到答案;(2)把A 与B 分别代入进行计算即可.【小问1详解】解:()32283x mx x x n ++--()()4323243233624283(3)(6)2248x mx x x nx mnx nx nx m n x mn x n x n =++----+=+-+-+--+∵3228A x mx x =++-、3B x n =-,A 与B 的乘积中不含有3x 和x 项,∴3m ﹣n =0,﹣2n ﹣24=0,解得:n =﹣12,m =﹣4;【小问2详解】解:由(1)得:32323(28)2(3)A B x mx x x n -=++---()3232323428231231262462431248x x x x x x x x x x =-+--+=-+---=--()【点睛】本题考查整式的混合运算,准确对式子进行化简并理解乘积中不含某个项的含义是解题的关键.(2022秋·上海静安·七年级上海市市西中学校考期中)【33题答案】【答案】(1)1a =,2b =(2)33x y -,7-【解析】【分析】(1)逆用积的乘方法则即可求得a 的值,逆用幂的乘方法则可求得b 的值;(2)利用多项式乘多项式的法则化简,并把值代入即可求得代数式的值.【小问1详解】解:2022202220222022144310.750.7513334a ⎛⎫⎛⎫⎛⎫=-⨯=-⨯=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由()212273b =得:212273b =,即()231233b =,所以61233b =,故得612b =,解得2b =;所以1a =,2b =;【小问2详解】解:()()22x y x xy y -++322223x x y xy x y xy y =++---33x y =-,当1x a ==,2y b ==时,原式33127=-=-.【点睛】本题考查了幂的运算法则的逆用,多项式的化简求值,熟练运用幂的运算法则,能正确进行多项式的乘法运算是关键.【34题答案】【答案】A【解析】【分析】用含a ,b 的代数式表示出S 1,S 2,即可得出答案.【详解】由题意可得:S 1=(a +b ) 2-b 2-a 2=2ab ,S 2=(b -a )a =ab -a 2,∵128S S =,∴2ab =8(ab -a 2),∴2ab =8ab -8a 2∴b =4b -4a∴4a =3b ,故选:A .【点睛】本题考查了整式的混合运算,用含a ,b 的代数式表示出S 1,S 2是解题关键.【35题答案】【答案】B【解析】【分析】先根据整式的乘法可得,16m a b ab =+=-,再根据“,a b 为整数”进行分析即可得.【详解】2()()()x a x b x a b x ab ++=+++ ,2216()x mx x a b x ab ∴+-=+++,,16m a b ab ∴=+=-,根据,a b 为整数,有以下10种情况:(1)当1,16a b ==-时,()11615m =+-=-;(2)当2,8a b ==-时,()286m =+-=-;(3)当4,4a b ==-时,()440m =+-=;(4)当8,2a b ==-时,()826m =+-=;(5)当16,1a b ==-时,()16115m =+-=;(6)当1,16a b =-=时,11615m =-+=;(7)当2,8a b =-=时,286m =-+=;(8)当4,4a b =-=时,440m =-+=;(9)当8,2a b =-=时,826m =-+=-;(10)当16,1a b =-=时,16115m =-+=-;综上,符合条件的m 的值为15,6,0,6,15--,共有5个,故选:B .【点睛】本题考查了整式的乘法,依据题意,正确分情况讨论是解题关键.【36题答案】【答案】+1n x -1【解析】【分析】根据题目中的规律可看出,公式左边的第一项为(x-1),公式左边的第二项为x 的n 次幂开始降次排序,系数都为1,公式右边为+1n x -1即可.【详解】由题目中的规律可以得出,()12(1)1n n n x x x x x ---+++++= +1n x -1,故答案为:+1n x -1.【点睛】本题考查了整式乘除相关的规律探究,掌握题目中的规律探究是解题的关键.【37题答案】【答案】32263a b a b -+【解析】【分析】先计算整式的乘法,再计算整式的加减法即可得.【详解】原式222332255a a b a a b b b ---+=,22363b a a b -+=,故答案为:32263a b a b -+.【点睛】本题考查了整式的乘法与加减法,熟练掌握整式的运算法则是解题关键.【38题答案】【答案】见解析【解析】【分析】根据10,10xy x y xz x z =+=+,转换成多项式乘以多项式计算说明即可.【详解】因为10,10xy x y xz x z =+=+,10y z +=,所以()()()()1010101010xy xz x y x z x y x y ⨯=++=++-=22100100101010x x xy xy y y +-++-=()()()1001101001x x y y x x yz ++-=++.【点睛】本题考查了多项式乘以多项式,熟练掌握两位数的表示法,多项式乘以多项式的运算法则是解题的关键.【39题答案】【答案】(1)0.5;12-(2)6-【解析】【分析】(1)先算乘法,合并同类项,即可得出关于a 、b 的方程,求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.【小问1详解】解:()()2324ax x x b-+--2224612ax ax x x b=+----()()()2214612a x a x b =-+-+--,∵代数式()()2324ax x x b -+--化简后,不含有2x 项和常数项.,∴210a -=,120b --=,∴0.5a =,12b =-;【小问2详解】∵0.5a =,12b =-,∴()()()()22b a a b a b a a b ---+---+2222222a b a ab b a ab =-+++--ab =()1122=⨯-6=-.【点睛】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,难度适中.。

七年级数学-第02讲 整式的乘法(解析版)

七年级数学-第02讲 整式的乘法(解析版)

2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。

北师大版七年级数学下册 第一章 整式的乘除(二) 讲义(无答案)

北师大版七年级数学下册  第一章 整式的乘除(二) 讲义(无答案)

第一章整式的乘除(二)一、整式的乘法1. 单项式与单项式相乘:法则:把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(-5a2b2)·(-4 b2c)·(-ab)= [(-5)×(-4)×(-1)]·(a2·a)·(b2·b2)·c=-30a3b4c2.单项式与多项式相乘法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.用字母表示:a(b+c+d)= ab + ac + ad例:= (-3x2)·(-x2)+(-3x2)·2 x一(-3x2)·1=3.多项式与多项式相乘法则:多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.用字母表示:( a+b)(c+d)= ac + ad + bc + bd例:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb二、乘法公式1. 平方差公式:两数和与这两数差的积,等于它们的平方差。

(a+b)(a-b)=a2-b2例:①(x-4)(x+4) = ( )2 - ( )2 =________;②(-m+n )( m+n ) = ( ) ( )=___________________;③=( ) ( )=___________;④(2a+b+3)(2a+b-3) =( )2-( )2=______________= ;⑤(2a—b+3)(2a+b-3)=()()=( )2-( )2⑥ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______; ⑦ (x +3y )( ) = 9y 2-x 22. 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加上(或减去)们的 积的2倍。

湘教版七年级下册数学 第2章 整式的乘法 运用乘法公式进行计算(2)

湘教版七年级下册数学 第2章 整式的乘法 运用乘法公式进行计算(2)
解:设这个正方形的边长是 x 厘米, 由题意,得(x+4)2-x2=40,解得 x=3. 答:这个正方形的边长是 3 厘米.
14.我们知道,(k+1)2=k2+2k+1,变形得(k+1)2-k2=2k+1, 对上面的等式,依次令 k=1,2,3,…,得 第 1 个等式:22-12=2×1+1; 第 2 个等式:32-22=2×2+1; 第 3 个等式:42-32=2×3+1; ….
…,
(n+1)2-n2=2n+1,
所以①+②+③+…+ ,
得(n+1)2-12=2(1+2+3+…+n)+n,即 n2+2n=2S1+n, n2+n
所以 S1= 2 .Fra bibliotek15.先仔细阅读材料,再尝试解决问题: 完全平方公式(x±y)2=x2±2xy+y2 及(x±y)2 的值恒为非负 数的特点在数学中有着广泛的应用,比如探求多项式 2x2+ 12x-4 的最小值时,我们可以这样处理: 解:原式=2(x2+6x-2)=2(x2+6x+9-9-2) =2[(x+3)2-11]=2(x+3)2-22. 因为无论 x 取什么数,(x+3)2 的值都为非负数,
12.解方程: 2x(x-1)-(x-4)(x+4)=(x+2)2.
解:2x(x-1)-(x-4)(x+4)=2x2-2x-x2+16 =x2-2x+16.(x+2)2=x2+4x+4. 故原方程可化为 6x=12. 解得 x=2.
13.如果一个正方形的边长增加 4 厘米,那么它的面积就增加 40 平方厘米,这个正方形的边长是多少?
所以(x+3)2 的最小值为 0,此时 x=-3, 进而 2(x+3)2-22 的最小值是 2×0-22=-22, 所以原多项式的最小值是-22. 请根据上面的解题思路,探求多项式 3x2-6x+12 的最小值 是多少,并写出相应的 x 的值.

2022春七年级数学下册 第2章《整式的乘法》2.1 整式的乘法 2.1.2 幂的乘方与积的乘方 第

2022春七年级数学下册 第2章《整式的乘法》2.1 整式的乘法 2.1.2 幂的乘方与积的乘方 第
=(12)2·34 =841. (2)当 ab=12,m=5,n=3 时,求(ambm)n 的值. 解:原式=2115.
18. 若 59=a,95=b,用 a,b 表示 4545 的值.
解:因为 a5=(59)5=545,b9=(95)9=945, 所以 4545=545·945=a5b9.
19. (2018·长安区一模)图中是小明完成的一道作业 题,请你参考小明答题方法解答下面的问题:
小明的作业 计算:(-4)7×0.257 解:(-4)7×0.257=(-4×0.25)7
=(-1)7 =-1
(1)计算:①82008×(-0.125)2008;
②15211×-5613×1212; (2)若 2·4n·16n=219,求 n 的值.
解:(1)①82008×(-0.125)2008 =(-8×0.125)2008=(-1)2008=1;
A.23100·-32100=-1 B.110100·10101=110 C.110101·10100=10 D.2599·-52100=52
6. x 为正整数,且满足 3x+1·2x-3x·2x+1=66,则 x 等
于( C )
A.2
B.3
C.6
D.12
【 解 析 】 3x + 1·2x - 3x·2x + 1 = 3x·3·2x - 3x·2x·2 = (3 - 2)·3x·2x=(3×2)x=66,则 x=6.
(3)110×19×18×…×21×110×(10×9×8×…×2×1)10.
解:原式=11010×1910×…×110×1010×910×…×110 =110×1010×19×910×18×810×…×(1×1)10 =1.
17. (1)若 n 为正整数,a2n=21,bn=3.求(ab)4n 的值. 解:原式=(a2n)2·(bn)4

11.1 整式的乘法(第2课时 幂的乘方)(课件)-七年级数学上册(沪教版2024)

11.1 整式的乘法(第2课时 幂的乘方)(课件)-七年级数学上册(沪教版2024)


A. a2 a
C. aa
)
B. 2 aa
D.

)2等于(
A
)
3. 若 k 为正整数,则( k5)3的意义为( C
A. 3个 k5相加
B. 5个 k3相加
C. 3个 k5相乘
D. 8个 k 相乘
)
4. [2024许昌期末] 下列计算正确的是( A
A. ( a3)3= a9
2
3
C. a + a = a
大小,如25>23,55>45.在底数(或指数)不相同的情况下,可以
先化相同,再进行比较,如2710与325.
解:2710=(33)10=330,∵30>25,∴330>325,即2710>325.
(1)比较254,1253的大小.
解:(1)254=(52)4=58,1253=(53)3=59.
∵8<9,∴58<59,即254<1253.
例4 计算:
(1)(a3)4·(a4)3·a
(2)(x3)2·(x3)5
解:(1)(a3)4·(a4)3·a
(2)(x3)2·(x3)5
=a3×4·a3×4·a1
=x6·x15
=a12·a12·a1
=x21
=a12+12+1
=a25
练一练
2. 计算
(1)( x2)3;
解:(1)( x2)3= x2×3= x6.
(2)-( a3)2·a7;
解:(2)-( a3)2·a7 =- a6·a7=- a13.
(3)(-32)3×(35)2;解:(3)(-32)3×(35)2=-32×3×35×2
6×310=-36+10=-316.
=-3

2022-2023学年七年级数学下册课件之整式的乘法 第二课时(冀教版)

2022-2023学年七年级数学下册课件之整式的乘法 第二课时(冀教版)

3
3
3
=2a 2b 2-4ab 3.
2 计算:
(1)3x (4x 2y-2xy 2);
(2)3a (2a 2-a+2);
(3)(-2ab)2·(3a+2b-1);
(4)
3 4
xy 1 2
y
y
2
·(-4x ).
解:(1)3x (4x 2y-2xy 2)=3x ·4x 2y-3x ·2xy 2=12x 3y-6x 2y 2.
11 解方程:2x (x-1)=12+x (2x-5). 解:去括号,得2x 2-2x=12+2x 2-5x,
移项、合并同类项,得3x=12, 系数化为1,得x=4.
下列运算中,正确的是( D )
A.-2x (3x 2y-2xy )=-6x 3y-4x 2y B.2xy 2(-x 2+2y 2+1)=-4x 3y 4 C.(3ab 2-2ab)·abc=3a 2b 3-2a 2b 2 D.(ab)2(2ab 2-c)=2a 3b 4-a 2b 2c
9 化简:
(1)(-2ab)(3a 2-2ab-4b 2); (2)3x (2x-3y )-(2x-5y ) ·4x; (3)5a (a-b+c)-2b (a+b-c)-4c (-a-b-c ). 解:(1)原式=-6a 3b+4a 2b 2+8ab 3. (2)原式=6x 2-9xy-8x 2+20xy=-2x 2+11xy. (3)原式=5a 2-5ab+5ac-2ab-2b 2+2bc+
2 先化简,再求值:
ab (ab-2a+2)-2b (a 2b-2ab+2a).其中,a=-1,b=-2.
解:ab (ab-2a+2)-2b (a 2b-2ab+2a)=ab ·ab-ab ·2a+ ab ·2-2b ·a 2b+2b ·2ab-2b ·2a=a 2b 2-2a 2b+2ab- 2a 2b 2+4ab 2-4ab=-a 2b 2-2a 2b+4ab 2-2ab. 当a=-1,b=-2时,原式=-(-1)2×(-2)2-2×(-1)2

七年级数学下册 第2章《整式的乘法》2.1 整式的乘法 2.1.4 多项式的乘法 第1课时 单项式乘

七年级数学下册 第2章《整式的乘法》2.1 整式的乘法 2.1.4 多项式的乘法 第1课时 单项式乘
解:原式=19x3y4, 当 x=-112,y=-2 时, 原式=-6.
17. 解方程:3x(7-2x)+5x(2x-1)=4x(x-3)+56.
解:化简,得 21x-6x2+10x2-5x=4x2-12x+56, 所以 28x=56, 所以 x=2.
18. 如图,把边长分别为 a 和 b 的两个正方形并排 放在一起,请你计算出图中阴影部分的面积.
则它的体积等于( D )
A.21x3+42x2
B.15x3+18x2
C.36x2+72x
D.36x3+72x2
7. 当 x=1,y=15时,3x(2x+y)-2x(x-y)=_5_.
8. 适合 2x(x-1)-x(2x-5)=12 的 x 的值为( D )
A.2
B.1
C.-3
D.4
9. 下列计算错误的是( C ) A.-3x(2-x)=-6x+3x2 B.(2m2n-3mn2)(-mn)=-2m3n2+3m2n3 C.xy(x2y-3xy2-1)=x3y2-x2y3
2. 计算(-3x)·(2x2-5x-1)的结果是( B )
A.-6x3-15x2-3x B.-6x3+15x2+3x
C.-6x3+15x2
D.-6x3+15x2-1
3. 计算:(-2a)·14a3-1=_-__12_a_4_+__2_a___.
知识点 单项式与多项式乘法的应用
4. 要使(x2+ax+1)(-6x3)的展开式中不含 x4 项,
(2)-4x2·12xy-y2-3x·(xy2-2x2y). 解:原式=4x3y+x2y2.
16. 化简求值: (1)2x(x2+xy-y2)-y(2x2-2xy-2y2),其中 x=-2, y=3. 解:原式=2x3+2y3, 当 x=-2,y=3 时, 原式=38.

数学七年级下册《整式的乘法》教案

数学七年级下册《整式的乘法》教案

课时课题:§1.4 整式的乘法(2) 课型:新授课 学习目标:1.在具体情境中了解单项式乘多项式的意义。

2.理解整式乘法运算的算理,体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。

3.会进行单项式与多项式的乘法运算。

重难点: 重点:单项式与多项式相乘的法则。

难点:单项式的系数的符号是负时的情况。

教学方法:引导探索法,归纳法。

教学过程一、.提出问题,引入新课[师]整式包括什么? [生]单项式和多项式。

[师]我们上一节课学习了整式的乘法其中的一部分——单项式与单项式相乘.你认为整式的乘法还应学习哪些内容呢?[生]单项式与多项式相乘或多项式与多项式相乘。

[师]很好!我们这节课就接着来学习整式的乘法——单项式与多项式。

(设计说明:由学生回忆整式及上节课刚学过的单项式乘以单项式,使学生感知本节课内容,明确学习目标,引出课题,教师板书课题。

)二、贴近生活,探究新知活动一:小亮的妈妈承包了一块宽为m 米的长方形基地,准备在这块地种上四种不同的蔬菜,你能用几种方法表示这块地的面积?[生]这是一个长方形,面积应为长乘以宽,即:)(d c b a m +++ [生]还可以看成是四个小长方形的和,即:md mc mb ma +++[师]同学们观察的很仔细,通过这两种方法计算这块地的面积,你还有什么新的发现?[生]这两种方法计算的是同一块地的面积,结果应该相等,即:md mc mb ma d c b a m +++=+++)((教师板书)活动二:如图所示,(1)用两个直角三角形组成一个新的三角形,它的面积是多少? (2)原来的两个三角形的面积和是多少?(3)对于上面(1)(2)两小题的结果有什么关系?[生]三角形的面积是底乘高除以2,所以第(1)题的结果为:)(21c a b + [生]第(2)题的结果为:cb ab 2121+ [生]上面(1)(2)两小题的结果也应该相等,即:)(21c a b +=cb ab 2121+ [师]通过上面的探究活动,我们可以发现单项式乘以多项式在生活当中非常有用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么app可以赌电竞 1fn8xLeabharlann
[单选,A2型题,A1/A2型题]患者初病表现为手足不温,身易恶寒,指尖发青,继而发展为面色苍白,唇甲色淡,小腹冷痛,手足冷凉,脉细欲厥。治用()。A.当归四逆汤B.通脉四逆汤C.通脉四逆加猪胆汁汤D.四逆加人参汤E.白通汤 [名词解释]Web服务器 [名词解释]配料周期 [单选]系统清洗的目的不是()。A、清除铁锈B、清除油脂清除外来C、剩余物质D、提高机械强度 [单选,A2型题,A1/A2型题]预后最差的支气管癌是()A.腺癌B.小细胞支气管癌C.肺泡细胞癌D.鳞癌E.以上所列举的支气管癌的预后相对都是好的 [单选]胃超声检查如图,正常胃壁由外到内顺序,应该为哪几层A.浆膜层、肌层、粘膜下层、粘膜层B.粘膜层、粘膜下层、肌层、浆膜层C.粘膜下层、粘膜层、肌层、浆膜层D.浆膜层、肌层、粘膜层、粘膜下层E.浆膜层、肌层、粘膜层 [单选]()是根据贷前调查和审查的内容、贷款审议与审批的决议、上级单位回复意见的要求等,对借款人的贷款使用、生产经营状况、抵(质)押物的存续状况等进行现场或非现场检查的过程。A、贷后检查B、担保管理C、贷款回收D、档案管理 [单选]下列基质中,不适于栽培根系纤细的花卉植物的是()。A、珍珠岩B、陶粒C、水D、岩棉 [填空题]晶片尺寸较小的探头发射的超声波束,其远场覆盖面积()。 [单选]对人员密集场所实施消防监督检查时,尤其要注意检查员工()在场群众疏散的知识和技能。A.督促B.号召C.跟随D.组织引导 [名词解释]修改配置的灵活性 [问答题,简答题]简述门座式起重机旋转制动系统失灵的常见原因,检查及处理方法。 [单选]上消化道出血时产生黑粪是由于每日出血量超过()A.50mlB.20mlC.40mlD.30mlE.100ml [问答题,简答题]投资连结产品如何控制风险? [单选,A1型题]食积兼表证宜选()A.神曲B.麦芽C.鸡内金D.莱菔子E.山楂 [单选]黄体由两种细胞组成().A.颗粒黄体细胞和卵泡颗粒层B.颗粒黄体细胞和卵泡膜黄体细胞C.膜黄体细胞和门细胞D.颗粒黄体细胞和门细胞E.膜黄体细胞和卵泡膜细胞 [单选]纳税人对税务机关核定的应纳税额有异议的,提供(),经税务机关认定后,调整应纳税额。A、《税务行政许可申请表》B、申请变更核定定额的个体工商户需报送《个体工商户定额核定审批表》。C、申请变更核定定额的其他纳税人提供相关材料。D、税务机关要求的其他材料 [多选]在气柜总体实验中,进行气柜的气密性试验和快速升降试验的目的是检查()A.各中节、钟罩在升降时的性能B.气柜壁板焊缝的焊接质量C.各导轮、导轨、配合及工作情况D.整体气柜密封性能 [单选]下列()不是渠道常见病害。A、渗漏B、裂缝C、蚁害D、漫顶 [单选,A4型题,A3/A4型题]男,30岁,反复阵发性心动过速史10余年,每次心动过速突然发作,持续数十分钟至数小时,此次心动过速发作1小时而来医院就诊。体格检查:BP100/70mmHg,心脏无扩大,心率200次/分,节律规则。最佳的治疗措施为()A.静注西地兰(毛花苷C)B.静注胺碘酮C.静注 [单选,共用题干题]患者女,60岁,典型心房扑动史3年,发作频繁,症状明显。该患首选的治疗是()A.三尖瓣环峡部导管消融B.胺碘酮C.普罗帕酮D.索他洛尔E.房室结改良 [多选]镰刀菌毒素包括()A、单端孢霉烯族化合物B、玉米赤霉烯酮C、丁烯酸内酯D、黄曲霉毒素E、环氯素 [单选]()是通过工会与雇主或雇主协会按照合法的程序,经过集体谈判达成的关于一般劳动条件的协议。A.劳动合同B.雇用规则C.司法解释D.集体合同 [单选]在五笔字型输入法中,属于“基本字根”的一项是()。A、火B、氵C、吕D、里 [填空题]流进节点A的电流分别为I1,I2,I3,根据(),流出节点A的电流为() [问答题,简答题]简述开放性伤口的止血包扎步骤 [单选,A2型题,A1/A2型题]对鼻息肉的描述,错误的是()。A.变态反应是鼻息肉形成的主要因素B.鼻息肉为一高度水肿的疏松结缔组织C.其上皮结构为鳞状上皮、柱状上皮以及其他移行上皮D.鼻息肉组织中的血管和腺体无神经支配E.鼻息肉中的IgG合成细胞明显多于中鼻甲和下鼻甲 [填空题]压力变送器是利用霍尔疚把压力作用下的弹性元件位移信号转换成()信号,来反应压力的变化 [单选,A1型题]产褥期妇女的临床表现恰当的是()A.产后宫缩痛多见于初产妇B.产后初期产妇脉搏增快C.产后第1日宫底稍下降D.子宫复旧因哺乳而加速E.恶露通常持续1~2周 [单选,A2型题,A1/A2型题]可精确切割不同组织,最适于镫骨手术的是()。A.准分子激光B.氩离子激光CO2激光D.半导体激光E.Nd:YAG激光 [单选]称重平台的功能()。A.称重、车辆分离B.称重、数据采集C.称重、测速D.车辆分离、数据采集 [单选]非凹陷性水肿见于A.特发性水肿B.药物性水肿C.营养不良性水肿D.肝原性水肿E.黏液性水肿 [问答题,简答题]谈一下对“净化:宣泄与补偿的情感代谢”的认识. [单选]残联的宗旨是()。A.弘扬人道主义精神,发展残疾人事业,促进残疾人平等、充分参与社会生活,共享物质文化成果。B.代表、服务、管理C.团结教育残疾人,为残疾人服务D.履行法律职责,管理和发展残疾人事业 [单选,A2型题,A1/A2型题]以下哪项不是有机磷农药中毒的毒蕈碱样作用().A.肌肉强制性痉挛B.心血管活动受抑制C.瞳孔括约肌、睫状肌兴奋D.消化道、呼吸道腺体兴奋E.支气管、胃肠道平滑肌兴奋 [问答题,简答题]简述最大离散熵定理。对于一个有m个符号的离散信源,其最大熵是多少? [填空题]合成塔环隙主气流的作用是保持合成塔壳体()。 [单选,共用题干题]患者男,67岁,因“反复第1跖趾关节肿痛2年,发作2天”来诊。查体:关节局部红肿、压痛,体温37.5℃,无外伤史。诊断痛风最重要的关节液检查指标是()。A.白细胞计数增高B.细菌培养阳性C.大量的磷酸盐晶体D.尿酸盐晶体E.关节液内大量坏死组织 [单选,A2型题,A1/A2型题]关于骨盆组成的描述,正确的是()A.由2块髂骨、1块坐骨和1块尾骨组成B.由2块髋骨、1块骶骨和1块尾骨组成C.由2块髂骨、1块骶骨和1块尾骨组成D.由2块髋骨、1块坐骨和1块尾骨组成E.由1块坐骨、耻骨联合和1块尾骨组成 [问答题]一架装载如下的飞机的地板的最小承载限制是多少?货盘尺寸-长37.5宽35货盘重量-34磅系留装置-23磅货物重量-1,255.4磅
相关文档
最新文档