电场中轨迹类问题的分析
高中物理考点:带电粒子在电场中运动轨迹问题的分析方法
2.典例剖析
1解.析[电场若线虚与线运是动电轨场迹线] ,由质 子轨迹可 知质子所 受电 场力方 (多向选沿)如电图场线 2所向示左,,实由线a是点一运质动子到仅b在点电,场电力场作力用做下负由a点运动到b 功 质, 子 点电 所 的势 受运电 能 动场 增 轨力 大 迹垂 ,,动 直虚能 等线减 势可小 线能, 向是下 A电,场错由线;若 ,a 点虚 也运线 可动是 能到等 是势等b 点 线 差, , 等则 电 势线,则下列说 场力 法做 中正功 确, 的电 是势 ( 能减) 小,动能增大,B 对;因电场线和 等差A等.势若线虚的线疏是密电程场度线均,可则表质示子电在场a强点度的大电小势,能而大,a 动点能处小 于密B集.区若,虚所线以是E等a>差E等b,势由线a,=则qmE质知子C在对a点;因 的质 电子 势在 能大a、,b动能小 两点C的.电质势子能在大a小 点的无法 加比 速较 度, 一由 定大E于p=在qφb点知的,加a、速b度两点的 电势D无.法a比 点较 的,电D势错一。定高于b点的电势
答案 BC
解析显隐
2.[等势面与运动轨迹](2017·青岛市质量检测)(多选)两个固定的等
量异种点电荷所形成电场的等势面如图3中虚线所示,一带电粒子以
某一速度从图中a点进入电场,其运动轨迹为图中实线所示,若粒子
只受静电力作用,则下列关于带电粒子
的判断正确的是( )
A.带正电
B.速度先变大后变小
C.电势能先变大后变小
D.经过b点和d点时的速度大小相同
解析 由等势线的分布特点可知,形成电场的正电荷在上方,负电
荷在下方,又由轨迹的偏转情况可确定,运动的粒子带负电,选项A 错误;电场力先做负功后做正功,动能先变小后变大,速度先减小
带电粒子在交变电场中的运动轨迹专题
带电粒子在交变电场中的运动轨迹专题
一、交变电场的基本概念
交变电场是指在时域上呈周期性变化的电场。
在交变电场中,
带电粒子的运动方程比直流电场中复杂得多。
二、带电粒子在交变电场中的运动情况
带电粒子在交变电场中会发生两种运动:漂移运动和回旋运动。
1.漂移运动
漂移运动是带电粒子在交变电场的作用下沿着电场方向偏移。
漂移速度与电场强度和频率有关。
2.回旋运动
带电粒子在交变电场的作用下还会发生径向周期运动,这种运
动叫做回旋运动。
三、带电粒子轨迹的计算方法
在交变电场中,带电粒子的运动轨迹比直流电场中复杂得多,
常用的计算方法有以下几种:
1.迭代法
迭代法是用于求解微分方程的常用数值计算方法。
通过将微分方程进行离散化,计算出每个时间点上带电粒子的位置和速度。
2.数值积分法
数值积分法将微分方程转化为积分方程,再通过数值方法计算出每个时间点上带电粒子的位置和速度。
3.分析法
分析法通过对微分方程进行分析,求出带电粒子在交变电场中的运动函数,进而计算出其轨迹。
四、结论
带电粒子在交变电场中的运动轨迹是十分复杂的,需要利用数学计算方法来求解。
研究带电粒子在交变电场中的运动轨迹对于理解带电粒子在电场中的行为规律十分重要,也为电磁波理论的研究提供了基础。
高二物理学习中的电场中带电粒子的运动轨迹
高二物理学习中的电场中带电粒子的运动轨迹物理学中,电场是一个非常重要的概念。
在高二的物理学习中,学生们开始接触电场以及其中带电粒子的运动轨迹。
本文将探讨电场中带电粒子的运动轨迹,并分析不同情况下的运动特点。
1. 电场的基本概念电场是由电荷产生的,具有电磁性质的力场。
正电荷或者负电荷周围都存在电场,电场向着正电荷的方向呈径向展开。
电场的强度用电场强度表示,它的方向是一个向量,指向正电荷的方向。
2. 带电粒子在匀强电场中的运动轨迹匀强电场是指电场强度大小和方向都保持不变的电场。
当带电粒子进入匀强电场中,受到电场力的作用,将会沿着特定的轨迹运动。
2.1. 正电荷在匀强电场中的运动对于正电荷,在匀强电场中,由于电场力与粒子的速度方向相反,会使得正电荷受到减速的作用。
因此,正电荷在电场中的运动轨迹呈现弯曲的形状,向着电场的方向偏离。
2.2. 负电荷在匀强电场中的运动对于负电荷,在匀强电场中,由于电场力与粒子的速度方向相同,会使得负电荷受到加速的作用。
因此,负电荷在电场中的运动轨迹也呈现弯曲的形状,但与正电荷的轨迹方向相反。
3. 带电粒子在非匀强电场中的运动轨迹非匀强电场是指电场强度大小或者方向发生变化的情况。
带电粒子在非匀强电场中的运动轨迹要通过解微分方程来得到,本文不做详细展开。
4. 带电粒子在不同情况下的运动轨迹除了匀强电场和非匀强电场外,带电粒子的运动轨迹还会受到其他因素的影响,比如初速度、入射角度等。
4.1. 不同初速度下的运动轨迹当带电粒子具有不同的初速度时,其运动轨迹也会有所不同。
较大的初速度会使得轨迹更为弯曲,而较小的初速度则使得轨迹相对较直。
4.2. 不同入射角度下的运动轨迹当带电粒子以不同的入射角度进入电场时,其运动轨迹也会发生变化。
一般而言,入射角度越大,运动轨迹呈现弯曲的程度就越大。
5. 带电粒子在电场中的应用电场中带电粒子的运动轨迹有着广泛的应用。
例如,离子在质谱仪中的运动轨迹可以用来分析物质的成分;荧光荧光探针在细胞中的运动轨迹有助于研究细胞内的各种生物过程。
带电粒子在电场中运动轨迹与电场线、等势面类问题
由粒子的轨迹为曲线, 合力(只受电场力) 指向轨迹凹的一侧, 又要沿电场线切线方向, 可知粒子所受电场力的方向偏向右,因粒子带负电,故 电场线方向偏向左,由沿电场线方向电势降低,可知 φN <φM,E pM <E pN 。
N 点电场线比 M 点密,故场强 E M <E N , 由加速度 a = qE/m 可知 a M <a N 。
粒子若从 N 点运动到 M 点,电场力做正功,动能增加,故v M >v N ,电势能减小E pM <E pN ,综上所述,选项 D 正确。
例 2. 如图所示,虚线 a 、b 、c 代表某一电场中的三个等势面,相邻等势面之间的电势差 相等,实线为一带正电的粒子仅在电场力作用下通过该区域时的运动轨迹,P 、 R 、Q 是 这条轨迹上的三点, 其中 R 在等势面 b 上。
下列判断正确的是 (A. 三个等势面中, c 的电势最低 静电场专题|带电粒子在电场中运动轨迹与电场线、等势面类问题1. 曲线运动合力的方向指向轨迹凹的一侧, 正电荷受电场力方向与场强方向相同, 负电荷 受电场力方向与场强方向相反(电场线的切线方向,与等势面垂直)。
直线运动的合力 方向与运动方向在同一直线上。
2. 同一电荷在电场线(或等势面)密集处场强大,受到的电场力大,产生的加速度大, 反之亦然。
3. 假设带电粒子从一点到另一点, 看电场力的方向与速度方向的夹角, 判断电场力做功情 况,电场力做正功,电势能减少,动能增加 ;电场力做负功,电势能增加,动能减少。
4. 沿电场线的方向,电势降低。
例 1. (2018·天津卷 ·3)如图所示,实线表示某电场的电场线 ( 方向未标出 ),虚线是一带负电的粒子只在电场力作用下的运动轨迹, 设 M 点和 N 点的电势分别为 φM 、φN ,粒子在 M和 N 时加速度大小分别为 列判断正确的是( )a M 、a N ,速度大小分别为 A.v M <v N , a M <a NB. v M < v N , φM <φNC.φM < φN , E p M < E pND.a M <a N , E pM < E pN )B. 带电粒子在P 点的电势能比在Q 点的大C. 带电粒子在P 点的动能与电势能之和比在Q 点的小D. 带电粒子在R 点的加速度方向垂直于等势面b由粒子的轨迹为曲线,合力(只受电场力)指向轨迹凹的一侧,又要垂直于等势面,可知粒子所受电场力的方向偏向下,因粒子带正电,电场线垂直于等势面,故加速度垂直于等势面电场线方向从上到下,由沿电场线方向电势降低, c 的电势最低, a 的电势最高。
电场和磁场的组合作用与粒子轨迹分析
电场和磁场的组合作用与粒子轨迹分析电场和磁场是物理学中重要的概念,它们在自然界和人类的生活中起着重要作用。
在一些物理现象中,电场和磁场可以相互作用,产生组合作用。
本文将探讨电场和磁场的组合作用,并通过粒子轨迹分析来解释这些现象。
在电场中,带电粒子会受到电力的作用,根据库仑定律,电力的方向与电场强度的方向相同。
而在磁场中,带电粒子会受到洛伦兹力的作用,洛伦兹力的方向与磁场强度、粒子速度和粒子电荷之间的关系有关。
当电场和磁场同时存在时,带电粒子将同时受到电力和洛伦兹力的作用,从而产生组合作用。
对于带电粒子在电场和磁场的组合作用下的轨迹,我们可以通过分析其运动方程来进行研究。
以一维情况为例,假设带电粒子沿着x轴方向运动,在一个均匀电场和均匀磁场中运动。
粒子在电场中的受力可由库仑定律描述,即F_e = qE,其中F_e为电场力,q为粒子电荷,E为电场强度。
粒子在磁场中的受力可由洛伦兹力描述,即F_m = q(v × B),其中F_m为磁场力,v为粒子速度,B为磁场强度。
将这两个力合并,可以得到带电粒子在电场和磁场的组合作用下的受力方程为F = F_e + F_m = q(E + v × B)。
根据牛顿第二定律F = m*a(m为粒子质量,a为粒子加速度),我们可以得到带电粒子在电场和磁场的组合作用下的运动方程ma = q(E + v × B)。
通过对这个运动方程的分析,我们可以得到带电粒子在电场和磁场中的轨迹。
对于特定的电场和磁场分布,我们可以通过求解微分方程来得到粒子的轨迹方程。
这些轨迹方程可以帮助我们理解带电粒子在电场和磁场中的运动规律。
除了理论分析,实验也是研究电场和磁场的组合作用的重要方法。
科学家们通过设计实验来验证理论模型,进一步研究带电粒子在电场和磁场中的轨迹。
例如,在质谱仪中,带电粒子经过加速器产生高速运动,同时受到磁场的作用。
通过调控电场和磁场的强度,可以分析带电粒子的轨迹和性质,实现对粒子的分离和测量。
带电粒子在电场中运动轨迹类问题+讲义-(解析版)
带电粒子在电场中运动轨迹类问题知识回顾:1、由运动轨迹分析可知:(1)带电粒子的速度方向为该点轨迹的切线方向;(2)带电粒子的受力方向指向轨迹凹侧;(3)加减速的判断:力与速度的夹角若为锐角,则加速;若为钝角,则减速。
2、电场线和等势面的特点(1)电场强度的强弱判断。
A. 电场线:越密越强B. 等差等势面:越密越强(2)粒子电性和电场方向的判断。
A.正电荷受力方向沿电场线方向,负电荷受力方向逆着电场线方向。
B.沿电场线方向电势降低。
3、功能转化关系电场力做正功则动能增加,速度增加,电势能减小;电场力做负功则动能减少,速度减少,电势能增加。
4、从电势高低角度来判断电势能的高低关系式:P E q ϕ=正电荷电势越高,电势能越大;负电荷电势越高,电势能越低。
练习题一、单选题1、如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,粒子在M 点和N 点时加速度大小分别为M a 、N a ,速度大小分别为M v 、N v ,下列判断正确的是( )A.M N a a <,M N v v <B.M N a a <,M N v v >C.M N a a >,M N v v <D.M N a a >,M N v v >1、答案:B解析:N 点的电场线比M 点的密,故N 点的场强大于M 点的场强,粒子在N 点的加速度大于在M 点的加速度,即M N a a <,做曲线运动的粒子受到的合外力指向曲线的凹侧,粒子受到的电场力指向曲线的右下方,因为粒子带负电,场强方向沿左上方,粒子由M 到N ,电场力做负功,所以M N v v >,故B 正确;ACD 错误。
故选B 。
2、一个电子只在电场力作用下从a 点运动到b 点的轨迹如图中虚线所示,图中一组平行实线可能是电场线也可能是等势面,则以下说法正确的是( )A.如果实线是等势面,a 点的场强比b 点的场强小B.如果实线是电场线,a 点的场强比b 点的场强小C.如果实线是电场线,电子在a 点的速率一定大于在b 点的速率D.如果实线是等势面,电子在a 点的速率一定大于在b 点的速率2、答案:D3、如图所示,虚线a b c 、、代表电场中的三条电场线,实线为一带负电的粒子仅在电场力作用下通过该区域时的运动轨迹,P R Q 、、是这条轨迹上的三点,由此可知( )A.带电粒子在R 点时的速度大小大于在Q 点时的速度大小B.带电粒子在R 点时的速度大小等于在Q 点时的速度大小C.带电粒子在R 点时的动能与电势能之和比在Q 点时的小,比在P 点时的大D.带电粒子在R 点时的动能与电势能之和比在Q 点时的大,比在P 点时的小3、答案:A解析:AB.电荷做曲线运动,电场力指向曲线的内侧,所以电场力的方向向右;若粒子从P 经过R 运动到Q ,电场力做负功,动能减小,可知P 点的动能最大,即速度最大,其次为R 点,而Q 点速度最小,故A 正确,B 错误;CD.根据能量守恒定律可知带电粒子运动过程中电势能与动能的和不变,故CD 错误。
带电粒子在三种典型电场中的运动问题解析
带电粒子在三种典型电场中的运动问题解析张路生淮安贝思特实验学校 江苏 淮安 邮编:211600淮安市经济开发区红豆路8号 tel:带电粒子在电场中的运动是每年高考的热点和重点问题,带电粒子在电场中的运动主要有直线运动、往复运动、类平抛运动等。
考查的类型主要有:带电粒子在点电荷电场中的运动、带电粒子在匀强电场中的运动和带电粒子在交变电场中的运动。
这类试题可以拟定不同的题设条件,从不同角度提出问题,涉及力学、电学的很多关键知识点,要求学生具有较强的综合分析能力。
下面笔者针对三种情况分别归纳总结。
初速度与场强方向的关系 运动形式 υ0∥E 做变速直线运动 υ0⊥E 可能做匀速圆周运动 υ0与E 有夹角 做曲线运动【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是A 将质子从a 点由静止释放,质子向b 点做匀加速运动B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b 点的速率为2/2υC 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υD 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2/2υ 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得2/qU m υ=,由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有22Qq k m r r υ=成立,可得/kQq mr υ=,据此判断C 错D 对。
答案:BD2、根据带电粒子在电场的运动判断点电荷的电性【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。
4-8【速解口诀】口诀法速解电场中的轨迹问题
金题试做 经典题目 你来挑战例.某电场的部分电场线如图所⽰,、是⼀带电粒⼦仅在静电⼒作⽤下运动轨迹(图中虚线)上的两点,下列说法正确的是()A. 粒子一定带正电B.粒子在点的加速度大于它在点的加速度C.粒子在点的动能可能小于它在点的动能D. 粒子在点的电势能高于粒子在点的电势能技巧点拨在只受电场⼒的作⽤下,已知电场线或者等势⾯结合粒⼦的运动轨迹,来判断场强、电势、电势能、动能等物理量的⼤小。
4-8——修改版方法提炼场强⼤小的⽐较:通过电场线的疏密或者(等差)等势⾯的疏密来判断,越密越⼤;而同⼀粒⼦,场强越⼤,则所受电场⼒越⼤,对应的加速度也越⼤。
电势⾼低的判断:顺着电场线电势逐渐降低,或者已知场源电荷的正负,通过越靠近正电荷电势越⾼、越靠近负电荷电势越低来确定。
电势能⼤小的⽐较:可以通过电势能与电势的关系,正电荷在电势⾼的地⽅电势能⼤,负电荷在电势⾼的地⽅电势能小;也可以通过电场⼒做功判断:电场⼒做正功,电势能减小,电场⼒做负功,电势能增加。
动能⼤小⽐较:只有电场⼒做功时,动能和势能相互转化,动能与电势能变化趋势相反。
其中,电场⼒的⽅向根据粒⼦的轨迹,指向曲线轨迹的凹侧,且平⾏于电场线、垂直于等势⾯。
当电场⼒与速度成锐⻆时,速度增⼤;成钝⻆,速度减小。
得出结论:电场⼒指向⼤速度。
口诀1:⼒指凹侧指⼤,⼤⼤动小势能。
(说明:如例题图示,无论粒子从运动到,还是从运动到,大小比较的结论都是一致的。
)口诀2:⾥引⾥⼤,外斥外⼤。
(说明:此口诀适用于点电荷的场强,“里引里大”的意思是:如果点电荷在运动电荷的运功轨迹的弧线⾥,则点电荷吸引运动电荷,即两电荷的电性不相同。
运动电荷越接近点电荷(越往⾥),速度越⼤。
“外斥外大”同理相反。
)金题点睛 课堂思维 妙解点睛某电场的部分电场线如图所示,、是一带电粒子仅在静电力作用下运动轨迹(图中虚线)上的两点,下列说法正确的是().粒子一定带正电.粒子在点的加速度大于它在点的加速度.粒子在点的动能可能小于它在点的动能.粒子在点的电势能高于粒子在点信息解读:给出电场线和轨迹,仅在电场⼒作⽤下,直接口诀判断。
电场中轨迹类问题的分析答案
电场中轨迹类问题的分析答案1. 如图所示,图中MN是由负点电荷产生的电场中的一条电场线.一带正电粒子q飞入电场后,只在电场力作用下沿图中虚线运动,a、b是该曲线上的两点,则下列说法正确是()A.该电场的场源电荷在M端B.a点的电场强度大于b点的电场强度C.a点的电势低于b点的电势D.粒子在a点的动能小于在b点的动能【解析】此题暂无解析【解答】解:由于该粒子只受电场力作用且做曲线运动,物体外力指向轨迹内侧,故该带正电的粒子所受电场力向左,因此电场线由N指向M,所以场源电荷在左侧,根据负电荷周围电场分布特点可知:a点的电场强度小于b点的电场强度,a点的电势高于b点的电势,故粒子在a点的电势能大于在b点的电势能,A正确,B、C错误;在只有电场力做功的情况下,粒子的电势能和动能的总和保持不变,故粒子在a点的动能小于在b点的动能,故D正确.故选AD.2. 如图所示,平行线代表电场线,但未标明方向,一个带正电、电荷量为10−6C的微粒在电场中仅受电场力作用,当它从A点运动到B点时动能减少了10−5J,已知A点的电势为−10V,则以下判断正确的是()A.微粒的运动轨迹如图中的虚线1所示B.微粒的运动轨迹如图中的虚线2所示C.B点电势为零D.B点电势为−20V【解析】此题暂无解析【解答】解:因微粒仅受电场力作用,且由A点运动到B点时动能减少,故电场力做负功,电场力的方向水平向左,轨迹应为虚线1所示,故A正确,故B错误.由W AB=U AB⋅q=−10−5J,可得U AB=−10V,由U AB=φA−φB,可得φB=φA−U AB=0V,故C正确,故D错误.故选AC.3. 如图所示为一带电粒子在电场中的运动轨迹.粒子先经过M点,再经过N点.可以判定()A.粒子在M点受到的电场力大于在N点受到的电场力B.M点的电势高于N点的电势C.粒子带正电D.粒子在M点的动能大于在N点的动能【解析】此题暂无解析【解答】解:A.电场线的疏密表示场强的大小,电场线越密集,场强越大.M点所在区域电场线比N点所在区域电场线疏,所以M点的场强小,粒子在M点受到的电场力小,故A错误.B.沿电场线方向,电势逐渐降低.从总的趋势看,电场线的方向是从M到N的,所以M点的电势高于N点的电势,故B正确.C.如图所示,用速度线与力线的关系判断,在粒子运动的始点M作上述的两条线,显然电场力的方向与电场线的方向基本一致,所以粒子带正电,C正确.D.“速度线与力线”夹角为锐角,所以电场力做正功.粒子的电势能减小,由能量守恒定律知其动能增加,故D错误.故选BC.4. 如图,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点.不计重力.下列说法正确的是()A.M带负电荷,N带正电荷B.M在b点的动能小于它在a点的动能C.N在d点的电势能等于它在e点的电势能D.N在从c点运动到d点的过程中克服电场力做功【解析】本题考查点电荷电场.【解答】解:A.做曲线运动的物体一定受到指向轨迹内侧的合外力,故M带负电荷、N带正电荷,选项A正确;B.对M根据W ab=U ab⋅(−q)<0,M从a到b电场力做负功,动能减小,选项B正确;C.d、e在同一等势面,N在d点的电势能等于它在e点的电势能,选项C正确;D.对N根据W cd=U cd⋅(+q)>0,即N在从c点运动到d点的过程中电场力做正功,选项D错误.故选ABC.5. 如图所示,实线是α粒子仅在电场力作用下由a点运动到b点的运动轨迹,虚线可能是电场线,也可能是等势线,则()A.若虚线是电场线,则α粒子在a点的电势能大,动能小B.若虚线是等差等势线,则α粒子在a点的电势能大,动能小C.不论虚线是电场线还是等势线,a点的电势一定低于b点的电势D.不论虚线是电场线还是等势线,α粒子在a点的加速度一定大于在b点的加速度【解析】此题暂无解析【解答】解:A.α粒子带正电,若虚线是电场线,α粒子所受的电场力沿电场线偏向左,α粒子由a点运动到b点的过程中,电场力做负功,α粒子的电势能增大,动能减小,故α粒子在a点的电势能小,动能大,故A错误.B.若虚线是等差等势线,根据电场线与等势线垂直,可知电场力大致向下,α粒子由a点运动到b点的过程中,电场力对α粒子做正功,α粒子的电势能减小,动能增大,则α粒子在a点的电势能大,动能小,故B正确.C.若虚线是电场线,电场线方向向左,b点的电势高于a点的电势;若虚线是等差等势线,电场线向下,a点的电势高于b点的电势,故C错误.D.电场线的疏密表示场强的大小,等差等势线越密,场强越大,则知a点的场强一定大于b点的场强,由牛顿第二定律得qE=ma,则α粒子在a点的加速度一定大于在b点的加速度,故D正确.故选BD.6. 带负电的粒子在某电场中仅受电场力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速周运动.该电场可能由()A.一个带负电的点电荷形成的B.一个带正电的点电荷形成的C.两个等量负点电荷形成的D.两个等量正点电荷形成的【解析】本题考察常见电场的电场线分布规律【解答】解:AB.带电粒子仅在电场力作用下沿电场线运动,说明该电场中存在直线形状的电场线,带电粒子在电场中可做匀速圆周运动,说明场源电荷为正电荷.在单个正电荷形成的电场中,负电荷可以沿某条电场线运动,也可以在某一等势面上做匀速圆周运动,A 项错误,B项正确.CD.在两等量正电荷形成的电场中,带负电的粒子可以沿两电荷所在直线上的电场线做直线运动,也可以在两电荷连线的中垂面上某一等势线上做匀速圆周运动,C项错误,D项正确.故选BD.7. 如图所示,实线表示电场线,虚线表示只受电场力作用的带电粒子的运动轨迹,粒子先经过M点,后经过N点,由此可以判定()A.粒子带正电B.M点的电势高于N点的电势C.带电粒子在M点处的动能大于在N点处的动能D.带电粒子在M点的电势能小于在N点的电势能【解析】由轨迹的弯曲方向判断带电粒子所受电场力的大致方向,确定带电粒子的电性.根据电场力做功的正负判断电势能的大小和动能的大小.根据电场线的疏密判断电场强度的大小,再去判断电场力的大小.【解答】解:A.由图看出,粒子的轨迹向下弯曲,粒子所受电场力大致向下,电场线方向斜向下,说明粒子带正电.故A正确.BCD.粒子从M运动到N的过程中,电场力做正功,粒子的电势能减小,动能增大,则粒子M点的电势能大于N点的电势能,而粒子带正电,所以M点的电势高于N点的电势,粒子在M点的动能小于在N点的动能.故B正确,CD错误.故选:AB.8. 如图所示,带箭头的线段表示某一电场中的电场线的分布情况.一带电粒子在电场中运动的轨迹如图中虚线所示.只在电场力的作用下电场力,则下列判断中正确的是()A.若粒子是从A运动到B,则粒子带正电;若粒子是从B运动到A,则粒子带负电B.不论粒子是从A运动到B,还是从B运动到A,粒子必带负电C.若粒子是从B运动到A,则其速度减小D.若粒子是从A运动到B,则其电势能增大【解析】本题考查了带电粒子的速度、加速度、动能等物理量的变化情况.【解答】解:A.B.根据运动轨迹夹在受力与速度方向之间可得在B点粒子受力方向向左,故粒子带负电,选项A错误,B正确;C.若粒子从B到A,电场力做正功,动能增大,速度增大,选项C错误;D.若粒子从A到B,电场力做负功,电势能增加,选项D正确.故选BD.9. 如图,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点.不计重力.下列说法正确的是()A.M带负电荷,N带正电荷B.M在b点的动能小于它在a点的动能C.N在d点的电势能等于它在e点的电势能D.N在从c点运动到d点的过程中克服电场力做功【解析】此题暂无解析【解答】解:A.根据带电粒子的运动轨迹可知,M带负电荷,N带正电荷,A正确.B.固定在O点的点电荷带正电,a点所在的等势面电势比b点所在的等势面电势高,M在a点的电势能比在b点的电势能小.根据带电粒子只受电场力作用运动,电势能与动能之和保持不变可知,M在b点的动能小于它在a点的动能,B正确.C.由于e、d两点处于同一等势面上,所以N在d点的电势能等于它在e点的电势能,C正确.D.N在从c点运动到d点的过程中,由高电势向低电势运动,电场力做正功,D错误.故选ABC.10. 如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P的竖直线对称.忽略空气阻力.由此可知()A.Q点的电势比P点高B.油滴在Q点的动能比它在P点的大C.油滴在Q点的电势能比它在P点的大D.油滴在Q点的加速度大小比它在P点的小【解析】此题暂无解析【解答】解:A.根据粒子的弯折方向可知,粒子受合力一定指向上方;同时因轨迹关于P点对称,则可说明电场力应竖直向上;粒子带负电,故说明电场方向竖直向下,则可判断Q点的电势比P点高,故A正确;B.粒子由P到Q过程,合外力做正功,故油滴在Q点的动能比它在P点的大,故B正确;C.因电场力竖直向上,故油滴由P到Q的过程中,电场力做正功,故电势能减小,Q点的电势能比它在P点的小,故C错误;D.因受力为恒力,故P、Q两点加速度大小相同,故D错误.故选AB.11. 如图所示,两个带等量异种电荷的不平行金属板右边缘的A点有一个不计重力的带电粒子,该带电粒子从A点开始沿与上极板平行的方向射入电场,沿图中曲线运动到B点,则()A.带电粒子受到的电场力一定是恒力B.带电粒子从A点运动到B点的过程中,电势能减小C.带电粒子在电场中做类平抛运动D.若带电粒子带正电,则上极板带正电【解析】根据运动轨迹判断粒子受力方向,明确判断电场强度.【解答】解:AC.该电场不是匀强电场,带电粒子受到的电场力不是恒力,带电粒子做的也不是类平抛运动,选项AC错误;B.带电粒子从A点运动到B点的过程中,电场对带电粒子做正功,带电粒子的电势能减小,选项B正确;D.若带电粒子带正电,电场力对带电粒子做正功,上极板带正电,选项D正确.故选:BD.12. 如图,P为固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动.运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c,则()A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v aD.a b>a c>a a,v a>v c>v b【解析】此题暂无解析【解答】解:点电荷的电场强度的特点是离场源电荷距离越小,场强越大,粒子受到的电场力越大,带电粒子的加速度越大,所以a b>a c>a a,根据轨迹弯曲方向判断出,粒子在运动的过程中,一直受静电斥力作用,离电荷最近的位置,电场力对粒子做的负功越多,粒子的速度越小,所以v a>v c>v b,所以D正确,A、B、C错误.故选D.13. 如图a、b、c实线代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab=U bc,实线QP为一带负电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知()A.P点的电势高于Q点的电势B.该质点在P点具有的电势能比在Q点具有的电势能大C.该质点通过P点时的动能比通过Q点时大D.该质点通过P点时的加速度比通过Q点时小【解析】此题暂无解析【解答】解:A.负电荷做曲线运动,电场力指向曲线的内侧,作出电场线,根据轨迹弯曲的方向和负电荷可知,电场线向上,c的电势(Q点)最高,故A错误;B.利用推论,负电荷在电势高处电势能小,知道P点电势能大,故B正确;C.只有电场力做功,电势能和动能之和守恒,故带电质点在P点的动能与电势能之和等于在Q点的动能与电势能之和,P点电势能大,动能小,故C错误;D.等差等势面的疏密可以表示电场的强弱,P处的等势面密,所以P点的电场强度大,粒子受到的电场力大,粒子的加速度大,故D错误.故选B.14. 如图所示,虚线a、b、c代表电场中一簇等势线,相邻等势面之间的电势差相等,实线为一带电质点(重力不计)仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知()A.a、b、c三个等势面中,a的电势最高B.电场中Q点处的电场强度大小比P点处大C.该带电质点在P点处受到的电场力比在Q点处大D.该带电质点在P点具有的电势能比在Q点具有的电势能大【解析】本题考查电势能、电势和场强.【解答】解:AD.若带电质点从P向Q运动,根据合外力指向轨迹弯曲的凹侧知,电场力做负功,电势能增加,动能减小,若从Q向P运动,则电场力做正功,电势能减小,动能增大,故带电质点在P点处的动能大于在Q点处的动能,在P点具有的电势能小于在Q点具有的电势能,因不知质点所带电荷的电性,则无法判断电势高低,AD错误.BC.由图可知,P点处等势线比Q点处密集,则P点处的电场强度比Q点处大,该带电质点在P点处受到的电场力比在Q点处大,B错误,C正确.故选C.15. 如图所示,实线是电场线,一带电粒子只在电场力的作用下沿虚线由A运动到B的过程中,其速度-时间图象是选项中的()A. B.C. D.【解析】根据带电粒子运动轨迹判定电场力方向,再结合电场强度方向判断电性,然后根据电场线的疏密程度判断加速度的大小,从而判断粒子的运动情况选择速度图象.【解答】解:电场力的方向指向轨迹的凹侧且沿与电场线相切的方向,因此粒子从A运动到B的过程中电场力方向与速度方向的夹角大于90∘,粒子做减速运动,电场力越来越小,加速度越来越小,故B项正确.故选:B.16. 如图所示,一带正电的粒子只在电场力的作用下由a点运动到b点,轨迹为一抛物线,且a、b关于m、n对称.下列说法中正确的是()A.该电场可能为点电荷产生的电场B.该电场为匀强电场,场强方向由m到nC.带电粒子在b点的动能一定大于在a点的动能D.带电粒子由a运动到b的过程中电势能一定一直减小【解析】本题考查带电粒子在匀强电场中的曲线运动.【解答】解:根据曲线运动的对称性,知带电粒子在电场中做类斜抛运动,则该电场力为恒力,电场为匀强电场,故A错误;由曲线轨迹弯曲的方向知,场强方向由m到n,故B正确;由a、b对称知,a、b在同一等势面上,则电场力不做功,动能相等,故C错误;由a到b,电场力先做负功后做正功,电势能先变大后变小,故D错误.故选B.17. 如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势值分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是()A.粒子在三点的电势能大小关系为E pc<E pa<E pbB.粒子在三点所受的电场力不相等C.粒子必先过a,再到b,然后到cD.粒子在三点所具有的动能大小关系为E kb>E ka>E kc【解析】此题首先要根据三条表示等势面的虚线等距离判断出电场是匀强电场,所以带电粒子在电场中各点的电场力是相同的;因带电粒子的运动轨迹是抛物线,所以两种运动方式都有可能;根据abc三点的位置关系以及带电粒子的电势能与动能之间的互化,并明确动能和势能之和不变,则可判断出经过a、b、c三点时的动能和电势能的大小关系。
电场中带电粒子的运动轨迹
电场中带电粒子的运动轨迹电场是由电荷产生的一种物理现象,而带电粒子则是电场中最基本的存在形式。
在电场中,带电粒子的运动轨迹受到电场力的影响,从而呈现出各种有趣的运动形式。
本文将探讨电场中带电粒子的运动轨迹及其相关特性。
一、静电场中的带电粒子运动轨迹静电场是指电场随时间不变的情况,即没有电荷的运动或改变。
在静电场中,带电粒子受到的力就是电场力,其大小与带电粒子电荷量以及电场强度有关。
根据静电场中带电粒子的运动特点,轨迹可分为以下几种情况:1. 电荷为正的带电粒子在均匀电场中的运动轨迹当电荷为正的带电粒子置于均匀电场中时,受到的电场力的方向与电场强度方向相同。
由于正电荷受到的电场力的方向与位移方向相反,因此电荷会受到一个向相反方向的加速度。
根据运动学原理,带电粒子的运动轨迹将是一个向相反方向的抛物线。
2. 电荷为负的带电粒子在均匀电场中的运动轨迹当电荷为负的带电粒子置于均匀电场中时,受到的电场力的方向与电场强度方向相反。
由于负电荷受到的电场力的方向与位移方向相同,因此电荷会受到一个向正方向的加速度。
同样根据运动学原理,带电粒子的运动轨迹将是一个向正方向的抛物线。
3. 电荷在非均匀电场中的运动轨迹在非均匀电场中,电场强度在空间中存在差异。
当带电粒子置于非均匀电场中时,受到的电场力的大小和方向将随着粒子位置的变化而改变。
因此,带电粒子的运动轨迹将不再是简单的抛物线,而是受到电场强度变化的影响而呈现出复杂的形态。
二、运动轨迹的特性除了在不同类型的电场中呈现不同的运动轨迹外,带电粒子的运动轨迹还具备一些特性,对于分析电场中的粒子运动非常重要。
1. 对称性在均匀电场中,带电粒子的运动轨迹是对称的,即垂直于电场强度方向的轨迹形状相同。
这表明带电粒子在均匀电场中的运动是相互独立的,并且与具体位置无关。
2. 粒子速度带电粒子在电场中具有初速度时,其运动轨迹将发生变化。
初速度的大小及方向将决定粒子在电场中的路径。
例如,初速度的大小过大可能导致粒子脱离电场,而初速度的方向则会影响运动轨迹的弯曲程度。
带电粒子运动轨迹问题分类赏析
带电粒子运动轨迹问题分类赏析作者:尤从业来源:《中学教学参考·中旬》 2013年第11期甘肃兰炼中小学总校第二中学(730060)尤从业带电粒子在复合场中运动时由于所受力及初始条件的不同,往往形成不同的运动轨迹图形,这些图形深刻反映了带电粒子运动时的不同特性。
对带电粒子而言“受力决定运动,运动描绘轨迹,轨迹涵盖方程”。
究竟如何构建轨迹模型,至关重要。
下面笔者以例题形式解析常见的几种轨迹图形。
一、“拱桥”型【例1】如图1所示,在x轴上方有垂直于xOy平面的匀强磁场,磁感应强度为B,在x轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m、电荷量为q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出的速度和运动的总路程(重力不计)。
点评:解答这道题的关键是根据题意画出“拱桥”型的运动轨迹。
从运动轨迹找关系,从而得出正确的结论。
二、“心连心”型点评:根据题意画出“心连心”型的运动轨迹,并结合轨迹找出粒子从开始进入磁场到第四次通过x轴的位置和时间关系,使问题顺利解决。
三、“蝴蝶”型【例3】如图5所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)点评:本题中要充分考虑整个运动过程的空间和时间的周期性,作出全过程运动轨迹,然后通过草图找出相应的几何关系,问题就会迎刃而解。
总之,巧妙运用带电粒子做曲线运动的条件,正确描绘出带电粒子在复合场中的运动轨迹,然后通过研究这些图形,既可以让学生明晰解题思路,又可以给学生美的享受和艺术的启迪,领略到物理学中的和谐美、对称美,可谓一举两得。
带电粒子运动轨迹与电场线问题
带电粒子运动轨迹与电场线问题带电粒子运动轨迹与电场线问题1. 引言电场是物理学中的一个重要概念,它描述了电荷之间的相互作用。
一个重要的问题是,带电粒子在电场中的运动轨迹如何与电场线相互作用。
在本文中,我们将深入探讨这个问题,并讨论带电粒子运动轨迹与电场线之间的关系。
2. 电荷与电场在讨论带电粒子运动轨迹与电场线问题之前,我们先来回顾一下电荷和电场的概念。
电荷是物质的一种属性,正电荷和负电荷是相互吸引的,而相同电荷之间则相互排斥。
电场是由电荷产生的,它是一种物理量,描述了电荷对周围空间的影响。
3. 带电粒子的运动轨迹带电粒子在电场中运动时,它会受到电场力的作用。
根据牛顿第二定律,电场力可以改变带电粒子的运动状态,导致其轨迹发生变化。
带电粒子的运动轨迹可以通过解运动方程得到,而运动方程则可以由洛伦兹力公式得到。
4. 洛伦兹力与带电粒子的运动方程洛伦兹力公式描述了电场力对带电粒子的作用。
它由两部分组成,一部分是电场力,另一部分是洛伦兹力。
洛伦兹力是由磁场产生的,当带电粒子在电场中运动时,它会受到这两部分力的影响。
带电粒子的运动方程可以由洛伦兹力公式推导得到。
5. 带电粒子运动轨迹与电场线的关系带电粒子在电场中运动时,它的运动轨迹与电场线之间存在一定的关系。
当带电粒子沿着电场线方向运动时,它受到的电场力为零,因此它将保持匀速直线运动。
当带电粒子与电场线垂直相交时,它将受到最大的电场力,轨迹将呈现出弯曲的形状。
6. 静电场与电势静电场是一种没有电流的电场,它可以通过电势来描述。
电势是一个标量量,它表示了带电粒子在电场中由于电势差所具有的能量。
在静电场中,带电粒子的运动轨迹与等势线相切,因为等势线上的任意两点之间的电势差为零。
7. 大小相同的电荷在电场中的运动轨迹比较当两个大小相同的电荷在电场中运动时,它们的运动轨迹会有所不同。
一个正电荷在电场中会沿着电场线运动,而一个负电荷则会与电场线垂直相交。
这是因为正电荷受到电场力的作用而沿着电场线运动,而负电荷则受到电场力的反向作用,导致与电场线垂直相交。
电场中电荷运动轨迹的数学描述与分析
电场中电荷运动轨迹的数学描述与分析引言:电荷在电场中运动是电学中一个重要的现象。
了解电荷在电场中的运动轨迹对于理解电磁力学的基本原理以及应用具有重要意义。
本文将通过数学描述和分析电场中电荷的运动轨迹,展示其规律性和特点。
1. 电场的描述:电场是由电荷所产生的力的场。
根据库伦定律,两个电荷之间的力与它们之间的距离成反比,与它们的电荷量的乘积成正比。
电场的强度与电荷的大小和距离有关。
电场可以用矢量表示。
2. 电荷的运动方程:在电场中,电荷的运动受到电场力的作用。
根据牛顿第二定律,电荷在电场中的运动可以用以下方程来描述:F = m * a其中F是电场力,m是电荷的质量,a是电荷的加速度。
根据电场力的定义和牛顿第二定律,我们可以得到:q * E = m * a其中q是电荷的电量,E是电场强度。
3. 运动轨迹的数学描述:根据电荷的运动方程,我们可以推导出电荷的运动轨迹。
设电荷的初始位置为(r0),初始速度为(v0),那么电荷的位置随时间的变化可以表示为:r(t) = r0 + v0 * t + (1/2) * a * t^2其中t是时间,r(t)是电荷在电场中的位置,a是加速度。
4. 运动轨迹的特点:- 直线运动:如果电荷初始速度为零或者电场中的电场力与电荷的质量成正比,那么电荷将做直线运动。
- 曲线运动:如果电场力的方向改变,或者电场力的大小随着时间变化,电荷将做曲线运动,如抛物线运动、圆周运动等。
- 线性运动:如果电场力与电荷的位置成正比,电荷将做线性运动。
5. 数学模拟和实验验证:通过数学模拟和实验可以验证电场中电荷的运动轨迹。
数学模拟可以通过计算机程序实现对电荷在电场中运动的模拟,可以获得电荷的精确位置和速度随时间的变化。
实验可以利用电场力的测量和对电荷运动进行观察,验证数学模型的准确性。
6. 应用:对于电场中电荷运动轨迹的数学描述和分析在电磁学中起着重要作用。
它是电磁场概念的基础,同时也是电子学、电磁光学等领域的基础。
电场线、等势线(面)及带电粒子在电场中的运动轨迹问题
1.等势线总是和电场线垂直, 已知电场线可以画出等势线, 已知等势线也可以画出电场线。
3.解决运动轨迹问题应熟练掌握的知识及规律 (1)带电粒子所受合力(往往仅为电场力)指向轨迹曲线的内 侧。
(2)某点速度方向为轨迹切线方向。 (3)电场线(或等差等势面)密集的地方场强大。 (4)电场线垂直于等势面。 (5)顺着电场线方向电势降低最快。 (6)电场力做正功,电势能减小;电场力做负功,电势能增 大。有时还要用到牛顿第二定律、动能定理等知识。
2.如图所示,实线表示电场线,虚线表示带电粒子 运动的轨迹,带电粒子ቤተ መጻሕፍቲ ባይዱ受电场力的作用,运动过程 中电势能逐渐减少,它运动到b处时的运动方向与受 力方向可能的是( D )
9.(2018·天津高考)如图所示,实线表示某电场的电场线(方向
未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,
设M点和N点的电势分别为φM、φN,粒子在M和N时加速度大
13.(2017·天津高考)(多选)如图所示,在点电荷Q产生的 电场中,实线MN是一条方向未标出的电场线,虚线AB是 一个电子只在静电力作用下的运动轨迹。设电子在A、B两 点的加速度大小分别为aA、aB,电势能分别为EpA、 EpB。下列说法正确的是B( C ) A.电子一定从A向B运动 B.若aA>aB,则Q靠近M端且为正电荷 C.无论Q为正电荷还是负电荷一定有EpA<EpB D.B点电势可能高于A点电势
1.(2016·全国卷Ⅰ)(多选)如图所示,一带负电荷的油滴 在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对 于过轨迹最低点P的竖直线对称。忽略空气阻力。由此 可知(AB ) A.Q点的电势比P点高 B.油滴在Q点的动能比它在P点的大 C.油滴在Q点的电势能比它在P点的大 D.油滴在Q点的加速度大小比它在P点的小
电场中带电粒子的运动轨迹分析
电场中带电粒子的运动轨迹分析电场是指由电荷所产生的力场,它对带电粒子具有作用力。
在电场中,带电粒子会受到电场力的作用而产生运动。
本文将对电场中带电粒子的运动轨迹进行分析。
1. 电场与带电粒子在电场中,带电粒子会受到电场力的作用。
电场力的大小与带电粒子的电荷量和电场强度有关,方向与带电粒子的电荷性质有关。
如果带电粒子的电荷量为q,电场强度为E,则电场力F的大小可以用以下公式表示:F = qE2. 匀强电场中带电粒子的轨迹在均匀且强度为E的电场中,带电粒子的运动轨迹是直线。
根据牛顿第二定律,可以得出带电粒子的加速度a与电场力F之间存在以下关系:F = ma其中,m表示带电粒子的质量。
由于电场力是恒定的,因此带电粒子的加速度也是恒定的,从而使带电粒子以恒定的速度在直线上运动。
3. 非均匀电场中带电粒子的轨迹在非均匀电场中,带电粒子的运动轨迹将不再是直线。
非均匀电场意味着电场强度在空间中存在变化。
带电粒子在非均匀电场中运动时,会受到不同位置处电场力的作用,因此运动轨迹将呈现出弯曲或曲线的形状。
4. 圆周运动轨迹当电场中的带电粒子速度垂直于电场线方向时,带电粒子将进入圆周运动。
在圆周运动中,带电粒子所受到的向心力由电场力提供。
这种运动轨迹被称为鲁宾逊轨迹,是一种特殊的圆周运动。
5. 初速度不为零时的运动轨迹当带电粒子在电场中具有一个非零的初速度时,运动轨迹将更加复杂。
带电粒子在电场力的作用下,不仅受到加速度的影响,还受到速度的影响。
因此,带电粒子的运动轨迹可能是弯曲的或螺旋形的,具体形式取决于初速度与电场方向之间的关系。
综上所述,电场中带电粒子的运动轨迹受到电场力的作用。
在均匀电场中,带电粒子将沿直线运动;而在非均匀电场中,运动轨迹可能呈现出弯曲或曲线的形状。
当带电粒子的速度垂直于电场线方向时,将出现圆周运动的轨迹。
当带电粒子具有一个非零的初速度时,运动轨迹将更加复杂。
通过对带电粒子在电场中的运动轨迹进行分析,可以进一步理解电场力对带电粒子产生的影响。
带电粒子在电场中运动轨迹与电场线、等势面类问题.
带电粒子在电场中运动轨迹与电场线、等势面类问题总结:(带电粒子只受电场力)1)判断电势:顺着电场方向看电势一直降低。
2)判断电场强度、电场力、加速度大小:E、F、a大小只跟电场线的疏密程度有关,而且三者同时增大或者同时减小。
判断电场强度、电场力、加速度方向:F和a方向相同,而F的方向指向运动轨迹的内侧。
E方向跟F和带电粒子的电性相关。
粒子带正电:E和F方向相同。
若带负电:E和F方向相反。
3)判断速度、动能、电势能:速度、动能的大小同时变化而电势能反向变化。
速度、动能的大小同时变化主要取决电场力做功,而电场力做功跟电场力和速度方向的夹角相关。
电场力与速度方向夹角为锐角,电场力做正功,速度增大,动能增大,电势能减小。
电场力与速度方向夹角为钝角,电场力做负功,速度减小,动能减小,电势能增大。
根据粒子的运动轨迹、电场线(等势面)进行相关问题的判定1.电势高低常用的两种判断方法:(1)依据电场线的方向―→沿电场线方向电势逐渐降低(2)依据U AB=W AB/q→U AB>0,φA>φB;U AB<0,φA<φB.2.电势能增、减的判断方法 :(1) 做功判断法→电场力做正功,电势能减小;电场力做负功,电势能增加.(2) 公式法→由E p=qφp,将q、φp的大小、正负号一起代入公式,Ep的正值越大电势能越大,Ep的负值越小,电势能越大.(3) 能量守恒法→在电场中,若只有电场力做功时,电荷的动能和电势能相互转化,动能增加,电势能减小,反之,电势能增加 .(4) 电荷电势法→正电荷在电势高的地方电势能大,负电荷在电势低的地方电势能大.“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向,指向轨迹的凹侧)从二者的夹角情况来分析电荷做曲线运动的情况.“三不知时要假设”——电荷的正负、场强的方向或等势面电势的高低、电荷运动的方向,是题目中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.有时各种情景的讨论结果是归一的。
电场对带电粒子的运动轨迹与速度的影响
电场对带电粒子的运动轨迹与速度的影响电场是由电荷产生的一个力场,它对带电粒子的运动轨迹和速度有着重要的影响。
在物理学中,我们通过研究电场对带电粒子运动的影响,可以深入理解电荷之间的相互作用以及电磁现象的本质。
一、电场对带电粒子运动轨迹的影响当一个带电粒子置于电场中时,它会受到电场力的作用。
电场力的方向与电荷的符号以及电场的方向有关。
根据库仑定律,如果带电粒子是正电荷,它将受到指向电场方向的力;如果带电粒子是负电荷,它将受到指向相反方向的力。
令人惊奇的是,电场力对带电粒子的作用不仅仅是改变它的速度和方向,更重要的是它对带电粒子的运动轨迹产生了影响。
当带电粒子在垂直于电场方向的平面上运动时,电场力将使带电粒子在运动轨迹上产生曲线。
这是因为电场力的大小与带电粒子与电场中的其他电荷之间的距离有关。
当带电粒子与某一电荷距离很近时,电场力较大,而当带电粒子与另一电荷的距离较远时,电场力较小。
这种不均匀的电场力分布导致了带电粒子的运动轨迹不再是直线,而是弯曲的。
二、电场对带电粒子速度的影响带电粒子在电场中的速度受到电场力的影响。
根据牛顿第二定律,电场力等于带电粒子的质量乘以加速度。
由此可见,电场力会使带电粒子加速或减速。
当带电粒子被加速时,它的速度将增加;而当带电粒子被减速时,它的速度将减小。
正如我们之前所提到的,电场力的方向取决于电荷的符号。
因此,带正电荷的粒子在电场中将受到与电场方向相同的力,而带负电荷的粒子则受到与电场方向相反的力。
这就意味着电场力对带电粒子速度的影响也与电荷的符号有关。
正电荷在电场中会被加速,速度增加;负电荷则会被减速,速度减小。
需要注意的是,在电场中,带电粒子的速度并不一定是恒定的。
它的速度随着电场力的变化而变化。
当电场力的方向与带电粒子的速度方向相同时,带电粒子将加速;当电场力的方向与带电粒子的速度方向相反时,带电粒子将减速。
这种速度的变化使得带电粒子在电场中的运动变得更加复杂。
总结起来,电场对带电粒子的运动轨迹和速度有着重要的影响。
电场中带电粒子的运动轨迹
电场中带电粒子的运动轨迹电场是由带电粒子产生的,而带电粒子在电场中的运动轨迹则受到电场力的作用。
这种力可以使带电粒子发生加速或减速的运动,从而形成各种不同的轨迹。
本文将探讨电场中带电粒子的运动轨迹,并尝试解释其背后的物理原理。
首先,我们需要了解电场的基本概念。
电场是由带电粒子产生的一种物理场,它是一种能量的分布形式。
电场中的带电粒子受到电场力的作用,这个力的大小和方向由带电粒子的电荷量和电场强度决定。
在一个均匀电场中,电场力的方向始终与电场强度的方向相同,而大小则与带电粒子的电荷量成正比。
带电粒子在电场中的运动轨迹可以分为三种情况:直线运动、圆周运动和抛物线运动。
这些轨迹的形成与带电粒子的初速度、电场强度和带电粒子的质量有关。
首先,当带电粒子的初速度与电场力的方向相同,并且带电粒子的质量足够小,可以忽略重力的影响时,带电粒子将以匀速直线运动。
这是因为电场力与带电粒子的速度方向相同,所以电场力对带电粒子的加速度为零,带电粒子将保持匀速直线运动。
其次,当带电粒子的初速度与电场力的方向垂直时,带电粒子将以圆周运动的形式运动。
这是因为电场力的方向始终垂直于带电粒子的速度方向,它提供了一个向心力,使带电粒子维持在一个固定的半径上做圆周运动。
最后,当带电粒子的初速度与电场力的方向有一个夹角时,带电粒子将以抛物线运动的形式运动。
这是因为电场力的方向与带电粒子的速度方向之间存在一个分解关系,其中一个分量与速度方向相同,另一个分量与速度方向垂直。
这两个分量的合力使带电粒子沿着一个抛物线轨迹运动。
需要注意的是,以上讨论的是在一个理想的情况下。
在实际情况中,带电粒子还可能受到其他力的作用,如重力和阻力。
这些额外的力会对带电粒子的运动轨迹产生一定的影响。
此外,带电粒子的运动轨迹还可能受到电场的非均匀性和带电粒子之间的相互作用的影响。
总之,电场中带电粒子的运动轨迹是由电场力的作用决定的。
带电粒子的初速度、电场强度和带电粒子的质量是影响运动轨迹的关键因素。
电场线与带电粒子运动轨迹的关系
电场线与带电粒子运动轨迹的关系
初学电场线经常有电场线是否是带电粒子运动的轨迹问题,初学者常出错。
一、电场线与轨迹混为一谈缘故
1、一样电场线和一样运动的轨迹都为曲线,两极外形上极为相似。
2、带电粒子在电场中只受电场力作用下运动,电场力是改变使轨迹发生的弯曲,而电场力与电场方向紧密相关,产生了电场与轨迹相同的错误关联。
3、电场线是人为画出表示电场强弱和方向的曲线,实际上并不存在,因此我们潜意识地就产生了这并不存在的线条是如何画出来的疑问,我们也就相因此把只受电场力作用下粒子运动轨迹当作显示电场线的踪迹。
二、电场线与轨迹区别
1、从含义上区别
电场线是用来显示电场强弱与方向的曲线;而轨迹是用来显示物体运动过程的曲线。
两者是风马牛不相及的问题,确实是存在一定的重合,那只是巧合而已,而不是必定,从思维逻辑上区别它们。
2、从受力特点上区别
反证法:如图所示,假设图中曲线既是电场线又是轨迹线。
以带电粒子在A点受力分析为例,电场力F电方向在电场线的切线(图中虚直线)方向上,而切线是在曲线弯曲人外侧,曲线运动的物体受到的合力F曲方向指向轨迹弯曲的内侧方向,明显F电与F曲方向分布在曲线的两侧,而带电粒子只受电场力作用,这种情形是存在的,即前面的假设是错误的。
3、电场线与轨迹线重合的一个特例
若电场线为直线,且带电粒子只受电场力初速度方向在电场线上,即F 电方向与初速度方向相同保持在电场线上直线运动。
但我们不以如此一个特例来以偏概全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电场中轨迹类问题的分析1. 如图所示,图中MN是由负点电荷产生的电场中的一条电场线.一带正电粒子q飞入电场后,只在电场力作用下沿图中虚线运动,a、b 是该曲线上的两点,则下列说法正确是()A.该电场的场源电荷在M端B.a点的电场强度大于b点的电场强度C.a点的电势低于b点的电势D.粒子在a点的动能小于在b点的动能2. 如图所示,平行线代表电场线,但未标明方向,一个带正电、电荷量为10−6C的微粒在电场中仅受电场力作用,当它从A点运动到B 点时动能减少了10−5J,已知A点的电势为−10V,则以下判断正确的是()A.微粒的运动轨迹如图中的虚线1所示B.微粒的运动轨迹如图中的虚线2所示C.B点电势为零D.B点电势为−20V3. 如图所示为一带电粒子在电场中的运动轨迹.粒子先经过M点,再经过N点.可以判定()A.粒子在M点受到的电场力大于在N点受到的电场力B.M点的电势高于N点的电势C.粒子带正电D.粒子在M点的动能大于在N点的动能4. 如图,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点.不计重力.下列说法正确的是()A.M带负电荷,N带正电荷B.M在b点的动能小于它在a点的动能C.N在d点的电势能等于它在e点的电势能D.N在从c点运动到d点的过程中克服电场力做功5. 如图所示,实线是α粒子仅在电场力作用下由a点运动到b点的运动轨迹,虚线可能是电场线,也可能是等势线,则()A.若虚线是电场线,则α粒子在a点的电势能大,动能小B.若虚线是等差等势线,则α粒子在a点的电势能大,动能小C.不论虚线是电场线还是等势线,a点的电势一定低于b点的电势D.不论虚线是电场线还是等势线,α粒子在a点的加速度一定大于在b点的加速度6. 带负电的粒子在某电场中仅受电场力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速周运动.该电场可能由()A.一个带负电的点电荷形成的B.一个带正电的点电荷形成的C.两个等量负点电荷形成的D.两个等量正点电荷形成的7. 如图所示,实线表示电场线,虚线表示只受电场力作用的带电粒子的运动轨迹,粒子先经过M点,后经过N点,由此可以判定()A.粒子带正电B.M点的电势高于N点的电势C.带电粒子在M点处的动能大于在N点处的动能D.带电粒子在M点的电势能小于在N点的电势能8. 如图所示,带箭头的线段表示某一电场中的电场线的分布情况.一带电粒子在电场中运动的轨迹如图中虚线所示.只在电场力的作用下电场力,则下列判断中正确的是()A.若粒子是从A运动到B,则粒子带正电;若粒子是从B运动到A,则粒子带负电B.不论粒子是从A运动到B,还是从B运动到A,粒子必带负电C.若粒子是从B运动到A,则其速度减小D.若粒子是从A运动到B,则其电势能增大9. 如图,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点.不计重力.下列说法正确的是()A.M带负电荷,N带正电荷B.M在b点的动能小于它在a点的动能C.N在d点的电势能等于它在e点的电势能D.N在从c点运动到d点的过程中克服电场力做功10. 如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P的竖直线对称.忽略空气阻力.由此可知()A.Q点的电势比P点高B.油滴在Q点的动能比它在P点的大C.油滴在Q点的电势能比它在P点的大D.油滴在Q点的加速度大小比它在P点的小11. 如图所示,两个带等量异种电荷的不平行金属板右边缘的A点有一个不计重力的带电粒子,该带电粒子从A点开始沿与上极板平行的方向射入电场,沿图中曲线运动到B点,则()A.带电粒子受到的电场力一定是恒力B.带电粒子从A点运动到B点的过程中,电势能减小C.带电粒子在电场中做类平抛运动D.若带电粒子带正电,则上极板带正电12. 如图,P为固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动.运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c,则()A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v aD.a b>a c>a a,v a>v c>v b13. 如图a、b、c实线代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab=U bc,实线QP为一带负电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知()A.P点的电势高于Q点的电势B.该质点在P点具有的电势能比在Q点具有的电势能大C.该质点通过P点时的动能比通过Q点时大D.该质点通过P点时的加速度比通过Q点时小14. 如图所示,虚线a、b、c代表电场中一簇等势线,相邻等势面之间的电势差相等,实线为一带电质点(重力不计)仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知()A.a、b、c三个等势面中,a的电势最高B.电场中Q点处的电场强度大小比P点处大C.该带电质点在P点处受到的电场力比在Q点处大D.该带电质点在P点具有的电势能比在Q点具有的电势能大15. 如图所示,实线是电场线,一带电粒子只在电场力的作用下沿虚线由A运动到B的过程中,其速度-时间图象是选项中的()A. B.C. D.16. 如图所示,一带正电的粒子只在电场力的作用下由a点运动到b点,轨迹为一抛物线,且a、b关于m、n对称.下列说法中正确的是()A.该电场可能为点电荷产生的电场B.该电场为匀强电场,场强方向由m到nC.带电粒子在b点的动能一定大于在a点的动能D.带电粒子由a运动到b的过程中电势能一定一直减小17. 如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势值分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是()A.粒子在三点的电势能大小关系为E pc<E pa<E pbB.粒子在三点所受的电场力不相等C.粒子必先过a,再到b,然后到cD.粒子在三点所具有的动能大小关系为E kb>E ka>E kc18. 如图所示,图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点,若带电粒子在运动过程中只受到电场力作用,根据此图不能判断是()A.带电粒子所带电荷的正、负B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的加速度何处较大D.带电粒子在a、b两点的速度何处较大19. 如图所示,实线表示电场线,虚线表示带电粒子运动的轨迹.带电粒子只受电场力的作用,运动过程中电势能逐渐减小,它运动到b处时的运动方向与受力方向可能的是()A.B.C.D.20. 如图所示,竖直实线表示某匀强电场中的一簇等势面,一带电微粒在电场中从A到B做直线运动(如图中虚线所示).则该微粒()A.一定带正电B.从A到B的过程中做匀速直线运动C.从A到B的过程中电势能增加D.从A到B的过程中机械能守恒21. 某静电场中的电场线如图所示,带电粒子在电场中仅受电场力作用,其运动轨迹如图中虚线所示,由M运动到N,以下说法错误的是()A.粒子必定带正电荷B.粒子在M点的加速度大于它在N点的加速度C.粒子在M点的加速度小于它在N点的加速度D.粒子在M点的动能小于它在N点的动能22.如图所示,虚线表示某电场的等势面,一带电粒子仅在电场力作用下由A点运动到B点的径迹如图中实线所示.粒子在A点的速度为v A、电势能为E pA;在B点的速度为v B、电势能为E pB.则下列结论正确的是()A.粒子带正电,v A>v B,E pA<E pBB.粒子带正电,v A<v B,E pA<E pBC.粒子带负电,v A>v B,E pA<E pBD.粒子带负电,v A<v B,E pA>E pB23. 带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下.若不计空气阻力,则此带电油滴从a运动到b的过程中,能量变化情况为()A.动能减少B.电势能增加C.动能和电势能之和减小D.重力势能和电势能之和增加24. 如图所示,虚线表示某电场中的四个等势面,相邻等势面间的电势差相等.一不计重力的带负电的粒子从右侧垂直等势面φ4向左进入电场,运动轨迹与等势面分别交于a、b、c三点,则可以判断()A.φ1>φ2>φ3>φ4B.该区域可能是点电荷和无限大金属平板形成的电场C.φ4等势面上各点场强处处相等D.粒子的运动轨迹和φ3等势面也可能垂直25. 带电粒子仅在电场力作用下,从电场中a点以初速度v0进入电场并沿虚线所示的轨迹运动到b点,如图所示,实线是电场线,关于粒子,下列说法正确的是()A.在a点的加速度大于在b点的加速度B.在a点的电势能小于在b点的电势能C.在a点的速度小于在b点的速度D.电场中a点的电势一定比b点的电势高26.如图所示,实线为方向未知的三条电场线,虚线1和2为等势线,a、b两个带电粒子以相同的速度从电场中M点沿等势线1的切线飞出,粒子仅在电场力作用下的运动轨迹如图中虚线所示,则在开始运动的一小段时间内(粒子在图示区域内)()A.a受的电场力较大,b受的电场力较小B.a的速度将减小,b的速度将增大C.a一定带正电,b一定带负电D.两个粒子的电势能均减小27. 如图所示,实线是一簇未标明方向的由点电荷Q产生的电场线,若带电粒子q(|Q|≫|q|)由a运动到b轨迹如图中虚线,电场力做正功.已知在a、b两点粒子所受电场力分别为F a、F b,则下列判断正确的是()A.若Q为正电荷,则q带负电,且F a>F bB.若Q为正电荷,则q带负电,且F a<F bC.若Q为负电荷,则q带负电,且F a>F bD.若Q为负电荷,则q带负电,且F a<F b28. 如图所示,实线表示某电场中的电场线但方向未知,虚线是某一带负电的粒子通过该电场区域的运动轨迹,A、B是运动轨迹上的两点.若带电粒子在运动中只受电场力作用,在A、B两点的电势分别为φA、φB,加速度大小分别为a A、a B,速度大小分别为v A、v B,电势能大小分别为E pA、E pB,则下列说法正确的是()A.v A<v B,a A>a BB.v A>v B,φA<φBC.a A>a B,E pA<E pBD.φA<φB,E pA>E pB29. 如图所示,虚线a、b、c表示电场中的三个等势面,相邻等势面间的电势差相等,实线为一个负离子仅在电场力作用下通过该区域的运动轨迹,P、Q是轨迹上的两点.下列说法正确的是()A.三个等势面中,等势面a的电势最低B.带电离子一定是从P点向Q点运动C.带电离子通过P点时的加速度比通过Q点时的小D.带电离子通过P点时的动能比通过Q点时的小30. 如图所示,图中的三条曲线为电场线,一带电粒子从A点以某一初速度仅在电场力作用下,从A点沿图中虚线运动到B点.下列说法正确的是()A.带电粒子一定带负电B.粒子在A、B两点的电势能可能相等C.粒子在A点的动能大于在B点的动能D.A点的场强大于B点的场强31. 如图所示,虚线表示等势面,相邻两等势面间的电势差相等,有一带电的小球在该电场中运动,实线表示该带正电的小球的运动轨迹.小球在a点的动能等于20eV,运动到b点时的动能等于2eV.若取c点为电势零点,则这个带电小球的电势能等于−6eV时(不计重力和空气阻力),它的动能等于()A.16eV B.14eV C.6eV D.4eV32. 如图所示,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点.不计重力,下列说法错误的是()A.M带负电荷,N带正电荷B.M在b点的动能小于它在a点的动能C.N在d点的电势能等于它在e点的电势能D.N在从c点运动到d点的过程中克服电场力做功33. 如图,一带电粒子射入一固定在O点的点电荷的电场中,粒子运动轨迹如虚线abc所示,图中实线是同心圆弧,表示电场的等势面,不计粒子所受重力,则以下判断中错误的是()A.此粒子一直受到静电斥力作用B.粒子在b点的电势能一定大于在a点的电势能C.粒子在b点的速度一定大于在a点的速度D.粒子在a点和c点的速度大小一定相等34. 如图所示,MN是一正点电荷产生的电场中的一条电场线.某一带负电的粒子(不计重力)从a运动到b经过这条电场线的轨迹如图中虚线所示.下列判断正确的是()A.粒子从a运动到b的过程中动能逐渐减小B.粒子在a点的电势能大于在b点的电势能C.正点电荷一定位于M点的左侧D.粒子在a点的加速度大于在b点的加速度35.实线为三条方向未知的电场线,从电场中的M点以相同的速度飞出a、b两个带电粒子,a、b的运动轨迹如图中的虚线所示(a、b 只受电场力作用),则()A.a一定带正电,b一定带负电B.电场力对a做正功,对b做负功C.a的速度将减小,b的速度将增大D.a的加速度将减小,b的加速度将增大36. 如图所示,虚线a、b、c代表电场中三个等势面,相邻等势面之间的电势差相同.实线为一带正电的质点仅在电场力作用下通过该区域的运动轨迹,P、Q是这条轨迹上的两点,由此可知()A.三个等势面中,c等势面电势高B.带电质点通过Q点时动能较小C.带电质点通过P点时电势能较大D.带电质点通过Q点时加速度较大37. 如图所示,虚线表示电场的一簇等势面且相邻等势面间电势差相等,一α粒子以一定的初速度进入电场后,只在电场力作用下沿实线轨迹运动,α粒子先后通过M点和N点.在这一过程中,电场力做负功,由此可判断出()A.N点的电势低于M点的电势B.α粒子在M点的速率小于在N点的速率C.α粒子在N点的电势能比在M点的电势能大D.α粒子在M点受到的电场力比在N点受到的电场力大38. 如图所示,在点电荷Q形成的电场中,已知a、b两点在同一等势面上,c、d两点在同一等势面上.甲、乙两个带电粒子的运动轨迹分别为acb和adb曲线,已知乙粒子带正电.那么下列判断正确的是()A.甲粒子在b点的电势能比在c点小B.乙粒子在d点速度最大C.a、b两点电场强度相同D.d点电势比b点电势高39. 如图所示,实线表示电场线,虚线表示一带正电粒子以一定的初速度从M点射入电场中的运动轨迹,粒子只受电场力作用,下列判断错误的是()A.该带正电粒子所受电场力的方向沿虚线的内侧B.粒子在M点的加速度大于在N点的加速度C.粒子在M点受到的电场力小于在N点受到的电场力D.粒子从M点运动到N点的过程中,速度一直增大40. 在点电荷形成的电场中,一电子的运动轨迹如图中虚线所示,其中a、b是轨迹上的两点.若电子在两点间运动的速度不断增大,则下列判断中正确的是()A.形成电场的点电荷电性为正B.电子的运动是匀变速曲线运动C.电子一定是从a点运动到b点D.电子一定是从b点运动到a点。