四边形测试卷(一)

合集下载

(典型题)初中数学八年级数学下册第六单元《平行四边形》测试卷(含答案解析)(1)

(典型题)初中数学八年级数学下册第六单元《平行四边形》测试卷(含答案解析)(1)

一、选择题1.如图,在ABCD 中,3AB =,4=AD ,60ABC ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为点F ,与DC 的延长线相交于点H ,则DEF 的面积是( )A .63+B .43C .23D .623+ 2.已知平行四边形ABCD 中,∠A +∠C =110°,则∠B 的度数为( )A .125°B .135°C .145°D .155°3.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 边于点E ,已知BE =4cm ,AB =6cm ,则AD 的长度是( )A .4cmB .6cmC .8cmD .10cm4.如图,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形,则应增加的条件是( )A .AB =CD B .∠BAD =∠DCBC .AC =BDD .∠ABC +∠BAD =180°5.如图,在ABCD 中,4CD =,60B ︒∠=,:2:1BE EC =,依据尺规作图的痕迹,则ABCD 的面积为( )A.12 B.122C.123D.1256.正多边形的每个外角为60度,则多边形为()边形.A.4 B.6 C.8 D.107.已知如图:为估计池塘的宽度BC,在池塘的一侧取一点A,再分别取AB、AC的中点D、E,测得DE的长度为20米,则池塘的宽BC的长为()A.30米B.60米C.40米D.25米8.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.79.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是()A.6 B.8 C.10 D.1210.如图,在平面直角坐标系中,▱ABCD三个顶点坐标分别为A(-1,-2),D(1,1),C(5,2),则顶点B的坐标为()A.(-1,3)B.(4,-1)C.(3,-1)D.(3,-2)11.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x|=2,则x=2;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1个B.2个C.3个D.4个12.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是()A.五边形B.六边形C.七边形D.八边形二、填空题13.一个正多边形的内角和为720 ,则这个多边形的外角的度数为______.14.三角形的三边长分别是 4cm,5cm,6cm,则连结三边中点所围成的三角形的周长是______________cm.15.如图,在平行四边形ABCD中,13AD=4,AC⊥BC.则BD=____.16.一个多边形的内角和是1080°,则这个多边形是边形__________边形.17.如图,在平行四边形ABCD 中,BC=8cm ,AB=6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为_____.18.一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______. 19.如图,已知矩形ABCD 中,6cm AB =,8cm BC =,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于_____cm .20.如图,平行四边形ABCD ,将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ,已知68BNM ︒∠=,则AMP ∠=_______.三、解答题21.如图,在ABCD 中,E 是边AD 的中点,BE 的延长线与CD 的延长线相交于点F .求证:DC=DF .22.在平面直角坐标系中,二次函数23y ax bx =++的图象与x 轴交于(4,0)A -,(2,0)B 两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使ACP △的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)抛物线上是否存在点Q ,且满足AB 平分CAQ ∠,若存在,求出Q 点坐标;若不存在,说明理由;(4)点N 为x 轴上一动点,在抛物线上是否存在点M ,使以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由. 23.如图,ABCD 的对角线AC BD 、相交于点,,,3,5O AB AC AB BC ⊥==,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连接PO 并延长交BC 于点Q .设点P 的运动时间为t 秒.()1求BQ 的长(用含t 的代数式表示);()2问t 取何值时,四边形ABQP 是平行四边形?24.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,连接EC . (1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求平行四边形ABCD 的周长.25.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.26.如果正多边形的每个内角都比它相邻的外角的4倍还多30°,求这个多边形的内角和.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行四边形的性质得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根据相似得出CH=1,EH3△DFH的面积,即可求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF3,∵AB∥CD,∴∠B=∠ECH,在△BFE和△CHE中,B ECH BE CE BEF CEH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BFE ≌△CHE (ASA ), ∴EF =EH =3,CH=BF =1, ∴DH=4, ∵S △DHF =12DH •FH =43, ∴S △DEF =12S △DHF =23, 故选:C .【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.2.A解析:A 【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠A+∠B=180°,∠A=∠C , ∵∠A+∠C=110°, ∴∠A=∠C=55°, ∴∠B=125°. 故选:A . 【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.3.D解析:D 【分析】由已知平行四边形ABCD ,DE 平分∠ADC 可推出△DCE 为等腰三角形,所以得CE=CD=AB=6,那么AD=BC=BE+CE ,从而求出AD .【详解】解:已知平行四边形ABCD ,DE 平分∠ADC , ∴AD ∥BC ,CD=AB=6cm ,∠EDC=∠ADE ,AD=BC , ∴∠DEC=∠ADE , ∴∠DEC=∠CDE , ∴CE=CD=6cm , ∴BC=BE+CE=4+6=10cm , ∴AD=BC=10cm , 故选:D . 【点睛】此题考查的知识点是平行四边形的性质及角平分线的性质,关键是由平行四边形的性质及角平分线的性质得等腰三角形通过等量代换求出AD .4.B解析:B 【分析】根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可. 【详解】A 错误,当四边形ABCD 是等腰梯形时,也满足条件.B 正确,∵//AD BC , ∴180BAD ABC ︒∠+∠=, ∵BAD DCB ∠=∠, ∴180DCB ABC ︒∠+∠=, ∴//AB CD ,∴四边形ABCD 是平行四边形.C 错误,当四边形ABCD 是等腰梯形时,也满足条件. D 错误,∵180ABC BAD ︒∠+∠=,∴//AD BC ,与题目条件重复,无法判断四边形ABCD 是不是平行四边形. 故选:B . 【点睛】本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题关键是熟练掌握平行四边形的判定方法.5.C解析:C 【分析】由作图痕迹可得EF 为AB 的中垂线,结合60B ∠=︒判断出△ABE 为等边三角形,从而结合边长求出ABCD 在BC 边上的高为BC 的长度,最终计算面积即可. 【详解】设尺规作图所得直线与AB 交于F 点,根据题意可得EF 为AB 的中垂线, ∴AE=BE , 又∵60B ∠=︒,∴△ABE 为等边三角形,边长AB=CD=4, ∴BF=2,BE=4,2223EF BE BF =-=,∴ABCD 在BC 边上的高为23,又∵:2:1BE EC =,BE=4, ∴EC=2,BC=2+4=6, ∴ABCDS=23×6=123,故选:C .【点睛】本题考查平行四边形的性质,中垂线的识别与性质,以及等边三角形的判定与性质,准确根据作图痕迹总结出等边三角形是解题关键.6.B解析:B 【分析】利用多边形的外角和360除以外角60得到多边形的边数. 【详解】多边形的边数为36060÷=6, 故选:B . 【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.7.C解析:C 【分析】根据三角形中位线定理可得DE=12BC ,代入数据可得答案. 【详解】解:∵线段AB ,AC 的中点为D ,E ,∴DE=1BC,2∵DE=20米,∴BC=40米,故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.C解析:C【分析】⨯=︒,设这个多边形是n边形,内角和是多边形的外角和是360︒,则内角和是2360720()-⋅︒,这样就得到一个关于n的方程,从而求出边数n的值.n2180【详解】解:设这个多边形是n边形,根据题意,得()-⨯︒=⨯,n21802360=.解得:n6即这个多边形为六边形.故选:C.【点睛】本题考查了多边形的内角和与外角和,熟记内角和公式和外角和定理并列出方程是解题的关键,根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决. 9.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.10.C解析:C【分析】根据平行四边形的性质,CD=AB,CD∥AB,根据平移的性质即可求得顶点B的坐标.【详解】∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、D、C的坐标分别是A(-1,-2)、D(1,1)、C(5,2),D(1,1)向左平移2个单位,再向下3个单位得到A(-1,-2),则C(5,2)向左平移2个单位,再向下3个单位得到(3,-1),∴顶点B的坐标为(3,-1).故选:C.【点睛】本题考查了平行四边形的性质,平移的性质.注意数形结合思想的应用是解此题的关键.11.B解析:B【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.12.D解析:D【分析】设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.【详解】设多边形的边数为n,多加的外角度数为x,根据题意列方程得,(n-2)•180°+x=1160°,∵0°<x<180°,∴1160°-180°<(n-2)×180°<1160°,∴549<n−2<649,∵n是整数,∴n=8.故选:D.【点睛】本题主要考查了多边形的内角和公式,利用多边形的内角和是180°的倍数是解题的关键.二、填空题13.60°【分析】首先设这个正多边形的边数为n根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.14.【分析】三角形两边中点的连线是三角形的中位线如下图DEDFEF都是△ABC的中位线根据中位线的性质可分别求出长度从而得到周长【详解】如下图在△ABC中点DEF分别是ABBCCA的中点AB=4cmBC解析:15 2【分析】三角形两边中点的连线是三角形的中位线,如下图,DE,DF,EF都是△ABC的中位线,根据中位线的性质可分别求出长度,从而得到周长.【详解】如下图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,AB=4cm,BC=5cm,AC=6cm∵点D 、E 分别是AB 、BC 的中点 ∴DE 是△BAC 的中位线∴DE=12AC =3cm 同理,EF=12AB =2cm ,DF=1522CB =cm∴△DEF 的周长=3+2+51522=cm 故答案为:152【点睛】本题考查三角形中位线的定理,需要注意,三角形的中位线平行且等于对应底边的一半,且不可弄错边之间的关系.15.10【分析】由BC ⊥ACAB=2BC=AD=4由勾股定理求得AC 的长得出OA 长然后由勾股定理求得OB 的长即可【详解】解:∵四边形ABCD 是平行四边形∴BC=AD=4OB=ODOA=OC ∵AC ⊥BC ∴解析:10 【分析】由BC ⊥AC ,13BC=AD=4,由勾股定理求得AC 的长,得出OA 长,然后由勾股定理求得OB 的长即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴BC=AD=4,OB=OD ,OA=OC , ∵AC ⊥BC , ∴()2222=213-4AB BC -,∴OC=3,∴2222=3+4OC BC +, ∴BD=2OB=10 故答案为:10. 【点睛】此题考查平行四边形的性质以及勾股定理.解题关键在于注意掌握数形结合思想的应用.16.八【分析】首先设这个多边形的边数为n由n边形的内角和等于180(n-2)即可得方程180(n-2)=1080解此方程即可求得答案【详解】解:设这个多边形的边数为n根据题意得:180(n-2)=108解析:八【分析】首先设这个多边形的边数为n,由n边形的内角和等于180 (n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8,故答案为:八.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.17.2cm【解析】试题解析:2cm.【解析】试题∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).18.720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°根据公式即可得出多边形的边数然后再根据多边形的内角和公式求出它的内角和n边形内角和等于(n-2)×180°【详解】解:∵任何多边形解析:720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2) ×180°”是解题的关键.19.20【分析】连接ACBD根据三角形的中位线求出HGGFEFEH的长再求出四边形EFGH的周长即可【详解】如图连接ACBD四边形ABCD是矩形AC=BD=8cmEFGH分别是ABBCCDDA的中点HG解析:20【分析】连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,四边形ABCD是矩形,AC=BD=8cm,E、F、G、H分别是AB、BC、CD、DA的中点,HG=EF=12AC=4cm,EH=FG=12BD=4cm,四边形EFGH的周长等于4+4+4+4=16cm.【点睛】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半. 20.【分析】根据平行四边形的性质得得根据折叠的性质得根据平角的性质即可求解【详解】∵四边形ABCD是平行四边形∴∴∵将四边形CDMN沿线段MN折叠得到四边形QPMN∴∴故答案为【点睛】本题考察了平行四边解析:44【分析】根据平行四边形的性质得//AD BC ,得68NMD ︒∠=,根据折叠的性质得68PMN NMD ︒∠=∠=,根据平角的性质即可求解.【详解】∵四边形ABCD 是平行四边形 ∴//AD BC∴68NMD BNM ︒∠=∠=∵将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ∴68PMN NMD ︒∠=∠=∴18044AMP PMN NMD ︒∠=︒-∠-∠= 故答案为44︒. 【点睛】本题考察了平行四边形的性质,平行线的性质,和利用平角求解未知角的度数;其中两直线平行,同位角相等,内错角相等,同旁内角互补.三、解答题21.见解析 【分析】由四边形ABCD 是平行四边形,可得AB ∥CD ,AB=DC ,易证得△DEF ≌△AEB ,则可得DF=AB ,继而证得DC=DF . 【详解】证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=DC , ∴∠F=∠EBA , ∵E 是AD 边的中点, ∴DE=AE ,在△DEF 和△AEB 中,F EBA DEF AEB DE AE ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DEF ≌△AEB (AAS ), ∴DF=AB , ∴DC=DF . 【点睛】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用. 22.(1)233384y x x =--+;(2)(2,3)P -;(3)(4,6)Q -;(4)1(2,3)M -,2(13)M ---,3(13)M -+-.【分析】(1)将点(4,0)A -,(2,0)B 代入抛物线的一般式解析式,利用待定系数法解题; (2)设直线:AC y kx b =+,代入(4,0)A -,(0,3)C ,利用待定系数法解得一次函数解析式为334y x =+,过点P 作PD x ⊥轴,交AC 于点D ,设3,34D t t ⎫⎛+ ⎪⎝⎭,233,384P t t t ⎫⎛--+ ⎪⎝⎭,计算23382PD t t =--,结合三角形面积公式及配方法可解得二次函数的最值;(3)作点C 关于x 轴的对称点E ,连接AE 交抛物线于点Q ,设直线:AE y mx n =+,代入(4,0)A -,(0,3)-E ,利用待定系数法解得直线AE 的解析式为334y x =--,再与233384y x x =--+联立方程组,解得交点Q 点坐标,舍去不符合题意的解即可;(4)设点(,)M x y ,分两种情况讨论:以BN 为边,或以BN 为对角线,分别画出示意图,根据平行四边形对应边相等的性质列出一元二次方程,利用公式法解得点M 的坐标,即可解题. 【详解】解:(1)将点(4,0)A -,(2,0)B 代入23y ax bx =++得,22(4)4302230a b a b ⎧--+=⎨++=⎩164304230a b a b -+=⎧∴⎨++=⎩解得3834a b ⎧=-⎪⎪⎨⎪=-⎪⎩233384y x x ∴=--+;(2)设直线:AC y kx b =+,代入(4,0)A -,(0,3)C 得:403k b b -+=⎧⎨=⎩.解得:343k b ⎧=⎪⎨⎪=⎩,∴直线3:34AC y x =+,过点P 作PD x ⊥轴,交AC 于点D ,设3,34D t t ⎫⎛+ ⎪⎝⎭,则233,384P t t t ⎫⎛--+ ⎪⎝⎭,22333333384482PD t t t t t ⎫⎫⎛⎛∴=--+-+=-- ⎪ ⎪⎝⎝⎭⎭,22133423(2)3244APC S PD PD t t t ∴=⋅⋅==--=-++△, ∴当2t =-时最大,S 的最大值为3,此时,(2,3)P -;(3)作点C 关于x 轴的对称点E ,连接AE 交抛物线于点Q ,则(0,3)-E ,设直线:AE y mx n =+,代入(4,0)A -,(0,3)-E ,4003m n n -+=⎧⎨+=⎩ 343m n ⎧=⎪∴⎨⎪=⎩ 解得:334y x =-- 联立方程组233384334y x x y x ⎧=--+⎪⎪⎨⎪=--⎪⎩,解得:14x =-(舍),24x =,存在(4,6)Q -;(4)存在,1(2,3)M -,2(117,3)M --,3(117,3)M --,理由如下: 如图,设点(,)M x y ,以BN 为边,当//MC BN 时,M 在x 轴上方, 在平行四边形B C M N 中,3c y =3M y ∴=在233384y x x =--+中, 当3y =时,2333384x x --+= 33()084x x ∴--=120,2x x ∴==- 2M x ∴=- 1(2,3)M ∴-;当以BN 为对角线,//NC BM 时,M 在x 轴下方,C M y y =3M y ∴=-在233384y x x =--+中, 当3y =-时,2333384x x --+=- 22160x x ∴+-= 1,2,16a b c ===-224241(16)68b ac ∴-=-⨯⨯-=1222112222b b x x a a -+----∴===-===-2(13)M ∴--,3(13)M --,综上所述,1(2,3)M -,2(13)M --,3(13)M --.【点睛】本题考查二次函数与一次函数综合、二次函数与一元二次方程综合、平行四边形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.(1)5-t;(2)5 2【分析】(1)先证明△APO≌△CQO,可得出AP=CQ=t,则BQ即可用t表示;(2)由题意知AP∥BQ,根据AP=BQ,列出方程即可得解;【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=5-t;(2)∵AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=5-t,52t=,∴当52t=时,四边形ABQP是平行四边形.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.(1)证明见解析;(2)20.【分析】(1)根据平行四边形的性质得出OD=OB ,DC ∥AB ,推出∠FDO=∠EBO ,证△DFO ≌△BEO 即可;(2)由平行四边形的性质得出AB=CD ,AD=BC ,OA=OC ,由线段垂直平分线的性质得出AE=CE ,由已知条件得出BC+AB=10,即可得出平行四边形ABCD 的周长.【详解】解:(1)∵四边形ABCD 是平行四边形,∴OD=OB ,DC ∥AB ,∴∠FDO=∠EBO ,在△DFO 和△BEO 中,{FDO EBOOD OB FOD EOB∠=∠=∠=∠,∴△DFO ≌△BEO (ASA ),∴OE=OF .(2)解:∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC ,OA=OC ,∵EF ⊥AC ,∴AE=CE ,∵△BEC 的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴平行四边形ABCD 的周长=2(BC+AB )=20.25.证明见解析【分析】连接AE 、CF ,证明四边形AECF 为平行四边形即可得到AC 、EF 互相平分.【详解】解:连接AE 、CF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD ﹦BC ,又∵DF ﹦BE ,∴AF ﹦CE ,又∵AF ∥CE ,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.26.1800°.【分析】设正多边形一个外角是x°,根据题意列方程,求出外角的度数,再根据多边形的外角和为360°,即可求出边数,进而求出内角和.【详解】解:设正多边形一个外角是x°,则与它相邻的内角是(4x°+30°),∴x°+4 x°+30°=180°,解得x°=30°,∵多边形的外角和是360°,∴个多边形的边数是360°÷30°=12,∴内角和为(12-2)×180°=1800°.答:这个多边形的内角和为1800°.【点睛】本题考查了多边形的内角和,外角和定理,内角与外角的关系,熟练掌握多边形的内角和定理,外角和定理是解题关键.。

冀教版数学二年级下册第五单元《四边形的认识》 单元测试卷

冀教版数学二年级下册第五单元《四边形的认识》 单元测试卷

冀教版数学二年级下册第五单元《四边形的认识》单元测试卷一、填空题(共27 分)1.长方形和正方形都有(______)个直角,长方形的(______)边相等,平行四边形有(______)个锐角、(______)个钝角。

【答案】(1). 4(2). 对(3). 2(4). 2【解析】【详解】由题意分析得:长方形和正方形都有4个直角,长方形的对边相等,平行四边形有2个锐角、2个钝角。

2.日常生活用的物品中,(______)的表面是长方形,(______)的表面是正方形。

【答案】(1). 书(2). 魔方【解析】【分析】我们知道的长方形有:门、书、黑板、电视、钞票等表面;正方形有:魔方、豆腐、开关、方凳等表面。

【详解】由题意分析得:日常生活用的物品中,书的表面是长方形,魔方的表面是正方形。

【点睛】此题主要考查的是平面图形的认识,要熟练掌握。

3.用木条钉成一个长方形,捏住对角一拉,就会变成一个(______)。

【答案】平行四边形【解析】4.学校大门口的自动伸缩门应用了平行四边形(________)的这一特点。

【答案】容易变形【解析】【分析】平行四边形具有易变形性,生活中很多地方都运用了平行四边形的易变形性。

据此解答。

【详解】学校大门口的自动伸缩门应用了平行四边形容易变形的这一特点。

除此之外,升降机、可伸缩的衣架等都运用了此特性。

【点睛】本题主要考查平行四边形的特征,属于基础知识,要熟练掌握。

5.如图中正方形被挡住的角是________角。

【答案】直【解析】【分析】正方形是有一组邻边相等且一个角是直角的平行四边形;正方形四个角都是90°,是直角。

所以图中正方形被挡住的角一定是直角。

据此解答即可。

【详解】如图中正方形被挡住的角是直角。

【点睛】此题考查了正方形的特征,要熟练掌握。

6.用同样的小棒摆一个正方形,至少用(______)根小棒;摆一个长方形,至少用(______)根小棒。

【答案】(1). 4(2). 6【解析】【分析】正方形:由4条边围成,且4条边都相等,4个角都是直角。

第18章 平行四边形 达标测试卷(含答案) 华师大版数学八年级下册

第18章 平行四边形 达标测试卷(含答案) 华师大版数学八年级下册

第18章平行四边形达标测试卷一、选择题(每题3分,共24分)1.在▱ABCD中,∠A+∠C=210°,则∠B的度数为()A.30°B.75°C.95°D.105°2.如图,直线AB∥CD,P是AB上的动点,当点P从左向右运动时,△PCD的面积将()A.变大B.变小C.不变D.无法确定(第2题)(第3题)3.如图,在四边形ABCD中,CE平分∠BCD交AD于点E,DE=CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AB=CDC.CE=BC D.∠A=∠D4.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长为()A.6 B.8C.10 D.12(第4题)(第5题)5.如图,在▱ABCD中,∠BDC=47°42′,依据尺规作图的痕迹,计算α的度数是()A.67°29′ B.67°9′C.66°29′ D.66°9′6.如图,在△MBN中,BM=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,∠NDC=∠MDA,则▱ABCD的周长是()A.24 B.18 C.16 D.12(第6题)(第8题)7.四边形ABCD是平行四边形,点E是平面内一点,且到AD,AB,BC三边所在直线的距离相等,则下列结论正确的是()A.∠AEB的度数不确定B.符合条件的点E有两处C.S△AED=S△BEC,S△AEB=S△CEDD.点E在对角线AC上8.如图,四边形ABCD是平行四边形,E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)9.在四边形ABCD中,(1)∠A=∠C,要使四边形ABCD为平行四边形,则应添加的条件是______________________________________.(添加一个条件即可) (2)若AB=3,BC=4,CD=3,要使该四边形ABCD是平行四边形,则AD=________.10.如图,▱ABCD中,AC与BD交于点O,AE⊥BD于点E,BD=20,BE=7,AE=4,则AC的长等于________.(第10题)(第11题)11.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上.若AD=AE=BE,∠D=108°,则∠BAC=________°. 12.如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=________.(第12题)(第13题)13.如图,在▱ABCD中,E,F分别是边AD,BC上的点,AF与BE相交于点G,DF与EC相交于点H,若S△ABG=16,S△DHC=7,则四边形EGFH的面积为________.14.如图,▱OABC的顶点A,C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为________.(第14题)三、解答题(15~18题每题8分,19~20题每题10分,共52分)15.如图,在四边形ABCD中,AD∥BC,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,求证:四边形ABCD是平行四边形.(第15题)16. 如图,在▱ABCD中,E,F是对角线BD上的两点,点G,H分别在边AD,3BC上,连结EG,FH,且BE=DF,EG∥FH,连结GH交BD于点O.求证:EG=FH.(第16题)17.如图,在▱ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连结GE,EH,HF,FG.求证:四边形GEHF是平行四边形.(第17题)18.如图,在平面直角坐标系中,一次函数y =43x+4的图象与x轴交于点A,与y轴交于点B,四边形AOCB是平行四边形,求直线AC的表达式.(第18题)19.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(第19题) (1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求ST的值.520.如图,在△ABC中,∠BAC=90°,∠ABC=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧,点P,Q分别是射线AD,射线CB上的点,且CQ=2AP,点E是线段CQ上的点,QE=2,设AP=x.(1)若PE⊥BC,求BQ的长;(2)请问是否存在x的值,使得以A,B,E,P为顶点的四边形是平行四边形?若存在,求出x的值;若不存在,请说明理由.(第20题)7 答案一、1.B 2.C 3.A 4.C 5.D 6.D 7.B 8.D二、9.(1)∠B =∠D (答案不唯一) (2)4 10.1011.24 12.61° 13.2314.5 点拨:易知当B 在x 轴上时,对角线OB 长最小,设直线x =1和x =4分别与x 轴交于点D ,E .由题意得出∠ADO =∠CEB =90°,OD =1,OE =4,由平行四边形的性质得出OA ∥BC ,OA =BC ,得出∠AOD =∠CBE ,所以△AOD ≌△CBE ,得出OD =BE =1,即可得出OB =1+4=5. 三、15.证明:∵AD ∥BC ,∴∠DAE =∠BCF , ∵DE ⊥AC ,BF ⊥AC , ∴∠AED =∠CFB =90°,在△AED 和△CFB 中,⎩⎨⎧∠AED =∠CFB ,∠DAE =∠BCF ,DE =BF ,∴△AED ≌△CFB , ∴AD =BC , 又∵AD ∥BC ,∴四边形ABCD 是平行四边形. 16.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠GDE =∠HBF , ∵EG ∥FH ,∴∠GED =∠HFB , ∵BE =DF ,∴BD -BE =BD -DF , 即DE =BF ,在△GED 和△HFB 中,⎩⎨⎧∠GDE =∠HBF ,DE =BF ,∠GED =∠HFB ,∴△GED ≌△HFB ,∴EG =FH .17.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD , ∴∠GBE =∠HDF .∵AG =CH ,∴AB +AG =CD +CH ,即BG =DH .又∵BE =DF ,∴△GBE ≌△HDF . ∴GE =HF ,∠GEB =∠HFD .∴∠GEF =∠HFE . ∴GE ∥HF .∴四边形GEHF 是平行四边形.18.解:∵一次函数y =43x +4的图象与x 轴交于点A ,与y 轴交于点B ,∴A (-3,0),B (0,4). ∵四边形AOCB 是平行四边形, ∴BC ∥OA ,BC =OA =3, ∴C (3,4),设直线AC 的表达式为y =kx +b ,把(-3,0),(3,4)代入, 得⎩⎨⎧-3k +b =0,3k +b =4,解得⎩⎪⎨⎪⎧k =23,b =2, ∴直线AC 的表达式为y =23x +2.19.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC , ∴∠ABC +∠BAD =180°. ∵AF ∥BE ,∴∠EBA +∠BAF =180°, ∴∠CBE =∠DAF , 同理得∠BCE =∠ADF . 在△BCE 和△ADF 中,∵⎩⎨⎧∠CBE =∠DAF ,BC =AD ,∠BCE =∠ADF ,∴△BCE ≌△ADF .(2)解:由点E 在▱ABCD 内部,9 易得S △BEC +S △AED =12S ▱ABCD , 由(1)知△BCE ≌△ADF , ∴S △BCE =S △ADF ,∴S 四边形AEDF =S △ADF +S △AED =S △BCE +S △AED =12S ▱ABCD . ∵▱ABCD 的面积为S ,四边形AEDF 的面积为T , ∴S T =S12S=2.20.(1)解: 如图,过点A 作AM ⊥BC 于点M ,PE 交AC 于点N ,(第20题)∵∠BAC =90°,∠B =45°,∴∠C =180-∠BAC -∠ABC =45°, ∴∠ABC =∠C ,BM =MC =12BC =12×10=5, ∵AM ⊥BC ,PE ⊥BC , ∴AM ∥PE , 又∵AD ∥BC ,∴四边形AMEP 为平行四边形, ∴ME =AP =x , ∵CQ =2AP ,∴CQ =2x ∵QE =2,CE =y =2x -2,由MC =CE +ME 可知,5=2x -2+x , 解得x =73,即AP =73,∴CQ =2AP =2×73=143,∴BQ =BC -CQ =10-143=163; (2)存在,理由如下:若以A ,B ,E ,P 为顶点的四边形是平行四边形, 则AP =BE , ∴x =10-(2x -2)或x =2x -2-10,解得x=4或x=12.。

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

2019中考数学数学第一轮《四边形》单元测试卷含答案(1).docx

2019中考数学数学第一轮《四边形》单元测试卷含答案(1).docx

单元测试卷 ( 五)(测试范围:第五单元 (四边形 )题号一二三考试时间 :90 分钟总分总分人试卷满分核分人:100 分 )得分一、选择题 (本题共 12 小题 ,每小题 3 分 ,共 36 分 )1.将一个 n 边形变成 (n+ 1) 边形 ,内角和将()A.减少180 °B.增加 180 °C.增加90°D.增加360 °2.如图 D5- 1,在矩形 ABCD 中,对角线 AC,BD 相交于点O,∠ AOB= 60°,AC= 6 cm,则 AB 的长是()图D5-1A.3 cm C.10 cm B .6 cm D .12 cm3.如图D5- 2,在矩形ABCD中 ,AD= 3AB,点 G,H分别在AD ,BC上 ,连接BG,DH ,且BG∥ DH ,当=时 ,四边形 BHDG是菱形()图D5-2A. B. C. D.4.如图D5- 3,在平行四边形ABCD中 ,点E 在边DC上 ,DE ∶EC= 3∶1,连接AE交BD于点F,则△ DEF的面积与△ BAF 的面积之比为()图D5-3A.3∶4 B .9∶16C.9∶1 D .3∶15.如图 D5 -4,O 是矩形 ABCD 的对角线AC 的中点 ,M 是 AD 的中点 ,若 AB= 5,AD= 12,则四边形ABOM 的周长为()图D5-4A.17B.18C.19D.206.下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形7.如图 D5- 5,在 ?ABCD 中 ,连接 AC,∠ ABC= ∠ CAD= 45°,AB= 2,则 BC 的长是()图 D5-5A. B .2C.2 D.48.如图 D5-6,在矩形 ABCD 中 ,BC= 8,CD= 6,将△ ABE 沿 BE 折叠 ,使点 A 恰好落在对角线BD 上的点 F 处,则 DE 的长是()图D5-6A.3B.C.5D.9.如图 D5 -7,四边形 ABCD 是平行四边形 ,点 E 是边 CD 上的一点 ,且 BC=EC ,CF ⊥ BE 交 AB 于点 F,P 是 EB 延长线上一点 ,下列结论 :① BE 平分∠ CBF ;②CF 平分∠ DCB ;③BC=FB ;④PF=PC.其中正确的结论个数为()图D5-7A.1B.2C.3D.410.如图 D5-8,把矩形 ABCD 沿 EF 翻折 ,点 B 恰好落在 AD 边上的点 B'处 .若 AE= 2,DE= 6,∠EFB= 60°,则矩形 ABCD的面积是()图D5-8A.12 B .24 C.12 D.1611.如图D5 -9,矩形ABCD中,AB= 8,BC= 4.点 E 在AB 上 ,点F 在 CD上 ,点 G,H在对角线AC上 ,若四边形EGFH是菱形 ,则AE的长是()图 D5-9A.2 B .3 C.5 D.612.如图 D5 -10,在正方形 ABCD 中 ,△ BPC 是等边三角形 ,BP ,CP 的延长线分别交AD 于点 E,F,连接 BD ,DP ,BD 与CF 相交于点H ,给出下列结论2:① BE= 2AE;②△ DFP ∽△ BPH;③△ PFD ∽△ PDB ;④ DP =PH ·PC. 其中正确的是()图D5 -10A.①②③④C.①②④B.②③D.①③④二、填空题(本题共 4 小题 ,每小题 5 分 ,共20 分)13.如图D5-11,在?ABCD中 ,点E 在AB 上 ,点F 在CD上,则S△ABF S△CDE (填“>”“<”或“= ”).图D5 -1114.如图 D5-12,在菱形 ABCD 中 ,AB= 10,AC= 12,则它的面积是.图D5 -1215.如图 D5-13,E 为正方形ABCD 外一点 ,若△ ADE 为等边三角形 ,则∠ AEB=.图 D5 -1316.如图 D5 -14,已知四边形ABCD 是矩形 ,把矩形 ABCD 沿直线 AC 折叠 ,点 B 落在点 E 处 ,连接 DE. 若 DE ∶∶AC= 3 5,则的值为.图D5 -14三、解答题 (共 44 分 )17.(5 分 )如图 D5-15,在△ ABC 中,M 是 AC 边上的一点 ,连接 BM.将△ ABC 沿 AC 翻折 ,使点 B 落在点 D 处,当 DM ∥ AB 时 ,求证 :四边形 ABMD 是菱形 .图D5 -1518.(6 分 )如图 D5 -16,在 ?ABCD 中 ,∠ ABC= 60°.E,F 分别在 CD 和 BC 的延长线上 ,AE∥ BD,EF⊥ BC,EF=,求 AB 的长 .图D5 -1619.(6 分 )如图 D5 -17,在菱形 ABCD 中 ,∠A = 110 °,点 E 是菱形 ABCD 内一点 ,连接 CE,将线段 CE 绕点 C 顺时针旋转 110°,得到线段CF ,连接 BE,DF.若∠ E= 86°,求∠ F 的度数 .图D5 -1720.(7 分) 如图 D5 -18,四边形 ABCD 中 ,AC,BD 相交于点 O,O 是 AC 的中点 ,AD∥BC ,AC= 8,BD= 6.(1)求证 :四边形 ABCD 是平行四边形 ;(2)若 AC⊥ BD ,求平行四边形ABCD 的面积 .图D5 -1821.(10 分 )如图 D5 -19,在正方形ABCD 中 ,点 G 在对角线 BD 上 (不与点 B,D 重合 ),GE⊥ DC 于点 E,GF ⊥ BC 于点F,连接 AG.(1)写出线段AG,GE,GF 长度之间的数量关系,并说明理由 ;(2)若正方形ABCD 的边长为1,∠ AGF= 105 °,求线段 BG 的长 .图D5 -1922.(10 分 )已知正方形ABCD ,点 M 为边 AB 的中点 .(1)如图 D5-20① ,点 G 为线段 CM 上的一点 ,且∠ AGB= 90°,延长 AG,BG 分别与边 BC ,CD 交于 E,F. ①求证 :BE=CF ;②求证 :BE 2=BC ·CE.2(2)如图 D5 -20②,在边 BC 上取一点 E,满足 BE =BC ·CE,连接 AE 交 CM 于点 G,连接 BG 并延长交 CD 于点 F,求 tan∠CBF 的值 .图D5 -20参考答案1.B2.A [ 解析 ] 根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠ AOB= 60°,判断出△AOB 是等边三角形 ,根据等边三角形的性质求出AB 的长即可 .3.C4.B5.D6.C[ 解析 ]对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;一条对角线平分一组对角的平行四边形是菱形 ;对角线互相垂直的矩形是正方形,所以其中错误的为 C,故选 C.7.C[ 解析 ]∵ ? ABCD ,∴ AD ∥ BC ,∴∠ DAC= ∠ ACB= 45°= ∠ ABC, ∴∠ BAC= 90°,AB=AC= 2 , 由勾股定理得BC== = 2 ,选 C.8.C[ 解析 ]由 AB= 6,BC= 8,应用勾股定理 AB2 +AD 2=BD 2 ,得 :BD= 10,由折叠可知 BF=AB ,故 BF= 6,则 DF= 4.(法一 )∵∠ A= ∠ EFD ,∠ EDF= ∠ADB ,∴ △DEF ∽△ DBA ,∴ = ,即= ,∴DE= 5.(法二 )在 Rt△DEF 中 ,设 DE=x ,则 EF=AE= 8-x,应用勾股定理DE 2=EF 2 +DF 2,∴ x2= (8-x) 2+ 42 ,解得 x= 5.9.D [ 解析 ] ∵AB ∥CD,∴∠ ABE= ∠ BEC.∵ CE=CB ,∴∠ CBE= ∠ BEC.∴∠ CBE= ∠ ABE.即 BE 平分∠ ABC. 故①正确 ;∵ CE=CB ,CF ⊥ BE,∴ CF 平分∠ DCB. 故②正确 ;∵ AB∥ CD,∴∠ DCF= ∠ CFB. ∵∠ BCF= ∠ FCD ,∴∠ BCF=∠CFB,∴ BC=BF. 故③正确 ;∵ BF=CB ,CF ⊥ BE,∴ BE 垂直平分 CF ,∴ PF=PC. 故④正确 .10.D11.C12.C [解析 ] 在正方形 ABCD 中,∠ A= 90°;由△BPC 是等边三角形 ,可得∠ CBP= 60°,∴∠ ABP= 30°,∴ BE= 2AE,即①正确 ;由 BD 是正方形 ABCD 的对角线 ,可得△BCD 是等腰直角三角形 ,∴∠ CBD= ∠CDB= 45°,可得∠ PBD= 15°,∵ CD=CP=CB , ∠ PCD= 30°, 可得∠ CPD= ∠ CDP= 75°, ∴ ∠ BPD= 75°+60°= 135°, ∠ FDP= 90°-75°= 15°, ∠PFD= 90°-∠ PCD= 90°-30°= 60°,∠ FPD= 180 °-∠ CPD= 180 °-75°= 105 °,∴∠ PBD= ∠ PDF ,∠ BPH= ∠ DFP ,∴ △DFP ∽△ BPH ,即②正确 ;∵∠ BPD≠∠ DPF ,∴③ △PFD ∽△ PDB 错误 ;由∠ PDH= ∠PDC- ∠ CDB= 75°-45°= 30°= ∠PCD ,∠CPD= ∠DPH ,可得△PDC∽△ PHD ,∴ DP 2=PH ·PC,即④正确 . 13.= 14.96 15.15°16.[解析 ] 由折叠的性质可知∠ BAC= ∠ EAC.∵四边形 ABCD 是矩形 ,∴ AB∥ CD ,∴∠ DCA= ∠BAC,∴∠ EAC= ∠ DCA.设AE 与 CD 交于点 F,则 AF=CF ,∴ DF=EF ,又∠ DFE= ∠ AFC ,∴△ACF ∽△ EDF .∴= = ,设DF= 3x,则 CF= 5x,AB=DC= 8x.在 Rt△ADF 中 ,由勾股定理知 ,AD= 4x,∴= .17.证明 :如图 ,由折叠得 :AB=AD ,BM=DM ,∠ 1= ∠ 2,∵DM ∥ AB,∴∠ 1= ∠ 3,∴∠ 2= ∠ 3,∴ AD=DM ,∴AB=AD=BM=DM ,∴四边形 ABMD 是菱形 .18.解: ∵四边形 ABCD 是平行四边形 ,∴AB=DC , AB∥ EC.∵ AE∥BD ,∴四边形 ABDE 是平行四边形 .∴AB=DE=CD ,即 D 为 CE 中点 .∵EF⊥BC ,∴∠ EFC= 90°.∵AB∥CD ,∴∠ DCF= ∠ ABC= 60°.∵ EF=,∴ CE= 2.∴AB= 1.19.解: ∵四边形 ABCD 是菱形 ,∴∠ BCD= ∠A= 110°,BC=DC.由旋转可得 :∠ ECF= 110°,EC=FC ,∵∠ BCD= ∠BCE+ ∠ECD= 110°,∠ECF= ∠DCF+ ∠ECD= 110°,∴∠ BCE= ∠ DCF.又∵ BC=DC ,EC=FC ,∴△BCE≌ △ DCF ,∴∠ F= ∠E= 86°.20.解:(1) 证明 :∵ O 是 AC 的中点 ,∴ OA=OC ,∵AD∥BC,∴∠ ADO= ∠ CBO.在△AOD 和△COB 中 ,∵∴ △AOD≌△ COB(AAS), ∴ OD=OB ,∴四边形 ABCD 是平行四边形 .(2)∵四边形ABCD 是平行四边形,AC⊥ BD,∴四边形 ABCD 是菱形 ,∴S 菱形ABCD = AC ·BD= 24.21.解:(1) AG2=GE 2+GF 2.理由如下 :连接 GC,由正方形的性质知AD=CD ,∠ ADG= ∠CDG ,在△ADG 和△CDG 中,∴ △ADG≌△ CDG ,∴AG=CG ,由题意知∠ GEC= ∠GFC= ∠ DCB= 90°,∴四边形 GFCE 是矩形 ,∴GF=EC.222222在 Rt△GEC 中 ,根据勾股定理 ,得 GC=GE +EC ,∴ AG =GE +GF .(2)作 AH ⊥ BD 于点 H,由题意知∠ AGB= 60°,∠ ABG= 45°,∴ △ABH 为等腰直角三角形,△AGH 为含 30°角的直角三角形,∵AB= 1,∴ AH=BH= ,HG= ,∴ BG= + =.22.解:(1) ①证明 : 在△ABG 中 ,∵∠ AGB= 90°,∴∠ GAB+ ∠ABG= 90°,∵正方形 ABCD ,∴ AB=BC ,∠ ABC= ∠BCD= 90°,∴∠ ABC= ∠ABG+ ∠GBC= 90°,∴∠ GAB= ∠GBC,∴Rt△EAB≌Rt△FBC ,∴ BE=CF .②证明 :∵∠ AGB= 90°,点 M 是 AB 的中点 ,∴GM=AM=BM ,∴∠ GAB= ∠ AGM ,∵∠ AGM= ∠CGE ,由①得∠ GAB= ∠ CBG,∴∠ CGE= ∠CBG,又∵∠ GCB= ∠ BCG,∴ △GCE∽△ BCG,∴=,∴CG2=BC ·CE,∵∠ MBG= ∠ MGB= ∠CGF= ∠ CFG ,∴CG=CF ,由①得 BE=CF ,2∴ CG=CF=BE ,∴ BE =BC ·CE.(2)解法 1:如图① ,延长 AE,DC 交于点 K,∵DC∥AB,∴ △ABE∽△ KCE ,∴= ,∵BE 2=BC ·CE,∴= ,∴=,∵AB=BC ,∴CK=BE ,∵ AB∥DC ,∴= = =,∵AM=BM ,∴CF=CK=BE.∵ BE2=BC ·CE,∴ E 是 BC 上的黄金分割点,-∴=,-∴ tan∠CBF= = =.解法 2:如图② ,延长 CM ,BF 分别交直线AD 于点 S,K,易证 AS=BC=AB ,∵BE2=BC ·CE,∴点 E 是 BC 上的黄金分割点,-∴=,∵AD∥ BC,∴ tan∠CBF= tanK=-= = =.7、我们各种习气中再没有一种象克服骄傲那麽难的了。

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引条对角线.12. 如果正多边形的一个外角为40°,那么它是正边形.13. 在行四边形ABCD中,∠B+∠D=220°,则∠A=.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形的ABCD的面积为.图Z5-817.如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-1019. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-1120. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12四、解答题(二)(本大题3小题,每小题8分,共24分)21. 如图Z5-13,平行四边形ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C的度数.图Z5-1322. 如图Z5-14,平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.图Z5-1423. 如图Z5-15,平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:平行四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-1625. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( D )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( D )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( D )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( B )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( D )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( B )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( A )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( A )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( D )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( B )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引2条对角线.12. 如果正多边形的一个外角为40°,那么它是正九边形.13. 在平行四边形ABCD中,∠B+∠D=220°,则∠A=70°.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是24.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =15°.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形ABCD的面积为9.图Z5-817. 如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是2 3.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-10证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,{∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD∠△COB(AAS).∴OD=OB.∴四边形ABCD是平行四边形.19. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-11证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC.在△ADF和△CBE中,{AD=CB,∠D=∠B,DF=BE,∴△ADF∠△CBE(SAS).∴AF=CE.20. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12解:如答图Z5-1,过点A作AE⊥BC于点E.∵四边形ABCD是菱形,∴AB=BC=10.∵∠ABC=60°,AE⊥BC,∴∠BAE=30°.答图Z5-1∠BE =12AB =5,AE =3BE =53.∠菱形ABCD 的面积=BC×AE =50 3.四、解答题(二)(本大题3小题,每小题8分,共24分) 21. 如图Z5-13,平行四边形ABCD 中,DF 平分∠ADC ,交BC 于点F ,BE 平分∠ABC ,交AD 于点E .(1)求证:四边形BFDE 是平行四边形; (2)若∠AEB =68°,求∠C 的度数.图Z5-13(1)证明:∵在平行四边形ABCD 中,AD ∥BC , ∴∠AEB =∠CBE.又∵BE 平分∠ABC ,∴∠ABE =∠EBC.∴∠ABE =∠AEB.∴AB =AE. 同理可得CF =CD.又AB =CD ,∴CF =AE.∴BF =DE.又∵BF ∥DE ,∴四边形EBFD 是平行四边形.(2)解:∵∠AEB =68°,AD ∥BC ,∴∠EBF =∠AEB =68°. ∵BE 平分∠ABC ,∴∠ABC =2∠EBF =136°. ∴∠C =180°-∠ABC =44°.22. 如图Z5-14,平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,DF =BE ,连接BF ,AF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE =3,DF =5,求矩形BFDE 的面积.图Z5-14(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD. ∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形. ∵DE ⊥AB ,∴∠DEB =90°.∴四边形BFDE 是矩形. (2)解:∵AB ∥CD ,∴∠BAF =∠DFA. ∵AF 平分∠BAD ,∴∠BAF =∠DAF. ∴∠DFA =∠DAF.∴AD =DF =5. ∵DE ⊥AB ,∴∠AED =90°.由勾股定理,得DE=AD2-AE2=4.∴矩形BFDE的面积=DF×DE=5×4=20.23. 如图Z5-15,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°.又∵AE=AF,∴△AEB∠△AFD(AAS). ∴AB=AD.∴四边形ABCD是菱形.(2)解:连接AC,如答图Z5-2. ∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°.答图Z5-2∵四边形ABCD是菱形,∴∠ACF=60°.∴△ACD是等边三角形.在Rt△CFA中,AF=CF·tan∠ACF=23,AC=CFcos∠ACF=4=CD.∴菱形ABCD的面积=4×23=8 3.五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-16(1)证明:在△ABC和△ADC中,{AB=AD,CB=CD,AC=AC,∴△ABC∠△ADC.∴∠BAC=∠DAC,即∠BAF=∠DAF.在△ABF和△ADF中{AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF∠△ADF(SAS).∴∠AFB=∠AFD.∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAF=∠DAF,∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD时,点E的位置可令∠EFD=∠BCD.理由如下.∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF.∵CF=CF,∴△BCF∠△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠EFD=∠BCD.25. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°.∴∠ADE+∠DAE=90°.又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△AED和△BFA中,{∠AED=∠BFA,∠EDA=∠FAB,AD=AB,∴△AED∠△BFA(AAS).∴AE=BF.∴AF-AE=EF,即AF-BF=EF.(2)解:四边形EFGH是正方形.证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形.∵△AED∠△BFA,同理可得△AED∠∠DHC,∠∠AED∠∠BFA∠△DHC.∴DH=AE=BF,AF=DE=CH.∴DE-DH=AF-AE.∴EF=EH.∴矩形EFGH是正方形.(3)解:∵AB=2,BP=1,∴AP= 5.∵S△ABP=12×BF×AP=12×BF×5=1×2×12,∴BF=255.∵∠BAF=∠PAB,∠AFB=∠ABP=90°,∴△ABF∠△APB.∴BFAF=BPAB=12,∴AF=455,∴EF=AF-AE=455-255=255.25 52=45.∴四边形EFGH的面积为⎝⎛⎭⎫。

重庆市第一中学校初2020级 四边形复习测试卷(含答案详解)

重庆市第一中学校初2020级 四边形复习测试卷(含答案详解)

四边形复习测试卷一、选择题(48分)1.如图,在中,,,的平分线交AD于点E ,则DE的长为A. 5B. 4C. 3D. 22.如图,▱ABCD的对角线AC,BD 交于点O ,下列结论不一定成立的是A. B. C. D.3.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若,,则OM的长为A. 1B. 2C. 3D. 44.在平行四边形ABCD中,:::的可能情况是A. 2:7:2:7B. 2:2:7:7C. 2:7:7:2D. 2:3:4:55.如图所示,▱ABCD的对角线AC,BD相交于点O,,,,▱ABCD的周长A. 11B. 13C. 16D. 226.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC 上,得到折痕AE ,那么BE的长度为A. B. C. D.7.如图,直线l 上有三个正方形a ,b,c,若a,c的面积分别为1和9,则b的面积为A. 8B. 9C. 10D. 118.如图,四边形ABCD是菱形,,,于H,则DH等于A.B.C. 5D. 49.如图.在矩形ABCD中,,,将矩形沿AC折叠,点D落在点E处,且CE 与AB交于F ,那么为A. 12B. 15C. 6D. 1010.如图,▱ABCD的对角线AC,BD交于点O ,,,且AC::3,那么AC的长为A. B. C. 3 D. 411.如图,正方形ABCD的边长为1,其面积记为,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为,按此规律继续下去,则的值为A.B.C.D.12.如图,在平面直角坐标系中,反比例函数的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.的面积为若动点P 在x 轴上,则的最小值是A.B. 10C.D.二、填空题(24分)13.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作于点E、于点F,若,,则EF的长为______.14.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A 的坐标是,点C的坐标是,则点B的坐标是______.15.已知:在中,对角线AC、BD相交于点O,过点O的直线EF分别交AD 于E、BC 于F,,,则的面积是______ .16.如图,在▱ABCD中,E为边CD上一点,将沿AE 折叠至处,与CE 交于点若,,则的大小为______.17.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且,将绕点D逆时针旋转,得到若,,则的面积为______.18.如图,延长矩形ABCD的边BC至点E,使,连结AE,如果,则______度.三、解答题(78分)19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使,连接AF 、求证:.20.如图,已知BD 是的角平分线,点E,F分别在边AB,BC上,,求证:.21.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.求证:;若,,求图中阴影部分的面积.22.如图,矩形ABCD 中,,,过对角线BD中点O 的直线分别交AB,CD边于点E,F.求证:四边形BEDF是平行四边形;当四边形BEDF是菱形时,求EF的长.23.如图,已知中,,把绕A点沿顺时针方向旋转得到,连接BD,CE交于点F.求证:≌;若,,当四边形ADFC是菱形时,求BF的长.24.是一块锐角三角形材料,边,高,要把它加工成矩形零件EFHG,使矩形的一边GH在BC上,其余两个顶点E 、F在AB,AC 上,求证:EF ::AD;设,,用含x的代数式表示y;设矩形EFGH的面积是S,求当x 为何值时S 的最大值.25.如图,AD 是等腰底边BC上的高.点O是AC中点,延长DO到E ,使,连接AE ,CE.求证:四边形ADCE 的是矩形;若,,求四边形ADCE的面积.26.已知:正方形ABCD中,,绕点A顺时旋转,它的两边分别交CB,或它们的延长线于点M ,当绕点A旋转到时如图,易证.当旋转到时如图,线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.当绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.答案和解析1.【答案】D【解析】解:四边形ABCD是平行四边形,,,,平分,,,,.故选:D.由在▱ABCD中,的平分线交AD于点E,易证得是等腰三角形,继而求得答案.此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得是等腰三角形是解此题的关键.2.【答案】D【解析】【分析】此题主要考查了平行四边形的性质,关键是熟练掌握平行四边形的性质定理:边:平行四边形的对边相等.角:平行四边形的对角相等.对角线:平行四边形的对角线互相平分.根据平行四边形的对边相等,平行四边形的对角线互相平分可得答案.【解答】解:四边形ABCD是平行四边形,,,,,故A、B、C都成立,只有D 不一定成立,故选D.3.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC 的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是的中位线,继而求得答案.【解答】解:是矩形ABCD对角线AC的中点,,,,是AD的中点,.故选C.4.【答案】A【解析】解:四边形ABCD是平行四边形,,,:::的可能情况是2:7:2:7.故选:A.由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.5.【答案】D【解析】【分析】由▱ABCD的对角线AC,BD 相交于点O ,,易得DE是的中位线,即可求得BC的长,继而求得答案.此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE 是的中位线是关键.【解答】解:▱ABCD的对角线AC ,BD相交于点O,,,,,,,▱ABCD的周长.故选D .6.【答案】C【解析】【分析】本题主要考查了矩形的性质,轴对称的性质,勾股定理的有关知识,由于AE 是折痕,可得到,,设出未知数,在中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设BE 的长为x ,则、,在中,,中,,,,解得:,则BE的长度为.故选C.7.【答案】C【解析】【分析】此题主要考查对全等三角形和勾股定理的综合运用,关键是证明≌.运用正方形边长相等,再根据同角的余角相等可得,然后证明≌,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以,;,即,在和中,≌,,;在中,由勾股定理得:,即,的面积为10,故选:C .8.【答案】A【解析】【分析】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出是解此题的关键.根据菱形性质求出,,,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:四边形ABCD 是菱形,,,,,,,,,由勾股定理得:,,,,故选A.9.【答案】D【解析】【分析】本题考查了矩形的性质、折叠的性质、勾股定理、全等三角形的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.由矩形的性质得出,,得出,由折叠的性质得出≌,得出,因此,证出,设,则,根据勾股定理得出方程:,解方程求出AF ,即可得出结果.【解答】解:四边形ABCD是矩形,,,,矩形沿AC 折叠,点D落在点E处,≌,,,,设,则,在中,根据勾股定理得:,即,解得:,,.故选D.10.【答案】D【解析】解:四边形ABCD是平行四边形,,,::3,::3,设,,,,,,,,,.故选:D.根据平行四边形的性质可知,,,由AC::3,推出OA::3,设,,在中利用勾股定理即可解决问题.本题考查平行四边形的性质、勾股定理等知识,解题的关键是灵活应用平行四边形的性质解决问题,学会设未知数,把问题转化为方程去思考,属于中考常考题型.11.【答案】B【解析】【分析】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律本题属于中档题,难度不大,解决该题型题目时,写出部分的值,根据数值的变化找出变化规律是关键.根据等腰直角三角形的性质可得出,写出部分的值,根据数的变化找出变化规律,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.正方形ABCD的边长为1,为等腰直角三角形,,,.观察,发现规律:,,,,,.当时,,故选:B.12.【答案】C【解析】【分析】本题考查了反比例函数的系数k的几何意义,轴对称最小距离问题,勾股定理,正方形的性质有关知识,由正方形OABC 的边长是6,得到点M的横坐标和点N的纵坐标为6,求得,,根据三角形的面积列方程得到,,作M 关于x轴的对称点,连接交x轴于P ,则的长的最小值,根据勾股定理即可得到结论.【解答】解:如图:正方形OABC的边长是6,点M的横坐标和点N的纵坐标为6,,,,,的面积为10,,,,,作M关于x 轴的对称点,连接交x轴于P,则的长的最小值,,,,,故选C .13.【答案】7【解析】【分析】此题把全等三角形的判定和正方形的性质结合求解.考查学生综合运用数学知识的能力.因为ABCD是正方形,所以,,则有,又因为、,根据AAS 易证≌,所以,,则EF的长可求.【解答】解:是正方形,,,,,在和中,,,,≌,,,.故答案为:7.14.【答案】【解析】解:四边形ABCO是平行四边形,O为坐标原点,点A的坐标是,点C的坐标是,,,点B 的坐标是;故答案为:.根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.15.【答案】32【解析】【分析】本题考查了平行四边形的性质及全等三角形的判定,解答本题需要掌握两点:平行四边形的对边相等且平行,全等三角形的对应边、对应角分别相等.利用平行四边形的性质可证明≌,所以可得的面积为3,进而可得的面积为8,又因为的面积的面积,进而可得问题答案.【解答】解:四边形ABCD是平行四边形,,,,又,在与中,,≌,的面积为3,,的面积为8,的面积的面积,的面积,故答案为32.16.【答案】【解析】解:四边形ABCD是平行四边形,,由折叠的性质得:,,,,;故答案为:.由平行四边形的性质得出,由折叠的性质得:,,由三角形的外角性质求出,与三角形内角和定理求出,即可得出的大小.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出和是解决问题的关键.17.【答案】【解析】【分析】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,由旋转可得,为直角,可得出,由,得到为,可得出,再由,利用SAS可得出三角形DEF与三角形DMF 全等,由全等三角形的对应边相等可得出,则可根据,正方形的边长为3,用求出EB 的长,再由,求出FC 的长,根据求出BF的长,最后根据求出答案.【解答】解:逆时针旋转得到,,、C、M 三点共线,,,,,,在和中,,≌,,,,,,.故答案为.18.【答案】15【解析】解:连接AC,四边形ABCD是矩形,,,且,,又,,,,,即,故答案为:15.连接AC,由矩形性质可得、,知,而,可得度数.本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.19.【答案】证明:四边形ABCD是平行四边形,,,,,,即,在和中,≌,,.【解析】本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质有关知识,由平行四边形的性质得出,,证出,,由SAS证明≌,得出对应角相等,再由平行线的判定即可得出结论.20.【答案】证明:,,四边形EFCD 是平行四边形,,平分,,,,,,故BE .【解析】本题考查平行四边形的判断和性质、等腰三角形的判定等知识.先利用平行四边形性质证明,再证明,即可解决问题,中考常考题型.21.【答案】证明:四边形ABCD 是矩形,,折叠在中,,,.【解析】本题考查了折叠问题,矩形的性质,勾股定理,关键是灵活运用折叠的性质解决问题.由折叠可得,由可得,则,可得根据勾股定理可求AE的长度,即可求阴影部分面积.22.【答案】证明:四边形ABCD是矩形,O是BD的中点,,,,在和中,,≌,,四边形BEDF是平行四边形;解:当四边形BEDF是菱形时,,设,则,,在中,,,解得:,,,,,.【解析】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.根据平行四边形ABCD 的性质,判定≌,得出四边形BEDF的对角线互相平分,进而得出结论;在中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD ,得出OB,再由勾股定理求出EO ,即可得出EF的长.23.【答案】解:由旋转的性质得:≌,且,,,,,即,在和中,,≌;四边形ADFC 是菱形,且,,由得:,,为直角边为2的等腰直角三角形,,即,,.【解析】由旋转的性质得到≌,以及,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS 得到≌即可;根据,四边形ADFC是菱形,得到,再由,得到为等腰直角三角形,求出BD的长,由求出BF的长即可.此题考查了旋转的性质,全等三角形的判定与性质,以及菱形的性质,熟练掌握旋转的性质是解本题的关键.24.【答案】证明:四边形EFHG是矩形,,∽,;解:设,,故,解得:..即.当时,矩形EGHF的面积最大.【解析】根据,得出∽,进而得出EF::AD;设,,利用相似三角形的性质用x表示出y 即可;根据矩形面积公式求出S 与x之间的解析式,运用公式求抛物线顶点的横坐标即可.本题主要考查了相似三角形的应用、矩形EGHF的面积的表达,把问题转化为二次函数,利用二次函数的性质是解决问题关键.25.【答案】证明:点O是AC 中点,,,四边形ADCE是平行四边形,是等腰底边BC上的高,,四边形ADCE 是矩形;解:是等腰底边BC上的高,,,,,,由勾股定理得:,四边形ADCE 的面积是.【解析】根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出,根据矩形的判定得出即可;求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可.本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.26.【答案】解:成立.证明:如图,把绕点A 顺时针旋转,得到,则可证得E、B、M三点共线图形画正确.,又,在与中,,≌,,,;.在线段DN 上截取,在与中,,≌,,.在和中,,≌,,.【解析】结论:成立,证得B、E、M三点共线即可得到≌,从而证得.结论:首先证明≌,得,再证明≌,得,本题考查正方形的性质、旋转变换等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.。

平行四边形测试卷及答案

平行四边形测试卷及答案

平行四边形测试卷一一、选择题〔3′×10=30′〕1.以下性质中,平行四边形具有而非平行四边形不具有的是〔 D 〕.A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.ABCD中,∠A=55°,那么∠B、∠C的度数分别是〔 C 〕.A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.以下正确结论的个数是〔 C 〕.①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是〔B 〕.A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,那么AB与BC的值可能是〔 A 〕. A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在以下定理中,没有逆定理的是〔 C 〕.A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.以下说法中正确的选项是〔 A 〕.A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为〔 B 〕.A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有〔 C 〕个.A.2 B.3 C.4 D.510.如下图,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.假设AB=•14,•AC=19,那么MN的长为〔 C 〕.A.2 B.2.5 C二、填空题〔3′×10=30′〕11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.3cm 4cm12.平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,那么这条对角线长是_________cm.813.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•假设ABCD•的周长为38cm,△ABD 的周长比ABCD的周长少10cm ,那么ABCD的一组邻边长分别为______.9cm和10cm 14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.假设∠F=65°,那么ABCD的各内角度数分别为_________.50°,130°,50°,130°15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•那么两条短边的距离是_____cm.1016.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.结论题设17.命题“两直线平行,同旁内角互补〞的逆命题是_________.同旁内角互补,两直线平行18.在直角三角形中,两边的长分别是4和3,那么第三边的长是________.519.直角三角形两直角边的长分别为8和10,那么斜边上的高为________,斜边被高分成两局部的长分别是__________20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•那么c•应为________,此三角形为________三角形.20.13 直角三、解答题〔6′×10=60′〕21.如右图所示,在ABCD中,BF⊥AD于F,BE⊥CD于E,假设∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.21.ABCD的周长为20cm22.如下图,在ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:〔1〕AE=CF;〔2〕AE∥CF.FCDAEB23.如下图,ABCD的周长是,AB的长是DE⊥AB于E,DF⊥CB交CB•的延长线于点F,DE的长是3,求〔1〕∠C的大小;〔2〕DF的长.23.〔1〕∠C=45°〔2〕DF=224.略24.如下图,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程〔要求:•推理过程中要用到“平行四边形〞和“角平分线〞这两个条件〕.25.△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16〔n>4〕.求证:∠C=90°.26.如下图,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,•求∠C 的度数.26.∠C=90°27.三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.27.三条中位线的长为:12cm;20cm;24cm28.如下图,AB=CD,AN=ND,BM=CM,求证:∠1=∠2.28.提示:连结BD,取BD•的中点G,连结MG,NG29.如下图,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:〔1〕FE=FD;〔2〕当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?29.〔1〕略〔2〕结论仍成立.提示:过F作FG⊥MN于G 30.略30.如下图,E 是ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.。

第一章《特殊平行四边形》单元测试卷(含答案解析)

第一章《特殊平行四边形》单元测试卷(含答案解析)

第一章《特殊平行四边形》单元测试卷班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.矩形具有而菱形不一定具有的性质是()A.内角和等于3600B.对角互补C.对边平行且相等D.对角线互相平分3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.如图所示,四边形ABCD的对角线互相平分,要使四边形ABCD成为矩形,需要添加的条件是()A.AB=CD B.AD=BD C.AB=BC D.AC=BD(第4题) (第5题) (第6题)5.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形;B.当AB=BC时,四边形ABCD是菱形;C.当AC⊥BD时,四边形ABCD是菱形;D.当∠DAB=90°时,四边形ABCD是正方形7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等N分别是边AB、BC的中点,则PM+PN的最小值是()A.5 B.10 C.14 D.不确定(第8题) (第9题) (第10题)9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=4,则菱形ABCD的周长是()A.8 B.16 C.24 D.3210.如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个11.如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.67°B.57°C.60°D.87°(第11题) (第12题)12.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A2B 2 C 2 D cm2二.填空题:(每小题3分,共12分13.如图,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,请你(第13题) (第14题) (第15题)14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α= 度.15.如图,E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BD于点R,则PQ+PR的值为。

(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)(1)

(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)(1)

一、选择题1.菱形的一条对角线与它的边相等,则它的锐角等于( )A .30°B .45°C .60°D .75°2.如图,边长为,a b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .243.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 点作OE AB ⊥,垂足为E .则下列说法错误的是( )A .点O 为菱形ABCD 的对称中心B .2OE =C .CDB ∆为等边三角形D .4BD =4.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则DE 的长为( )A .12B .53C .25D .135.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCES S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶26.如图,将等边ABC 与正方形DEFG 按图示叠放,其中D ,E 两点分别在AB ,BC 上,且BD BE =.若6AB =,2DE =,则EFC 的面积为( )A .4B .23C .2D .17.如图,正方形ABCD 的边长为3,点P 为对角线AC 上任意一点,PE BC ⊥,PQ AB ⊥,垂足分别是E ,Q ,则PE PQ +的值是( )A .32B .3C .322D .328.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ACD △沿AD 翻折,得到ADC ',DC '与AB 交于点E ,连结BC ',若2BD BC ='=,3AD =,则点D 到AC '的距离为( )A .332B .3217C .7D .139.如图,平行四边形ABCD 的对角线AC BD 、相交于点,О下列结论正确的是( )A .COD AOB S S ∆= B .AC BD =C .AC BD ⊥D .ABCD 是轴对称图形 10.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A .6B .7C .3D .511.如图所示,正方形ABCD 中,E ,F 是对角线AC 上两点,连接BE ,BF ,DE ,DF ,则添加下列哪一个条件可以判定四边形BEDF 是菱形( )A .∠1=∠2B .BE =DFC .∠EDF =60°D .AB =AF 12.如图,在菱形ABCD 中,AB =6,∠ABC =60°,M 为AD 中点,P 为对角线BD 上一动点,连接PA 和PM ,则PA +PM 的最小值是( )A .3B .3C .3D .6二、填空题13.如图,正方形AOBC 的两边分别在x 轴、y 轴上,点()4,3D -在边AC 上,以点B 为中心,把△BCD 旋转90︒,则旋转后点D 的对应点1D 的坐标是________.14.如图,将矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =60°,则∠CFD =_____.15.如图,四边形ABCD 是一张长方形纸片,将该纸片对折,使顶点B 与顶点D 重合,EF 为折痕,若6AB =、8BC =,则图中阴影部分的面积为______.16.如图,长方形ABCD 中,AD =8,AB =4,BQ =5,点P 在AD 边上运动,当BPQ 为等腰三角形时,AP 的长为_____.17.如图,矩形ABCD 中,AC 与BD 交于点O ,BE AC ⊥于点E ,DF 平分ADC ∠,交EB 的延长线于点F ,3BC =,6CD =,则BE BF=_________.18.如图,在平面直角坐标系中,点A 的坐标是(0,3),点B 的坐标是(﹣4,0),以AB 为边作正方形ABCD ,连接OD ,DB .则△DOB 的面积是_____.19.如图,长方形ABCD 中,F 是BC 上一点,将ABF ∆沿着AF 翻折,使得翻折后的BF 恰好经过AD 边的中点E ,翻折后的点B 记作点G .若EF DF =,1FC =,则线段BF 的长度为______.20.已知四边形ABCD 中,AC BD ⊥,且8AC =,10BD =,E 、F 、M 、N 分别为AB 、BC 、CD 、DA 的中点,那么四边形EFMN 的面积等于______.三、解答题21.如图,AD 是ABC 的中线,//AE BC ,且12AE BC =,连接DE ,CE .(1)求证:AB DE =(2)当ABC 满足什么条件时,四边形ADCE 是矩形?并说明理由.22.如图,在四边形ABCD 中,E 、F 分别是AD ,BC 的中点,G ,H 分别是BD 、AC 的中点,依次连接E ,G ,F ,H .(1)求证:四边形EGFH是平行四边形;(2)当AB=CD时,EF与GH有怎样的位置关系?请说明理由;(3)若AB=CD,∠ABD=20°,∠BDC=70°,则∠GEF= °.23.如图,长方形ABCD中,AD=a cm,AB=b cm,且a、b满足|8-a|+(b-4)2=0.(1)长方形ABCD的面积为;(2)动点P在AD所在直线上,从A出发向左运动,速度为2cm/s,动点Q在DC所在直线上,从D出发向上运动,速度为4cm/s.动点P、Q同时出发,设运动时间为t秒.①当点P在线段AD上运动时,求以D、P、B、Q为顶点的四边形面积;(用含t的式子表示)②求当t为何值时,S△BAP=S△CQB.24.在四边形ABCD中,AD//BC.∠B=90°,AB=8cm,AD=24cm.BC=26cm.点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.求:从运动开始,使PQ =CD,需要经过的时间是多少?25.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形;(3)(填空)在(2)中再增加条件.则四边形AFBD是正方形.26.综合与实践问题情境:如图1,已知点O是正方形ABCD的两条对角线的交点,以点O为直角顶点的直角三角形BC=.OEF的两边OE,OF分别过点B,C,且OF OC=,30∠=︒,2E(1)OC的长度为________;操作证明:∆按如图放置,若OE,OF分别与AB,BC (2)如图2,在(1)的条件下,将OEF相交于点M,N.请判断OM和ON有怎样的数量关系,并证明结论;探究发现:∆按如图放置,若点B恰好在EF上,求证:(3)如图3,在(1)的条件下,将OEF=.EM EB【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由菱形的性质可得这条对角线与菱形的两边组成等边三角形,从而求得锐角的度数等于60°.【详解】解:由菱形的性质得,菱形相邻的两边相等,则与这条对角线组成等边三角形,则它的锐角等于60°,故选C .【点睛】此题主要考查菱形的性质:四边相等.2.B解析:B【分析】由矩形的周长和面积得出7a b +=,10ab =,再把多项式分解因式,然后代入计算即可.【详解】 根据题意得:1472a b +==,10ab =, ∴22a b ab +()10770ab a b =+=⨯=;故选:B .【点睛】本题考查了矩形的性质、分解因式、矩形的周长和面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.3.B解析:B【分析】根据菱形的性质,等边三角形的判定,含30度的直角三角形的性质,勾股定理即可判断得出答案.【详解】菱形对角线互相垂直平分,O为对角线BD的中点,也是菱形对角线的交点,所以点O为菱形ABCD的对称中心,故A选项正确;∵四边形ABCD是菱形,∴AD=AB=BC=CD,∵∠A=60°,∴∠A=∠C =60°,∴△ABD和△CBD是等边三角形,故C选项正确;∴BD=AB=4,故D选项正确;∠OBE=60°,∵OE⊥AB,∴∠BOE=30°,∵O为对角线BD的中点,∴OB=1BD=2,2∴BE=1OB =1,2∴==B选项错误;故选:B.【点睛】本题考查了菱形的性质以及等边三角形的判定与性质,含30度的直角三角形的性质,勾股定理等.注意证得△ABD是等边三角形是关键.4.B解析:B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到DE的长.【详解】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt △ABF 中,BF 4,∴CF =BC ﹣BF =5﹣4=1,设CE =x ,则DE =EF =3﹣x ,在Rt △ECF 中,CE 2+FC 2=EF 2,∴x 2+12=(3﹣x )2,解得x =43, ∴DE =3﹣x =53, 故选:B .【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.5.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.6.C解析:C【分析】过F作FQ⊥BC于Q,根据等边三角形的性质和判定和正方形的性质求出BE=2,∠BED=60°,∠DEF=90°,EF=2,求出∠FEQ,求出CE和FQ,即可求出答案.【详解】过F作FQ⊥BC于Q,则∠FQE=90°,∵△ABC是等边三角形,AB=6,∴BC=AB=6,∠B=60°,∵BD=BE,DE=2,∴△BED是等边三角形,且边长为2,∴BE=DE=2,∠BED=60°,∴CE=BC−BE=4,∵四边形DEFG是正方形,DE=2,∴EF=DE=2,∠DEF=90°,∴∠FEC=180°−60°−90°=30°,∴QF=12EF=1,∴△EFC的面积=12×CE×FQ=12×4×1=2,故选:C.【点睛】本题考查了等边三角形的性质和判定、正方形的性质等知识点,能求出CE和FQ的长度是解此题的关键.7.B解析:B【分析】证明四边形PQBE是矩形得PE=QB,证明△PEC是等腰直角三角形得PQ=BE便可求得结果【详解】解:∵四边形ABCD 是正方形,∴∠ABC=90°,∠ACB=12∠BCD=45° ∵PE ⊥BC ,PQ ⊥AB ,∴四边形PQBE 是矩形,∴PQ=BE∵AC 是正方形ABCD 的对角线,∴∠PCE=45°,又∠PEC=90°∴△PEC 是等腰直角三角形∴PE=CE∴PE+PQ=CE+BE=BC=3.故选:B .【点睛】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=CE ,PQ=BE . 8.B解析:B【分析】过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,则四边形ADFG 是矩形,计算AC '的长,后利用三角形ADC 'M 面积 的不同计算方法计算即可.【详解】如图,过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,∵把ACD △沿AD 翻折,得到ADC ',∴DC=DC ',∠ADC=∠A DC ',∵D 是BC 边上的中点,∴DC=BD ,∵2BD BC ='=,∴DC '=2BD BC ='=,∴BDC '是等边三角形,∴∠ADC=∠A DC '=∠B DC '=∠DC 'B=60°,∴BG ∥AD ,∵DF ⊥BC',AG ⊥BC',∴四边形ADFG 是矩形,∴BF=FC'=1,FG=AD=3,=,∴GC '=2,∴AC '=,设点D 到AC '的距离为h , ∴1122AC h AD DF '=,∴11322h =⨯,∴h=7, 故选B.【点睛】 本题考查了三角形的折叠问题,等边三角形的判定和性质,平行线的判定,矩形的判定,勾股定理,三角形的面积,熟练掌握折叠的性质,矩形的判定,三角形面积不同表示方法是解题的关键.9.A解析:A【分析】根据平行四边形的定义和性质解题.【详解】解:由平行四边形的性质可知△AOB ≌△COD ,∴A 正确;AC=BD 是矩形的性质,不是一般平行四边形的性质,∴B 不正确;AC ⊥BD 是菱形的性质,∴C 不正确;ABCD 是轴对称图形是矩形或菱形的性质,∴D 不正确;故选A .【点睛】本题考查平行四边形的应用,熟练掌握平行四边形的性质和定义是解题关键. 10.C解析:C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB⊥AF,∴∠FAB=90°,∵点D是BC的中点,∴AD=BD=1BC=4,2∴∠DAB=∠B,∴∠ADE=∠B+∠BAD=2∠B,∵∠AEB=2∠B,∴∠AED=∠ADE,∴AE=AD,∴AE=AD=4,∵,EF⊥AF,∴==3,故选:C.【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.11.B解析:B【分析】由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF,∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选B.【点睛】考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定. 12.C解析:C【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=1AD=3,CM⊥AD,2∴223,CD DM∴3故选C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(10)或(-18)【分析】画出旋转后的图形根据旋转的性质可知OD1的长和C2D2C2O的长由此判断点D1的坐标【详解】如图所示:根据旋转的性质旋转前后两个图形全等如果△BCD绕点B逆时针旋转90°解析:(1,0)或(-1,8)【分析】画出旋转后的图形,根据旋转的性质可知OD1的长和C2D2,C2O的长,由此判断点D1的坐标.【详解】如图所示:根据旋转的性质,旋转前后两个图形全等,如果△BCD 绕点B 逆时针旋转90°后得△BOD 1,CD= OD 1,BC =BO ,∵四边形AOBC 是正方形,D(-4,3),∴BC=4,CD =4-3=1,∴OD 1=1∴D 1(1,0)如果△BCD 绕点B 顺时针旋转90°后得△BC 2D 2C 2O=BO+BC 2=4+4=8,C 2D 2=CD=1,点D 2的的坐标为D 2(-1,8).故答案为:(1,0)或(-1,8).【点睛】本题主要考查图形的旋转及旋转的性质和正方形的性质,熟练掌握旋转的性质是解题的关键.14.【分析】根据轴对称和矩形性质得;结合∠EFB =60°经计算即可得到答案【详解】∵矩形ABCD 沿DE 折叠使A 点落在BC 上的F 处∴∵∠EFB =60°∴故答案为:【点睛】本题考查了轴对称矩形的性质;解题的解析:30【分析】根据轴对称和矩形性质,得90EFD A ∠=∠=;结合∠EFB =60°,经计算即可得到答案.【详解】∵矩形ABCD 沿DE 折叠,使A 点落在BC 上的F 处∴90EFD A ∠=∠=∵∠EFB =60°∴180180609030CFD EFB EFD ∠=-∠-∠=--=故答案为:30.【点睛】本题考查了轴对称、矩形的性质;解题的关键是熟练掌握轴对称、矩形的性质,从而完成求解.15.【分析】先根据矩形的性质可得设从而可得再根据折叠的性质然后在中利用勾股定理可求出DE 的长最后利用三角形的面积公式即可得【详解】四边形ABCD 是长方形且点F 到AD 的距离等于AB 的长的边DE 上的高为6设 解析:754【分析】先根据矩形的性质可得8,90AD BC A ==∠=︒,设DE x =,从而可得8AE x =-,再根据折叠的性质8,6,90A E AE x A D AB A A '''==-==∠=∠=︒,然后在Rt A DE '中,利用勾股定理可求出DE 的长,最后利用三角形的面积公式即可得.【详解】四边形ABCD 是长方形,6AB =,8BC =,8,90AD BC A ∴==∠=︒,且点F 到AD 的距离等于AB 的长,DEF ∴的边DE 上的高为6,设DE x =,则8AE AD DE x =-=-,由折叠的性质得:8,6,90A E AE x A D AB A A '''==-==∠=∠=︒,在Rt A DE '中,222A E A D DE ''+=,即()22286x x -+=, 解得254x =, 即254DE =, 则阴影部分的面积为125756244⨯⨯=, 故答案为:754. 【点睛】 本题考查了矩形与折叠问题、勾股定理等知识点,熟练掌握矩形与折叠的性质是解题关键.16.3或或2或8【分析】根据矩形的性质可得∠A =90°BC =AD =8然后根据等腰三角形腰的情况分类讨论根据勾股定理和垂直平分线等知识即可求解【详解】解:∵四边形ABCD 是矩形∴∠A =90°BC =AD =8解析:3或52或2或8 【分析】根据矩形的性质可得∠A =90°,BC =AD =8,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【详解】解:∵四边形ABCD 是矩形,∴∠A =90°,BC =AD =8,分三种情况:①BP =BQ =5时,AP =22BP AB -=2254-=3;②当PB =PQ 时,作PM ⊥BC 于M ,则点P 在BQ 的垂直平分线时,如图所示:∴AP =12BQ =52; ③当QP =QB =5时,作QE ⊥AD 于E ,如图所示:则四边形ABQE 是矩形,∴AE =BQ =5,QE =AB =4, ∴PE 22QP QE -2254-3,∴AP =AE ﹣PE =5﹣3=2;④当点P 和点D 重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ ,此时AP=AD=8,综上所述,当BPQ 为等腰三角形时,AP 的长为3或52或2或8; 故答案为:3或52或2或8. 【点睛】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键. 17.【分析】由矩形的性质可得结合角平分线的定义可求得可证明结合矩形的性质可得根据三角形的面积公式得到于是得到结论【详解】解:四边形为矩形设与相交于点平分又又故答案为:【点睛】本题主要考查矩形的性质掌握矩 解析:25【分析】由矩形的性质可得2COB CDO ∠=∠,EBO BDF F ∠=∠+∠,结合角平分线的定义可求得F BDF ∠=∠,可证明BF BD =,结合矩形的性质可得AC BF =,根据三角形的面积公式得到BE ,于是得到结论.【详解】 解:四边形ABCD 为矩形,设DF 与AC 相交于点M ,AC BD ∴=,90ADC ∠=︒,OA OD =,6AB CD ==,3AD BC ==, DF 平分ADC ∠,ADG AGD ∴∠=∠,又CDB CAB ∠=∠,CMF CAB DGA ∠=∠+∠,CMF ADG CDB ∴∠=∠+∠,又90BDF ADG CDB ∠+∠+∠=︒,90BDF CMF ∴∠+∠=︒,90CMF F ∠+∠=︒,BDF F ∴∠=∠,BF BD ∴=,AC BF ∴=,6AB CD ==,3AD BC ==,BF AC ∴== 1122ABC S AC BE AB BC ∆==,BE ∴==∴25BE BF ==, 故答案为:25.【点睛】本题主要考查矩形的性质,掌握矩形的四个角都是直角、对角线互相平分且相等是解题的关键,注意三角形外角性质的应用.18.14【分析】过点D 作轴垂足为E 先证明从而得到AE =OB =4最后依据的面积=OB•OE 求解即可【详解】解:过点D 作DE ⊥y 轴垂足为E ∵A 的坐标是点B 的坐标是∴OA =3OB =4∵ABCD 为正方形∴AB =解析:14【分析】过点D 作DE y ⊥轴,垂足为E .先证明ABO DAE ≌,从而得到AE =OB =4,最后依据OBD 的面积=12OB•OE 求解即可. 【详解】解:过点D 作DE ⊥y 轴,垂足为E .∵A 的坐标是()0,3,点B 的坐标是()4,0-,∴OA =3,OB =4.∵ABCD 为正方形,∴AB =AD ,∠DAB =90°.∵90DAE BAO ∠+∠=︒,90BAO ABO ∠+∠=︒,∴DAE ABO ∠∠=.在ABO 和DAE △中E AOB DAE ABO AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABO DAE AAS ≌.∴AE =OB =4.∴437OE AE AO =+=+=.∴OBD 的面积=12OB•OE =12×4×7=14. 故答案为:14.【点睛】本题主要考查的是正方形的性质、全等三角形的性质和判定,求得OE 的长是解题的关键.19.3【分析】根据等腰三角形的性质得出EP=PD 进而得出AD 的长利用矩形的性质解答即可【详解】解:过F 点作FP ⊥AD 于P ∵EF=DFFP ⊥AD ∴EP=PD ∵FP ⊥AD ∴FP ∥CD ∵四边形ABCD 是矩形∴ 解析:3【分析】根据等腰三角形的性质得出EP=PD ,进而得出AD 的长,利用矩形的性质解答即可.【详解】解:过F 点作FP ⊥AD 于P ,∵EF=DF ,FP ⊥AD ,∴EP=PD ,∵FP ⊥AD ,∴FP ∥CD ,∵四边形ABCD 是矩形,∴PD ∥FC ,∠PDC=90°,AD=BC ,∴四边形PFCD 是矩形,∴FC=PD=1,∴ED=2PD=2,∵翻折后的BF 恰好经过AD 边的中点E ,∴AD=2AE=4,∴BC=4,∴BF=4-1=3,故答案为:3.【点睛】本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质.20.20【分析】根据三角形的中位线定理证明四边形EFGH 是平行四边形再证明EF ⊥EH 证得四边形EFGH 是矩形即可根据矩形的面积公式计算得出答案【详解】∵点EF 分别是边ABBC 的中点∴EF ∥ACEF=AC解析:20【分析】根据三角形的中位线定理,证明四边形EFGH 是平行四边形,再证明EF ⊥EH ,证得四边形EFGH 是矩形,即可根据矩形的面积公式计算得出答案.【详解】∵点E 、F 分别是边AB 、BC 的中点,∴EF ∥AC ,EF=12AC=4, 同理,HG ∥AC ,HG=12AC=4,EH ∥BD ,EH=12BD=5, ∴EF=HG ,EF ∥HG ,∴四边形EFGH 是平行四边形,∵AC ⊥BD ,EF ∥AC ,∴EF ⊥BD ,∵EH ∥BD ,∴EF ⊥EH ,∴∠HEF=90°,∴四边形EFGH 是矩形,∴四边形EFGH 的面积=4520EF EH ⋅=⨯=,故答案为:20.【点睛】此题考查三角形的中位线性质定理,矩形的判定定理,能证得四边形是矩形是解题的关键 .三、解答题21.(1)证明见解析;(2)当ABC 满足AB AC =时,四边形ADCE 是矩形,证明见解析【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可;(2)根据矩形的判定解答即可.【详解】(1)AD 是ABC 的中线12BD CD BC ∴== 12AE BC = AE BD ∴=又AE BC∴四边形ABDE 是平行四边形AB DE ∴=(2)当ABC 满足AB AC =时,四边形ADCE 是矩形 12AE BC =,12BD CD BC == AE CD ∴=又AE BC ∥∴四边形ADCE 是平行四边形AB DE =∴当AB AC =时,AC DE =∴四边形ADCE 是矩形【点睛】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.22.(1)见解析;(2)GH ⊥EF ,见解析;(3)25【分析】(1)首先运用三角形中位线定理可得到EG ∥AB ,EG=12AB ,HF ∥AB ,EG=12AB ,即可得到四边形EGFH 是平行四边形;(2)再运用三角形中位线定理证明邻边相等,从而证明平行四边形EGFH 是菱形,即可证明GH ⊥EF ;(3)由EH ∥CD ,得到∠BDC=∠BPH=70°,由EG ∥AB ,得到∠EGD=∠ABD=20°,再利用三角形的外角性质和菱形的性质即可求解.【详解】证明:(1)∵E 、G 分别是AD 、BD 的中点,∴EG ∥AB ,且12GE AB =, 同理可证:HF ∥AB ,且12HF AB =, ∴EG ∥HF ,且EG=HF ,∴四边形EGFH 是平行四边形;(2)GH ⊥EF ,理由如下:∵G 、F 分别是BD 、BC 的中点 ,∴12GF CD =, 由(1)知12GE AB =, 又∵AB=CD ,∴GE=GF ,又∵四边形EGFH 是平行四边形,∴四边形EGFH 是菱形,∴GH ⊥EF ;(3)∵E 、H 分别是AD 、AC 的中点 ,∴EH ∥CD ,∴∠BDC=∠BPH=70°,∵EG ∥AB ,∴∠EGD=∠ABD=20°,∴∠GEP=∠BPH-∠EGD=50°,∵四边形EGFH 是菱形,∴∠GEF=∠HEF=12∠GEP =25°. 故答案为:25.【点睛】本题考查了中点四边形,菱形的判定和性质,三角形中位线的性质,熟练掌握三角形中位线的判定和性质是解题的关键.23.(1)32cm 2;(2)①四边形的面积为S =12t +16(cm 2);②当t =43或45时,S △BAP =S △CQB .【分析】 (1) 由|8-a|+(b -4)2=0.可求=8=4a b ,,可求长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,可求S 四边形BPDQ =S △BDP +S △BDQ =12t +16(cm 2);②由S △BAP =S △CQB ,可列方程12×2t×4=12×|4t -4|×8,化去绝对值44t t -=±分类解方程即可.【详解】解:(1) a 、b 满足|8-a|+(b -4)2=0.∵()28-0,40a b ≥-≥, ∴8-=04=0a b -,,∴=8=4a b ,,∴AD =8cm ,AB =4cm ,∴长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,S 四边形BPDQ =S △BDP +S △BDQ ,=12(8-2t)×4+12×4t×8, =12t +16(cm 2); ②由S △BAP =S △CQB ,得:12×2t×4=12×|4t -4|×8, 即|4t -4|=t ,44t t -=±,44t t -=或44t t -=-,解得:t =43或45, 当t =43或45时,S △BAP =S △CQB . 【点睛】本题考查非负数和的性质,矩形面积,四边形面积,一元一次方程,掌握非负数的性质,利用非负数求出AD,AB,会求矩形面积,以及四边形面积,会利用三角形面积列方程解决问题是解题关键.24.8s或28 3s【分析】设运动时间为t秒,则有AP=t,CQ=2t,分PQ//CD和PQ与CD不平行两种情况进行讨论,再根据平行四边形或梯形的性质建立方程即可求解.【详解】解:(1)当PQ//CD时,∵AD//BC,∴四边形PDCQ是平行四边形,∴PD=CQ,而AP=t,CQ=2t,PD=AD-AP=24-t,即:2t=24-t解得: t=8.(2)当PQ与CD不平行时,而AD//BC,PQ=CD,∴四边形PDCQ是等腰梯形,作PM⊥BC于M,DN⊥BC于N,则四边形ABND、PMND均是矩形,∴AD=BN=24,CN=BC-BN=2,QM=CN=2,PD=MN,而CQ=QM+MN+NC,∴ 2t=24-t+2+2,解得: t=283.【点睛】此题考查了平行四边形的性质及等腰梯形的判定与性质,属于动点型问题,关键是分类讨论点P及点Q位置,然后利用方程思想求解t的值.25.(1)见解析(2)见解析(3)∠BAC=90°【分析】(1)根据平行四边形的判定定理即可得到结论;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案;(3)当△ABC为等腰直角三角形时,四边形AFBD是正方形,理由为:由第一问证得的AF =BD,且AF与BD平行,根据一组对边平行且相等的四边形为平行四边形可得四边形AFBD为平行四边形,若三角形ABC为等腰直角三角形,D为斜边BC的中点,根据直角三角形斜边上的中线等于斜边的一半可得AD=BD,且根据三线合一得到AD与BC垂直,可得平行四边形的邻边相等且有一个角为直角,即可判定出四边形AFBD 为正方形.【详解】(1)证明:∵点D 是BC 边的中点,点E 是AD 的中点,∴DE 是△BCF 的中位线,∴DE ∥BF ,∴AD ∥BF ,∵AF ∥BC ,∴四边形AFBD 是平行四边形;(2)证明:(2)∵AB =AC ,BD =DC ,∴AD ⊥BC .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形;(3)当△ABC 为等腰直角三角形,且∠BAC =90°时,四边形AFBD 是正方形,理由如下: ∵四边形AFBD 为平行四边形,又∵等腰直角三角形ABC ,且D 为BC 的中点,∴AD =BD ,∠ADB =90°,∴四边形AFBD 为正方形.故答案为:∠BAC =90°.【点睛】此题考查了正方形的判定,平行四边形的判定和性质,矩形的判定,等腰直角三角形的性质,熟练掌握各判定定理是解题的关键.26.(1;(2)OM ON =,证明详见解析;(3)详见解析【分析】(1)由题意可得OC=OB ,OC ⊥OB ,再根据勾股定理即可得到答案;(2)连接OB ,OC ,证明BOM CON ∆∆≌,即可得出答案;(3)根据题意可推出OBF ∆为等边三角形,可得60OBF F ∠=∠=︒,BF OF ==45OBC ∠=︒,可得45OBM ∠=︒,从而可推出,EBM EMB ∠=∠,即可得证.【详解】解:(1)∵点O 是正方形ABCD 的两条对角线的交点,以点O 为直角顶点的直角三角形OEF 的两边OE ,OF 分别过点B ,C ,∴OC=OB ,OC ⊥OB ,∵BC=2,∴OC 2=BC 2-OB 2,2OC 2=BC 2,2OC 2=4,即;(2)OM ON =;证明:如图,连接OB ,OC ,∵点O 是正方形ABCD 的两条对角线的交点,∴OB OC =,45OBM OCN ∠=∠=︒,∵90BOF MOB BOF NOC ∠+∠=∠+∠=︒,∴MOB NOC ∠=∠,在BOM ∆和CON ∆中OBM OCN OB OC MOB NOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BOM CON ASA ∆∆≌,∴OM ON =;(3)连接OB ,OC ,∵OF OC =,OB OC =,∴OB OF =,∵在Rt OEF ∆中,30E ∠=︒,∴60F ∠=︒,∴OBF ∆为等边三角形,∴60OBF F ∠=∠=︒,2BF OF ==又∵45OBC ∠=︒,∴45OBM ∠=︒,∵180180456075EBM OBM OBF ∠=-∠-∠=--︒︒=︒︒︒,∴180180753075EMB EBM E ∠=-∠-∠=-︒-︒=︒︒︒,∴EBM EMB ∠=∠,∴EM EB =.【点睛】本题考查了等边三角形的判定和性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定,掌握知识点是解题关键.。

北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)

北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)

北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。

平行四边形单元测试卷(5套题)

平行四边形单元测试卷(5套题)

第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。

小学数学四年级上册第五单元平行四边形和梯形 单元测试卷(含答案解析)(1)

小学数学四年级上册第五单元平行四边形和梯形 单元测试卷(含答案解析)(1)

小学数学四年级上册第五单元平行四边形和梯形单元测试卷(含答案解析)(1)一、选择题1.下图中直线m和n互相平行,线段AB和CD的关系是()。

A. 互相平行B. 互相垂直C. 相交2.有两条直线都和第三条直线平行,那么这两条直线()。

A. 互相垂直B. 互相平行C. 相交3.两个()的梯形可以拼成一个平行四边形.A. 面积相同B. 周长一样C. 完全一样D. 不存在4.把一张长方形的纸对折再对折,打开后两条折痕()A. 互相平行B. 互相垂直C. 可能互相平行,也可能互相垂直5.从平行四边形的一个顶点可以画这个平行四边形的()条高.A. 1B. 2C. 无数条6.将一张正方形的纸片,先上下对折,再左右对折,展开后的折痕()。

A. 相互平行B. 相互垂直C. 相互平行或垂直7.在平面上作一条直线的平行线可以作()条。

A. 1B. 2C. 无数8.下图里,AB、AC、AD、AE四条线段中,它们的长度为4厘米、5厘米、6厘米、7厘米。

线段()一定长4厘米。

A. ABB. ACC. AD9.在同一平面内,过直线外一点画已知直线的平行线,可画()条。

A. 1B. 2C. 无数10.两条直线互相垂直可以得到()个直角。

A. 1B. 2C. 3D. 4 11.平行线间的距离()。

A. 相等B. 不相等C. 不能确定12.下面数学书挡住的是一张四边形彩纸,则这张彩纸可能是()形的。

A. 正方B. 平行四边C. 长方D. 三角二、填空题13.图中________号是平行四边形,________号和________号拼成了平行四边形。

14.下面的图形中有________个平行四边形。

15.以平行四边形的一条边为底,能作出无数条高,这些高的长度都________。

16.小聪和小明都用两根长6厘米和两根长4厘米的小棒摆了一个平行四边形,他们摆的图形的________一定相等。

17.将两张长方形纸如图交叉摆放,重叠部分是________形,你之所以这么认为,理由是________。

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。

四边形测试卷及答案

四边形测试卷及答案

四边形测试卷一.选择题(共11小题)1.如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm2.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()A.1个B.2个C.3个D.4个3.如图,在周长为20cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为()A.4cm B.6cm C.8cm D.10cm4.下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形5.正方形具有而菱形不具有的性质是()A.四条边都相等B.对角线相等C.对角线平分一组对角D.对角线垂直且互相平分6.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个7.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是()A.bc﹣ab+ac+c2B.ab﹣bc﹣ac+c2C.a2+ab+bc﹣ac D.b2﹣bc+a2﹣ab8.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C.D.29.点A、B、C、D在同一平面内,若从①AB∥CD②AB=CD③BC∥AD④BC=AD这四个条件中选两个,不能推导出四边形ABCD是平行四边形的选项是()A.①②B.①④C.②④D.①③10.要从一张长40cm,宽20cm的矩形纸片中剪出长为18cm,宽为12cm的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张11.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形,菱形).其中,能用完全重合的含有30°角的两块三角板拼成的图形是()A.②③B.②③④C.①③④⑤D.①②③④⑤二.填空题(共7小题)12.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是_________cm.13.在四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,四边形ABCD 应具备的条件是_________.14.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为_________.15.如图,延长正方形ABCD边BC延长至E,使CE=AC,则∠AFC=_________.16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为_________cm(结果不取近似值).17.在矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形ABCD的面积为______cm2.18.如图,梯形ABCD中,AD∥BC,且AD:BC=3:5,梯形ABCD的面积是8cm2,点M、N分别是AD和BC上一点,E、F分别是BM、CM的中点,则四边形MENF的面积是_________cm2.三.解答题(共9小题)19.如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).20.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.21.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.22.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?23.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.24.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.25.如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)当点E坐标为(3,0)时,试证明CE=EP;(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由;(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.26.已知:如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.27.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=_________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=_________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.答案与评分标准一.选择题(共11小题)1.(2010•菏泽)如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm考点:菱形的性质;勾股定理;三角形中位线定理。

浙教版2022-2023学年八下数学第四章 平行四边形 尖子生测试卷1

浙教版2022-2023学年八下数学第四章 平行四边形 尖子生测试卷1

浙教版2022-2023学年八下数学第四章 平行四边形 尖子生测试卷1考试时间:120分钟 满分:120分一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为( ) A .32 B .2 C .52D .3(第1题) (第2) (第3题)2.如图,在平行四边形ABCD 中,点O 是对角线AC 上一点,连接BO 、DO ,△COD 、△AOD 、△AOB 、△BOC 的面积分别是S 1、S 2、S 3、S 4.下列关于S 1、S 2、S 3、S 4的等量关系式中错误的是( )A .S 1+S 3=S 2+S 4B .S 1S 2=S4S 3C .S 3−S 1=S 2−S 4D .S 2=2S 1 3.如图,六边形ABCDEF 的内角都相等,∠DAB=60°,AB=DE ,则下列结论成立的个数是( ) ①AB ∥DE ;②EF ∥AD ∥BC ;③AF=CD ;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形. A .2 B .3 C .4 D .54.如图,在平行四边形 中,A 1,A 2,A 3,A 4和C 1,C 2,C 3,C 4分别是ABCD 的五等分点,点B 1,B 2和D 1,D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为2,则平行四边形ABCD 的面积为( ) A .4 B .310 C .103D .305.如图,小明从点O 出发,沿直线前进10米后向左转n°(0<n <90),再沿直线前进10米向左转相同的度数,…照这样走下去,小明发现:当他第一次回到了出发点时,共转过了24次,则小明每次转过的角度n 的值为( ) A .1425 B .15 C .151523D .36(第4题) (第5题) (第6题)6.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为( ) A .4S 1 B .4S 2 C .4S 2+S 3 D .3S 1+4S 37.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交直线BC 于点E ,过点A 作直线CD 的垂线交直线CD 于点F ,若AB=4,BC=6,则CE+CF 的值为( ) A . B .C . 或D . 或8.如图,在□ABCD 中,P 是对角线BD 上的一点,过点作EF ∥AB ,与AD 和BC 分别交于点E 和点F,连结AP,CP。

四边形单元测试卷

四边形单元测试卷

10. 如图4,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.611.同学们玩过万花筒,它是由三块等宽等长的玻璃片围成的,如图5,是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心_________得到的.( ) A.顺时针旋转60° B.顺时针旋转120° C.逆时针旋转60° D.逆时针旋转120°12 某人设计装饰地面的图案,拟以长为22 cm ,16 cm ,18 cm 的三条线段中的两条为对角线,另一条为边,画出不同形状的平行四边形,他可以画出形状不同的平行四边形个数为( ) A.1 B.2 C.3 D.413. 若等腰梯形两底的差等于一腰的长,则最小的内角是( )A.30°B.45°C.60°D.75°14. 如图5,在矩形ABCD 中,AB =3,AD =4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD于F ,则PE +PF 的值为( )图5 图6A.513 B.25 C.2 D.51215.如图6,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )A.1处B.2处C.3处D.4处16. 在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm 2,则两条对角线共用的竹条至少需( )A.302cmB.30 cmC.60 cmD.602 cm三、解答题(6小题,共52分)17.(8分)如图8,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,求证:EF=DF.17题图18.如图中,G是CD上一点,BG交AD延长线于E,AF=CG,100=∠DGE.(1)试说明DF=BG; (2)试求AFD∠的度数.19.(8分)如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形.20. (8分)工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图(1),使AB=CD,EF=GH;(2)摆成如图(2)的四边形,则这时窗框的形状是形,根据的数学道理是;(3)将直角尺靠紧窗框的一个角,如图(3),调整窗框的边框,点直角尺的两条直角边与窗框无缝隙时,如图(4),说明窗框合格,这时窗框是形,根据的数学道理是。

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。

D.8错误!未找到引用源。

3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。

C.4-2 错误!未找到引用源。

D.3 错误!未找到引用源。

-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).A .B .C .D .【答案】C【解析】A 、此图形不是中心对称图形,故本选项不符合题意; B 、此图形不是中心对称图形,故此选项不符合题意; C 、此图形是中心对称图形,故此选项符合题意;D 、此图形不是中心对称图形,故此选项不符合题意. 故答案为:C .2.已知平行四边形ABCD 中,∠A +∠C =240°,则∠B 的度数是( ) A .100° B .60° C .80° D .160° 【答案】B【解析】∵四边形ABCD 为平行四边形, ∴∠A=∠C ,∠A+∠B =180°. 又∵∠A+∠C=240°, ∴∠A=∠C=120°, ∠B=180°-∠A=60°. 故答案为:B3.多边形边数从n 增加到n +1,则其内角和( ) A .增加180° B .增加360° C .不变 D .减少180° 【答案】A【解析】n 边形的内角和是(n -2)•180°,边数增加1,则新的多边形的内角和是(n+1-2)•180°. 则(n+1-2)•180°-(n -2)•180°=180°. 故它的内角和增加180°. 故答案为:A .4.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB∠AC .若AC =6,BD =10,则AB 的长是( )A .3B .4C .5D .6 【答案】B【解析】∵四边形ABCD 是平行四边形,BD =10,AC =6, ∴AO =OC =12AC =3,BO =DO =12BD =5,又∵AB∠AC , ∴∠BAC =90°,∴AB =√BO 2−AO 2=√52−32=4, 故答案为:B . 5.用反证法证明,“在∠ABC 中,∠A 、∠B 对边是a 、b ,若∠A <∠B ,则a <b .”第一步应假设( ) A .a >b B .a =b C .a≤b D .a≥b【答案】D【解析】根据反证法步骤,第一步应假设a <b 不成立,即a≥b . 故答案为:D.6.如图,点E 、F 分别是∠ABCD 边AD 、BC 的中点,G 、H 是对角线BD 上的两点,且BG=DH .则下列结论中错误的是( )A .GF =EHB .四边形EGFH 是平行四边形C .EG =FHD .EH ⊥BD【答案】D【解析】连接EF 交BD 于点O ,在平行四边形ABCD 中,AD=BC ,∠EDH=∠FBG , ∵E 、F 分别是AD 、BC 边的中点,∴DE=BF=12BC ,∠EDO=∠FBO ,∠DOE=∠BOF ,∴∠EDO∠∠FBO , ∴EO=FO ,DO=BO , ∵BG=DH , ∴OH=OG ,∴四边形EGFH 是平行四边形, ∴GF=EH ,EG=HF ,故答案为:A 、B 、C 不符合题意; ∵∠EHG 不一定等于90°,∴EH∠BD 错误,D 符合题意; 故答案为:D .7.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD=BC ,∠CBD=30°,∠ADB=100°,则∠PFE 的度数是( )A .15°B .25°C .30°D .35°【答案】D【解析】∵点P 是BD 的中点,点E 是AB 的中点, ∴PE 是∠ABD 的中位线, ∴PE=12AD ,PE∠AD ,∴∠EPD=180°-∠ADB=80°, 同理可得,PF=12BC ,PE∠BC ,∴∠FPD=∠CBD=30°, ∵AD=BC , ∴PE=PF ,∴∠PFE=12×(180°-110°)=35°,故答案为:D .8.如图, ▱EFGH 的四个顶点分别在 ▱ABCD 的四条边上, QF ∥AD ,分别交EH 、CD 于点P 、Q 过点P 作 MN ∥AB ,分别交AD 、BC 于点M 、N ,若要求 ▱EFGH 的面积,只需知道下列哪个四边形的面积( )A .四边形AFPMB .四边形MPQDC .四边形FBNPD .四边形PNCQ【答案】C【解析】如图,连接PG ,FN ,∵∠EFGH ,∴S △FPG =12S ▱EFGH ,∵FQ ∥BC ,∴S △FPN =S △FPG , 又∵MN∠AB ,∴四边形FBNP 为平行四边形,∴S △FPN =S △FPG =12S ▱FBNP∴S ▱FBNP =S ▱EFGH ,∴要求∠EFGH 的面积,只需要知道四边形FBNP 的面积. 故答案为:C.9.如图,已知□OABC 的顶点A ,C 分别在直线 x =1 和 x =4 上,O 是坐标原点,则对角线OB 长的最小值为( )A .3B .4C .5D .6 【答案】C【解析】过点B 作BD⊥直线x=4,交直线x=4于点D ,过点B 作BE⊥x 轴,交x 轴于点E ,直线x=1与OC 交于点M ,与x 轴交于点F ,直线x=4与AB 交于点N ,如图:∵四边形OABC是平行四边形,∴⊥OAB=⊥BCO,OC⊥AB,OA=BC.∵直线x=1与直线x=4均垂直于x轴,∴AM⊥CN,∴四边形ANCM是平行四边形,∴⊥MAN=⊥NCM,∴⊥OAF=⊥BCD.∵⊥OFA=⊥BDC=90°,∴⊥FOA=⊥DBC.在⊥OAF和⊥BCD中,⊥FOA=⊥DBC,OA=BC,⊥OAF=⊥BCD,∴⊥OAF⊥⊥BCD,∴BD=OF=1,∴OE=4+1=5,∴OB=√OE2+BE2.由于OE的长不变,所以当BE最小时,OB取得最小值,最小值为OB=OE=5.故答案为:C.10.如图,∠ ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①∠ADO=30°;②S ∠ ABCD=AB·AC;③OB=AB;④S四边形OECD=32S∠AOD,其中成立的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】∵四边形ABCD为平行四边形,∠ADC=60°,∴OA=OC,OB=OD,∠ABC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=60°,∴△ABE是等边三角形,∴AB=AE=BE,∠AEB=60°,∵AB=12BC,∴BE=12BC,∴CE=BE=AE,∴∠ACE=∠CAE=30°,∴∠OAB=90°,∠OAD=30°,∴在Rt△AOB中,OB>OA,OB>AB,则结论③不成立;∴OD >OA ,∴∠ADO ≠∠OAD ,即∠ADO ≠30°,结论①不成立; ∵∠OAB =90°,即AB ⊥AC ,∴S ▱ABCD =AB ⋅AC ,则结论②成立; 设平行四边形ABCD 的面积为8a(a >0), 则S △AOD =S △COD =S △BOC =14S ▱ABCD =2a ,∵BE =CE ,∴S △BOE =S △COE =12S △BOC =a ,∴S 四边形OECD =S △COE +S △COD =3a =32S △AOD ,结论④成立;综上,成立的个数为2个, 故答案为:B .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.一个多边形的内角和与外角和的和为2160∠,则这个多边形的边数为 . 【答案】12【解析】设这个多边形的边数是n , (n -2)•180°+360°=2160°, 解得n=12. 故答案为:12.12.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),若一次函数y=mx -6m 的图象将四边形ABCD 的面积分成1:3两部分,则m 的值为 .【答案】−35或−6【解析】∵直线y=mx -6m 经过定点B (6,0),A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),∴CD∠AB ,CD=8-2=6= AB , ∴四边形ABCD 是平行四边形,∴S∠ADC= S∠ADC=12S 平行四边形ABCD ,又∵直线y=mx -6m 把平行四边形ABCD 的面积分成1:3的两部分.∴直线y=mx -6m 经过AD 的中点M (1,3)或经过CD 的中点N (5,6), ∴m -6m=3或5m -6m=6,∴m=-35或-6,故答案为:-35或-6.13.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,ED ,EF 分别交AC ,AB 于点D ,F ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,E 1D 1,E 1F 1分别交EF ,BF 于点D 1,F 1,得到四边形E 1D 1FF 1,它的面积记作S 2……照此规律作下去,则S n = .【答案】√322n+1【解析】∵∠ABC 是边长为1的等边三角形,∴∠ABC 的高为:√12−(12)2=√32,∴S △ABC =12×1×√32=√34,∵DE 、EF 分别是∠ABC 的中位线,∴AF =12AC =12,∴S 1=12S △ABC =√38,同理可得S 2=√38×14;…,∴S n =√38×(14)n−1=√322n+1;故答案为:√322n+1.14.如图, ΔABC 和 ΔDEC 关于点C 成中心对称,若 AC =1 , AB =2 , ∠BAC =90° ,则 AE 的长是 .【答案】2√2【解析】∵∠DEC 与∠ABC 关于点C 成中心对称, ∴DC=AC=1,DE=AB=2,∴在Rt∠EDA 中,AE 的长是:AE =√AD 2+DE 2=√(DC +AC)2+DE 2=√(1+1)2+22=2√2 . 故答案为: 2√2 . 15.已知:如图,线段AB =6cm ,点P 是线段AB 上的动点,分别以AP 、BP 为边在AB 作等边△APC 、等边△BPD ,连接CD ,点M 是CD 的中点,当点P 从点A 运动到点B 时,点M 经过的路径的长是 cm .【答案】3【解析】如图,分别延长AC,BD交于H,过点M作GN∠AB分别交AH于G,BH于N,∵∠APC、∠BPD都是等边三角形,∴∠A=∠B=∠DPB=∠CPA=60°,∴AH∠PD,BH∠CP,∴四边形CPDH是平行四边形,∴CD与HP互相平分,∴M是PH的中点,故在P运动过程中,M始终在HP的中点,所以M的运动轨迹即为∠HAB的中位线,即线段GN,∴GN=12AB=3cm,故答案为:3.16.如图,把含45∘,30∘角的两块直角三角板放置在同一平面内,若AB//CD,AB=CD=√6则以A,B,C,D为顶点的四边形的面积是.【答案】3+2√3【解析】延长CO,交AB于点E,由题意可知:∠BAO=45°,∠CDO=30°∵AB//CD,AB=CD=√6∴四边形ABCD为平行四边形∵OC∠CD∴CE∠AB∴S∠AOB+S∠COD= 12AB·OE+12CD·OC= 12AB·(OE+OC)= 12AB·CE= 12S平行四边形ABCD∴S平行四边形ABCD=2(S∠AOB+S∠COD)在Rt∠AOB中,AO2+BO2=AB2=6,AO=BO解得:AO=BO= √3在Rt∠COD中,∠CDO=30°,OC2+CD2=OD2∴OD=2OC,OC2+6=(2OC)2解得:OC= √2,∴S∠AOB= 12AO·BO= 32,S∠COD=12CD·OC= √3∴S平行四边形ABCD=2(S∠AOB+S∠COD)=2×(32+√3)= 3+2√3故答案为:3+2√3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,在▱ABCD中,点E、F在对角线AC上,且AE=CF,连接BF、DE.求证:BF=DE,BF∥DE.【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠DAC=∠BCA.又∵AE=CF,∴△DAE≌△BCF(SAS),∴BF=DE,∠DEA=∠BFC.∴∠DEC=∠BFA.∴BF∥DE.18.如图,在∠ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG=CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.【答案】(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∠BC,∵∠DCE=20°,AB∠CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)解:∵四边形ABCD是平行四边形,∴AD=BC,AD∠BC,∵BF=BE,CG=CE,∴BC是∠EFG的中位线,∴BC∠FG ,BC =12FG ,∵H 为FG 的中点, ∴FH =12FG ,∴BC∠FH ,BC =FH , ∴AD∠FH ,AD =FH ,∴四边形AFHD 是平行四边形.19.如图,∠ABC 中,点D ,E 分别是边AB ,AC 的中点,过点C 作CF∠AB 交DE 的延长线于点F ,连接BE .(1)求证:四边形BCFD 是平行四边形.(2)当AB =BC 时,若BD =2,BE =3,求AC 的长. 【答案】(1)证明:∵点 D ,E 分别是边 AB ,AC 的中点, ∴DE∠BC . ∵ CF∠AB ,∴四边形 BCFD 是平行四边形;(2)解:∵AB =BC ,E 为 AC 的中点, ∴BE∠AC .∵AB =2DB =4, BE =3, ∴AE =√42−32=√7 ∴AC =2AE =2√720.如图,在 5×5 的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2,图3中各画一个四边形(所画四边形的顶点均在小正方形的项点上)(1)在图1中画四边形 ABCD ,使其为中心对称图形,但不是轴对称图形; (2)在图2中画以A ,B ,M ,N 为顶点的平行四边形,且面积为5;(3)在图3中画以A ,B ,E ,F 为顶点的平行四边形,且其中一条对角线长等于3. 【答案】(1)解:如图1中,四边形ABCD 即为所求作.(2)解:如图2中,四边形ABMN即为所求作. (3)解:如图3中,四边形ABEF即为所求作. 21.如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥BF,AB=8,BF=6,AC=16.求线段EF长.【答案】(1)证明:连接BD交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形.(2)解:在Rt△ABF中,AF=√AB2+BF2=√82+62=10,∵AC=16,∴CF=AC−AF=16−10=6,∵AE=CF,∴AE=6,∴EF=AF−AE=10−6=4.22.如图,已知:在∠ABCD中,AE∠BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)求证:G 为CD 的中点.(2)若CF =2.5,AE =4,求BE 的长.【答案】(1)证明:∵点F 为CE 的中点,∴CF=12CE , 在∠ECG 与∠DCF 中,∵∠2=∠1, ∠C =∠C , CE =CD ,∴∠ECG∠∠DCF (AAS ),∴CG=CF= 12CE. 又CE=CD , ∴CG=12CD , 即G 为CD 的中点; (2)解:∵CE=CD ,点F 为CE 的中点,CF=2.5,∴DC=CE=2CF=5,∵四边形ABCD 是平行四边形,∴AB=CD=5,∵AE∠BC ,∴∠AEB=90°,在Rt∠ABE 中,由勾股定理得:BE=√52−42=3.23.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:求证:(1)∠ABE 是等边三角形;(2)∠ABC ∠∠EAD ;(3)S △ABE =S △CEF .【答案】(1)证明:∵ABCD 是平行四边形∴AD∠BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴∠ABE 是等边三角形;(2)证明:∵∠ABE 是等边三角形∴∠ABE=∠EAD=60∠,∵AB=AE ,BC=AD ,∴∠ABC∠∠EAD(SAS)(3)证明:∵∠FCD 与∠ABC 等底(AB=CD)等高(AB 与CD 间的距离相等),∴S∠FCD=S∠ABC ,又∵∠AEC与∠DEC同底等高,∴S∠AEC=S∠DEC,∴S∠ABE=S∠CEF24.我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=CB,求证:四边形ABCD是“准筝形”;(2)如图2,在“准筝形”ABCD中,AB=AD,∠BAD=∠BCD=60°,BC=4,CD=3,求AC的长;(3)如图3,在∠ABC中,∠A=45°,∠ABC=120°,AB=3-√3,设D是∠ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.【答案】(1)证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°,∵∠A+∠C=270°,∠D=30°,∴∠B=360°-(∠A+∠C+∠D)=360°-(270°+30°)=60°,∵AB=BC,∴四边形ABCD是“准筝形”;(2)解:以CD为边作等边∠CDE,连接BE,过点E作EF∠BC于F,如图2所示:则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴∠ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在∠ADC和∠BDE中,{AD=BD∠ADC=∠BDEDC=DE,∴∠ADC∠∠BDE(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°-60°-60°=60°,∵∠EFC =90°,∴∠CEF =30°,∴CF =12CE =32 , 由勾股定理得:EF =√CE 2−CF 2=√32−(32)2=3√32 , BF =BC +CF =4+32=112, 在Rt∠BEF 中,由勾股定理得:BE =√BF 2+EF 2=√(112)2+(3√32)2=√37 , ∴AC =√37 ;(3)解:四边形ABCD 的面积为3√32或9+3√32 或 92+3√3. 【解析】(3)过点C 作CH∠AB ,交AB 延长线于H ,如图3所示:设BH =x ,∵∠ABC =120°,CH 是∠ABC 的高线,∴∠BCH =30°,∴HC =√3x ,BC =2BH =2x ,又∵∠A =45°,∴∠HAC 是等腰直角三角形,∴HA =HC ,∵AB =3-√3 ,∴√3x =3-√3+x ,解得:x =√3,∴HC =√3x =3,BC =2√3 ,∴AC = √2 HC =3 √2 ,当AB =AD =3- √3 ,∠BAD =60°时,连接BD ,过点C 作CG∠BD ,交BD 延长线于点G ,过点A 作AK∠BD ,如图4所示:则BD =3-√3 ,∠ABD =60°,BK =12AB =12(3-√3 ), ∵∠ABC =120°,∴∠CBG =60°=∠CBH ,在∠CBG 和∠CBH 中, {∠CGB =∠CHB =90°∠CBG =∠CBH BC =BC,∴∠CBG∠∠CBH (AAS ),∴GC =HC =3,在Rt∠ABK 中,由勾股定理得:AK =√AB 2−BK 2 =√(3−√3)2−[12(3−√3)]2 = 3√3−32, ∴S ∠ABD = 12 BD•AK = 12×(3-√3 )×3√3−32 =6√3−92, S ∠CBD = 12 BD•CG = 12×(3-√3 )×3=9−3√32, ∴S 四边形ABCD = 6√3−92 + 9−3√32 = 3√32; ②当BC =CD =2√3 ,∠BCD =60°时,连接BD ,作CG∠BD 于点G ,AK∠BD 于K ,如图5所示:则BD =2√3 ,CG =√32 BC =√32×2√3 =3,AK =3√3−32 , ∴S ∠BCD =12 BD•CG =12×2√3×3=3√3, S ∠ABD =12BD•AK =12×2√3×3√3−32=9−3√32, ∴S 四边形ABCD =3√3+9−3√32=9+3√32 ; ③当AD =CD =AC =3√2,∠ADC =60°时,作DM∠AC 于M ,如图6所示:则DM =√32AD =√32×3√2 =3√62 , ∴S ∠ABC =12AB•CH =12×(3-√3)×3=9−3√32, S ∠ADC = 12 AC•DM =12×3√2×3√62=9√32, ∴S 四边形ABCD =9−3√32+ 9√32=92+3√3. 综上所述,四边形ABCD 的面积为3√32或9+3√32 或 92+3√3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形测试卷
一、填空题
1. 一个内角和是外角和的2倍的多边形是 边形.
2.
ABCD 的对角线AC ,BD 互相垂直,且AB AC =,则________
=∠BAC º.
3. 一个菱形的两条对角线的长的比是2 : 3 ,面积是12 cm 2 , 则它的两条对角线的长分别为_______、____.
4.
ABCD 的一内角平分线和边相交并把这条边分成长度为cm 5、cm 7的两条线段,则
ABCD 的
周长是___ __cm .
5.
ABCD 的周长为6cm 3,
60=∠B ,6cm =AB ,
则AD 与BC 的距离______=AE cm , =_____________cm ².
二、选择题
6.下面条件中,能判定四边形是平行四边形的条件是( ) A .一组对角相等 B .对角线互相平分 C .一组对边相等 D .对角线互相垂直
7.在一个平面上有不在同一直线上的三点,则以这三点为顶点的平行四边形有( )
A .1个
B .2个
C .3个
D .4个
8. 下列图形中是中心对称图形而不是轴对称图形的是( )
A .平行四边形 B.矩形 C.菱形 D.圆
9.在四边形ABCD 中,∠A :∠B :∠C =4:3:2,且∠B + ∠D = 180°,则∠D 是( )
A .锐角
B .直角
C .钝角
D .不能确定 10.如右图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 则图中面积相等的三角形有( )
A .1对
B .2对
C . 3对
D .4对
11.下列四个命题中错误的是( )
A .两条对角线互相垂直且相等的四边形是正方形
B .菱形的一条对角线平分一组对角
C .顺次连结四边形的各边中点所得的四边形是平行四边形
D .等腰梯形的两条对角线相等
12.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()
A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm
13.已知四边形ABCD中,AC交BD于点O,如果只给条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:
(1)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;
(2)如果再加上条件“BCD
BAD∠
∠”,那么四边形ABCD一定是平行四边形;
=
(3)如果再加上条件“AO=OC”,那么四边形ABCD一定是平行四边形;
(4)如果再加上条件“CAB
∠”,那么四边形ABCD一定是平行四边形
DBA∠
=
其中正确的说法是( )
A.(1)(2)
B.(1)(3)(4)
C.(2)(3)
D.(2)(3)(4)
三、解答题
14.如右图,在□ABCD中,对角线AC、BD相交于点O,已知△ABO比△BCO的周长多4cm,□ABCD的周长为24cm,求AB,BC的长.
15.三月三,放风筝,小明制了一个风筝,如右图,且DE=DF,EH=FH,小明不
用度量就知道∠DEH = ∠DFH。

请你用所学过的数学知识证明之。

16.如图:矩形ABCD 中,AB=2cm , BC=3cm 。

M 是BC 的中点,
求D 点到AM 的距离AP 。

17.如图,已知ΔABC 中,E 、F 分别是AB 、BC 中点,M 、N 是AC 的两个三等分点,EM 与FN 的延长线相交于点D,
求证:四边形ABCD 是平行四边形。

M
B
C
18.(1)如图,把一个等腰直角三角形ABC 沿斜边上的高CD (裁剪线)剪一刀,从这个三角形中裁下一部分,与剩下部分能拼成一个四边形A ′BCD (见示意图a ).
(以下有画图要求的,工具不限,不必写画法和证明) ①猜一猜:四边形A ′BCD 一定是 形;
②试一试:按上述的裁剪方法,请你拼一个与图(a )形状不同的四边形,并在图(b )中画出示意图.
(2)在等腰直角三角形ABC 中,请你找出与(1)不同..
①想一想:你能拼得的特殊四边形有

②画一画:请在图(c )中画出一个你拼得的特殊四边形示意图.
四、附加题
19.已知:如图,在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 垂直相交于O ,MN 是梯形的中位线,∠DBC=30°.
求证:AC=MN
20.
ABCD 的对角线AC 、BD 相交于点O ,点P 1、 P 2 、O 、P 3、 P 4 是线段AC 上的六等分点,点Q 1、Q 2、
B
B
C
Q 3、O、Q
4
、Q
5
、Q
6
是线段BD上的八等分点.
(1)在图中给出的所有点中,除A、B、C、D外,任意连接四点形成平行四边形,试写出其中三个;(2)就(1)中的一个说明理由;
(3)当ABC的对角线满足什么条件时(2)中
的图形是菱形.
答案与提示
1.6 ; 2. 60 ; 3. 4cm,6cm ; 4. 34或38; 5. 3
3;
3
,
36
6. B;
7. C;
8. A;
9. B; 10. C; 11. A; 12. D; 13. C;
14. AB = 8cm,BC = 4cm
15. 提示:可连结DH,证明ΔDHE≌ΔDHF或连结EF,通过证明等腰三角形得证。

16.提示:连结DM,通过等积变换DP•AM=AD•AB,DP=2.4cm,
17.提示:连结BN、BM,可证四边形DMBN是,根据对角线互相平分可得证18.(1)①平行四边形;②略。

(2)①平行四边形、矩形;
②略。

19.提示:AGBD,2MN=AD+BC=BG+BC=CG,直角△GAC中,∠
GAC=900,∠G=300,CG=2AC
20.注意:不得多画四边形,画图写结论,都要用实线连结。

相关文档
最新文档