内径磨削的理论与实际操作技巧

内径磨削的理论与实际操作技巧
内径磨削的理论与实际操作技巧

精密部内径工序培训资料

——内径磨削的工艺特性及实际操作要领

滚动轴承属于精磨机械产品,实际生产中多采用精密磨削的方法进行加工。轴承内圈内径作为轴承的径向安装定位基准面,其形位公差和形位公差都要求极为严格,因此在轴承零件的磨削加工中,内径磨削是一个关键工序之一。内径加工的废品率占到轴承磨削加工废品的60~70%,因此,它也是磨削加工中的最薄弱环节。下面将内径磨削的工艺特性和磨削加工的操作要点和注意事项分述如下:

一、内径磨削的工艺特性

1.内径磨削时砂轮受孔径的限制,使用的砂轮直径较小,砂轮容易钝化,需要经常修整和更

换,因而增加了磨削的辅助时间。

2.由于内径砂轮较小,要获得最有利的磨削速度,就必须有很高的砂轮的转速,因而对砂轮

主轴系统的刚性提出了较高的要求。

3.由于内径磨削的砂轮直径较小,紧固砂轮的砂轮接杆直径更细,悬伸长度又较大,所以磨

削时砂轮接杆刚性较差,容易产生弯曲变形和振动,进而影响工件的加工精度和表面粗糙度,为使接杆的振动和弯曲变形满足工艺要求,磨削用量必然受到影响,进而影响生产效率的提高

4.内径磨削与外径磨削相比砂轮与工件的接触弧面比外径磨削时大,参与磨削的砂轮磨粒较

外径少许多倍,砂轮容易钝化,容易产生磨削热。

5.磨削时冷却水不能充分喷射到磨削区域,冷却效果较差。同时,由于孔径的限制排削困难,

磨屑容易堵塞砂轮使砂轮失去磨削性能,所以需经常修正砂轮,以保持砂轮的切削性能。

由于上述原因的存在,为了保证产品质量和提高生产效率,对内径磨削原理的分析和不断总结和并在生产实践中总结快速有效的操作方法显得尤为重要。

二、内径磨削时砂轮的选择

内径磨削作为磨削工序的薄弱环节,其砂轮的磨料、粒度,、软硬、组织,结合剂选择是否合适,将直接影响工件的加工效率和加工质量。

1. 磨料的选择主要依据工件的材料而定,在磨削一般碳素钢、用棕刚玉磨料;磨削淬火钢、

高速钢高碳合金钢时用白刚玉,磨削轴承钢不锈钢时用单晶刚玉,或单晶微晶混合磨料,铬刚玉磨料在磨削轴承钢时也有较普遍的使用。

2. 砂轮粒度的选择,一般在材料相同的情况下粗磨时选择60~80粒度的砂轮,精磨时选择

80~120粒度的砂轮。

3. 砂轮的软硬则依据材料的硬度及工件磨量的大小进行选择,对于磨量大、材料硬工件,

为避免烧伤和增加其自锐性能应选择砂轮的硬度稍软一些J 或K级的硬度。而对于被

磨削材料较软或磨量小的工件,可采用硬度稍硬的砂轮,K或L级硬度的砂轮。

4. 砂轮的组织在磨削轴承内径时一般选择偏疏松8~10级的组织号,以利于容屑和散热。

5. 结合剂方面一般选择陶瓷结合剂,以利于砂轮形成更多的空隙,改善内径加工磨削性能。

三、内径磨削对砂轮接长轴的要求

砂轮接长轴作为连接砂轮主轴和紧固砂轮、进而实现对工件加工的连接件,在磨削加工中的作用不可小视,其材料选择、结构设计,加工精度的好坏直接影响产品的加工质量及表面精度。

1. 从工艺上要保证接长轴自身外圆与其中心线的同轴度,从而保证最低限度的旋转平衡性;

2. 砂轮接杆圆柱面与电主轴圆柱孔紧密配合,以保证砂轮接杆与砂轮主轴的结合刚性和同

轴度;

3. 为了提高砂轮接杆的刚性,其伸出磨头主轴外的杆体长度应在满足加工工艺的情况下尽量

粗而短。杆身的长短取决于被磨削孔的长度,砂轮在孔端的伸出量。同时还应满足工作台在作往复运动时应保证磨头、接长轴、与机床的其他装置不碰撞。

4. 接长轴的粗细由工被加工工件孔径的大小、砂轮质量大小及旋转时的离心力大小,还有其

悬出砂轮主轴的长度来决定。在满足工艺要求的情况下应尽量是粗一些。

5. 接长轴的材料可以选用中碳合金钢或中碳钢制造,并经调质处理,硬度在HRC38-52度之

间选择。

四、机床加工前一般准备和调整工作

1.确定要加工的工件型号、规格、抄写工艺卡片,校对本工序的工艺要求,确保准确无误。

2.领取标准件,和测量使用的仪表,根据标准件尺寸和工艺要求尺寸两者的差确定对表位置。

3. 根据工件内外径尺寸大小,选用合适的磁极,并与螺钉固定牢固。

4. 修磨磁极

换上修磨磁极专用的砂轮,或将磨削砂轮前端修内凹的蝶形,缓慢移动工作台和磨架使砂轮左端面接近磁极并与磁极呈圆弧的线状接触,使砂轮外径边缘悬出磁极外径边缘约2~3个毫米,将磨架上的螺钉与死挡块用螺钉顶死,调整磨架液压缸压力,使得磨架能保持缓慢移动。

伺服电机控制的工作台和磨架进给对待机床,使用电子手轮控制进给,并将速度放在较低的档位缓慢进给。修磨磁极时要加水冷却,待火花均匀后光磨3到5分钟,当火花接近消失后快速退回磨架和工作台,停止砂轮、工件轴,关闭冷却水,观察磁极的修磨情况,磁极表面应平滑光整,砂轮花分布均匀,端面跳动不大于0.002mm,说明吃惊已经修磨合格。

5..工件偏心的调整

根据工件外径的大小调整偏向量及上下支撑的夹角,偏心量一般在20~35um之间,支撑夹角水平支点在0到5度,下支撑在90到125度之间选取。

具体调整方法,将工件放置在磁极右端,调整磁力使工件刚刚能吸附到磁极上,启动工件,用其中的一个支点轻顶工件,使得工件由跳动状态,逐渐恢复到和磁极同轴的稳定状态。用手推动工件向预定的方向偏出0.2~0.3mm,固定上下支撑,并用刮色法检查支点与

工件的接触情况,调整接触良好后,将工件推离支点2~3mm,开动工件,看工件是否快速归位

靠向支点,并保持稳定。如有飞出或跳动情况应按上述情况重新调整一次,直至稳定旋转为止。

对于较大的工件也可以用磁力吸住工件,将磁力表架和百分表打在工件外径,旋转并轻轻敲击工件,使工件的偏心量控制在预定的值,一般在0.3~0.8毫米,然后,在最高点左一个记号,上磁状态将其旋转到第四象限,距离支点约10毫米左右,固定支点,检查接触情况并做适当调整,使得工件与支点接触宽度在80%以上即可。

6 .磁力大小的调整

偏向调整好后,应该精细调整磁极的磁力大小,一般用手径向稍用力顶工件时,工件应能轻松离开工件,当手松开时,工件能很快自动靠向两支点并稳定旋转说明磁力调整基本合适,再根据具体试磨情况在进行微调即可,一般当工件在磨削过程中有停转现象时稍调大一点磁力,当工件椭圆不好时,应再适当调小磁力。

7.机械手和上下料道的调整

根据工件型号,规格,选用合适的机械手,一般机械手大小和料道宽度应和工件保持1~2mm的间隙,以保持上下料准确、顺畅不卡顿且不与相关部件、仪表干涉为标准。

8. 更换砂轮,调整工件与砂轮的轴向和径向磨削位置以及金刚笔和砂轮的修整位

启动液压系统,或使用伺服手轮,使砂轮轴能进入工件内孔且不与其他部件相干涉,然后调整砂轮轴轴向位置使得砂轮悬出工件的左右位置相等,约有2~3mm,再调整砂轮与工件径向位置,使得砂轮刚刚接触工件后再后退0.3~0.5毫米空程,以避免撞击工件。

退出磨架至最右端,倒下修正器,缓慢左移磨架,使金刚笔靠近砂轮至刚刚接触后紧固金刚笔,然后移动修整信号器控制砂轮修正左右位,依据砂轮接杆长度,使得左右两端各空出2~5mm空程,以消除修正时的换向震动。

9.试磨工件

初步测量工件余量,据此设定要磨削的量,例如,初测磨量35um,先在快跳量

0.3~0.5mm后,按10/1或3/6/1的比例设置粗细精磨磨量,并根据经验设定粗细磨的速

度,一般粗磨15/10,精磨3/2每秒。

设定完成后,长修砂轮。将砂轮修整平整,能进入工件内孔而且有15 %以上的空隙,以利于冷却水进入和排屑。然后,按循环启动,试磨工件一般与到尺寸量预留20~30um的量,为试磨时的尺寸控制值。

试磨完成后,通过测量仪器检验工件的尺寸,椭圆,壁厚,垂直差,粗糙度等是否符合工艺要求,如不符合要求重新调整磨削参数直至满足工艺要求后。

10.首件制作

在开始批量生产前,应制作首件,并填写好首件检查的相关内容,由检查员对首件质量进行确认签字后方可进行批量生产。以避免首件合格确认不准确,工件不具备批量生产条件而开工生产,而造成批量废品出现。

首件的定义及使用规定;

高速磨削技术的现状及发展前景

高速磨削技术的现状及发展前景 The Situ ation and Developing Vistas of High-Speed G rinding T echnology 荣烈润 摘 要:本文综述了高速磨削的概念、优势、关键技术、应用近况和发展前景。 关键词:高速磨削 动平衡 砂轮修整 精密高速磨削 高效深磨   Abstract:This paper introduced concept,advantages,key technical points,application and developing vistas of high2speed grinding technology. K ey w ords:high2speed grinding dynamic balancing grinding wheel trim precision high2speed grind2 ing high2efficiency deep grinding   0 引言 人们一直对于提高磨削的砂轮速度所带来的技术优势和经济效益给予了充分的注意和重视。但是在高速磨削过程中,工件受热变形和表面烧伤等均限制了砂轮速度的进一步提高,砂轮强度和机床制造等关键技术也使得高速磨削技术在一段时间内进展缓慢。当20世纪90年代以德国高速磨床FS-126为主导的高速磨削(High-speed Grinding)技术取得了突破性进展后,人们意识到一个全新的磨削时代已经到来。 高速磨削技术是磨削工艺本身的革命性跃变,是适应现代高科技需要而发展起来的一项新兴综合技术,它集现代机械、电子、光学、计算机、液压、计量及材料等先进技术成就于一体。随着砂轮速度的提高,目前磨削去除率已猛增到了3000mm3/ mm?s甚至更多,可与车、铣、刨等切削加工相媲美,尤其近年来各种新兴硬脆材料(如陶瓷、光学玻璃、光学晶体、单晶硅等)的广泛应用更推动了高速磨削技术的迅猛发展。日本先端技术研究会把高速加工列为五大现代制造技术之一。国际生产工程学会(CIRA)将高速磨削技术确定为面向21世纪的中心研究方向之一。 1 高速磨削的概念及优势 高速加工(High-speed Machining)概念首先由德国切削物理学家Card.J.Salomon于1931年提出,他发表了著名的Salomon曲线,创造性地预言了超越Taloy切削方程式的非切削工作区域的存在,提出如能大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。这对今后高速磨削的发展有着非常重要的启示,对于高速磨削技术的实用化起到了直接的推动作用。 高速磨削与普通磨削相比具有以下突出的技术优势: (1) 可大幅度提高磨削效率,减少设备使用台数。以往磨削仅适用于加工余量很小的精加工,磨削前须有粗加工工序和半精加工工序,需配有不同类型的机床。而高速磨削既可精加工又可粗加工,这样就可以大大减少机床种类,简化了工艺流程。 (2) 可以明显降低磨削力,提高零件的加工精度。高速磨削在材料切除率不变的条件下,可以降低单一磨粒的切削深度,从而减少磨削力,获得高质量的工件表面,尤其在加工刚度较低(如薄壁零件)的工件时,易于保证较高的加工精度。 (3) 成功地越过了磨削热沟的影响,工件表面层可获得残余压应力(这对工件受力有利)。 (4) 砂轮的磨削比显著提高,有利于实现自动化磨削。 (5) 能实现对硬脆材料(如工程陶瓷及光学玻璃等)的高质量加工。

高速超高速磨削技术发展与关键技术

* 国家自然科学基金资助项目(编号:50475052) 教育部科学技术研究重点项目(编号:104190) 高校博士学科点专项科研基金资助项目(编号:20040145001)高速超高速磨削技术发展与关键技术* 青岛理工大学 机械工程学院 ( 266033) 李长河 东北大学 机械工程与自动化学院 (110004) 修世超 蔡光起 摘 要 论述了高速超高速磨削加工技术的发展、特点以及关键技术。 关键词 高速超高速 磨粒加工 关键技术 1 高速/超高速磨削技术发展 超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。德国著名磨削专家T.Tawakoli 博士将超高速磨削誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。在1996年国际生产工程学会(CIRP )年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术。 高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining )的概念是由德国切削物理学家Carl.J.Salomon 博士于1931年首先提出,他发表了著名的Salomon 曲线,创造性地预言了超越Talor 切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。 通常将砂轮线速度大于45 m/s 的磨削称为高速磨削,而将砂轮线速度大于150 m/s 的磨削称为超高速磨削。超高速磨削在欧洲、日本和美国等发达国家发展较快。 欧洲高速超高速磨削技术的发展起步比较早, 最初在20世纪60年代末期就开始进行高速超高速 磨削的基础研究,当时实验室的磨削速度就已经达 到210~230 m/s 。20世纪70年代,超高速磨削开始采用CBN 砂轮。1973年9月意大利的Famir 公司在西德汉诺威国际机床展览会上,展出了砂轮圆周速度120 m/s 的RFT-C120/50R 型磨轴承内套圈外沟的高速实用化磨床。1979年德国Bremen 大学的P.G .Werner 教授撰文预言了高效深磨区存在的合理性,由此开创了高效深磨的概念。1983年德国Bremen 大学出资由德国Guhring Automation 公司制造了当时世界上第一台高效深磨的磨床,功率为60 kW ,转速为10 000 r/min ,砂轮直径为φ400 mm ,砂轮圆周速度达到了209 m/s 。德国Guhring Automation 公司于1992年成功制造出砂轮线速度为140~160 m/s 的CBN 磨床,并正在试制线速度达180 m/s 的样机。德国Aachen 大学、Bremen 大学在高效深磨的研究方面取得了世界公认的高水平成果,其方法是用高线速度、深切入、快进给进行磨削,可得到高效率、高质量的磨削效果。据Aachen 工业大学实验室的Koeing 和Ferlemann 宣称,该实验室已经采用了圆周速度达到500 m/s 的超高速砂轮,这一速度已突破了当前机床与砂轮的工作极限。另外Braunschweig 大学、Berlin 工业大学等也在进行此方面的研究。 瑞士Studer 公司开发的CBN 砂轮磨削线速度在60 m/s 以上,并向120~130 m/s 方向发展。S40 CBN 砂轮磨床,在125 m/s 时高速磨削性能发挥最为充分,即使在500 m/s 也能照常工作。目前在试验室内正用改装的S45型外圆磨床进行线速度为280m/s 的磨削试验。德国Kapp 公司很早就对超高速磨床的研制进行过尝试,目前该公司制造的高效深磨用超高速磨床利用线速度300 m/s 的砂轮在60 s 内对有10个沟槽的成组转子毛坯完成一次磨削成

车工中级理论知识试卷B

职业技能鉴定国家题库 车工中级理论知识试卷B 准考证号单位姓名 一、单项选择(第1题~第60题。选择一个正确的答案,将相应的字母填入题内的括号中。每题1分,满分60分。) 1. CA6140型卧式车床反转时的转速( )正转时的转速。 A、高于 B、等于 C、低于 D、大于 2. 使用枪孔钻( )。 A、必须使用导向套 B、没有导向套,可用车刀顶着钻头 C、不用使导向套 D、先钻中心孔定位 3. 消耗的功最大的切削力是( )。 A、主切削力F z B、切深抗力F y C、进给抗力F x D、反作用力 4. 车削多线螺纹时( )。 A、根据自己的经验,怎么车都行 B、精车多次循环分线时,小滑板要一个方向赶刀 C、应把各条螺旋槽先粗车好后,再分别精车 D、应将一条螺旋槽车好后,再车另一条螺旋槽 5. 四爪卡盘是( )夹具。 A、通用 B、专用 C、车床 D、机床 6. 偏心工件的加工原理是把需要加工偏心部分的轴线找正到与车床主轴旋转轴线( )。 A、重合 B、垂直 C、平行 D、不重合 7. 垫圈放在磁力工作台上磨平面,属于( )定位。 A、部分 B、完全 C、欠 D、重复 8. CA6140型卧式车床主轴箱Ⅲ到Ⅴ轴之间的传动比实际上有( )种。 A、四 B、六 C、三 D、五 9. 刀具材料的硬度越高,耐磨性( )。 A、越差 B、越好 C、不变 D、消失 10. CA6140型卧式车床主轴箱Ⅲ到Ⅴ轴之间的传动比实际上有( )种。 A、四 B、六 C、三 D、五 11. 专用夹具适用于( )。 A、新品试制 B、单件小批生产 C、大批,大量生产 D、一般生产 12. Tr40×12(P6)螺纹的线数为( )。 A、12 B、6 C、2 D、3 13. 在高温下能够保持刀具材料切削性能的是:( )。 A、硬度 B、耐热性 C、耐磨性 D、强度 14. 四爪卡盘是( )夹具。 A、通用 B、专用 C、车床 D、机床 15. 花盘可直接装夹在车床的( )上。 A、卡盘 B、主轴 C、尾座 D、专用夹具 16. 用450r/min的转速车削Tr50×-12内螺纹孔径时,切削速度为( )m/min。 A、70.7 B、54 C、450 D、50

磨工技师理论2-(试题及答案)

职业技能鉴定国家题库 磨工技师理论知识试题 注意事项 1、考试时间:120分钟。 2、请首先按要求在试卷填写您的姓名和所在单位的名称。 3、请仔细阅读各种题目的回答要求,在规定的位置填写您的答案。 4、不要在试卷上乱写乱画。 单位:姓名:考核日期:监考人: 一、选择题(选择正确的答案,将相应的字母填入题内的括号中) 1.主视图和俯视图之间的对应关系是相应投影( A )。 A、长对正 B、高平齐 C、宽相等 2.千分尺的精确值是( B )mm。 A、0.1 B、0.01 C、0.001 3.砂轮圆周速度很高,外圆磨削和平面磨削时其转速一般在( C )m/s左右。 A、10~15 B、20~25 C、30~35 D、40~45 4.外圆磨削时,横向进给量一般取()mm。 A、0.001~0.004 B、0.005~1 C、0.05~1 D、0.005~0.05 5.与钢比铸铁的工艺性能特点是( C )。 A、焊接性能好 B、热处理性能好 C、铸造性能好 D、机械加工性能好 6.( A )是法定长度计量单位的基本单位。 A、米 B、千米 C、厘米 D、毫米 7.外圆磨削时,工件圆周速度一般为( C )m/s。 A、0~5 B、5~30 C、30~40 D、40以上 8.外圆磨削的主运动为( B ) A、工件的圆周进给运动 B、砂轮的高速旋转运动 C、砂轮的横向运动 D、工件的纵向运动 9.( A )磨料主要用于磨削高硬度、高韧性的难加工钢材。 A、棕刚玉 B、立方氮化硼 C、金刚石 D、碳化硅 10.精磨外圆时,砂轮的硬度应( A )于粗磨。 A、高 B、低 C、等 11.无心外圆磨床由两个砂轮组成,其中一个砂轮起传动作用,称为( C )。 A、传动轮 B、惰轮 C、导轮 12.在卧轴矩台平面磨床上磨削长而宽的平面时,一般采用( A )磨削法。 A、横向 B、深度 C、阶梯 13.磨削过程中,开始时磨粒压向工件表面,使工件产生( C )变形,为第一阶段。

磨削技术的发展及关键技术

磨削技术的发展及关键技术 周志雄,邓朝晖,陈根余,宓海青 (湖南大学,长沙市,410082) 1 磨削技术发展概述 一般来讲,按砂轮线速度V s 的高低将磨削分为普通磨削(V s <45 m/s)、高速磨 削(45≤V s <150 m/s)、超高速磨削(V s ≥150 m/s)。按磨削精度将磨削分为普通磨 削、精密磨削(加工精度1 μm~0.1 μm、表面粗糙度R a 0.2 μm~0.1 μm)、超精 密磨削(加工精度<0.1 μm , 表面粗糙度R a ≤0.025 μm)。按磨削效率将磨削分为普通磨削、高效磨削。高效磨削包括高速磨削、超高速磨削、缓进给磨削、高效深切磨削(HEDG)、砂带磨削、快速短行程磨削、高速重负荷磨削。 高速高效磨削、超高速磨削在欧洲、美国和日本等一些工业发达国家发展很快,如德国的Aa chen大学、Bremm大学、美国的Connecticut大学等,有的在实验室 完成了V s 为250 m/ s、350 m/s、400 m/s的实验。据报道,德国Aachen大学正在 进行目标为500 m/s的磨削实验研究。在实用磨削方面,日本已有V s =200 m/s的磨床在工业中应用。 我国对高速磨削及磨具的研究已有多年的历史,如湖南大学在70年代末期便进行了80m/s、1 20 m/s的磨削工艺实验;前几年,某大学也计划开展250 m/s的磨削研究(但至今尚未见到这方面的报道),所以说有些高速磨削技术还只是实验而已,尚未走出实验室,技术还远没有成熟,特别是超高速磨削的研究还开展得很少。 在实际应用中,砂轮线速度V s 一般还是45~60 m/s。 国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削的研究,以获得亚微米级的尺寸精度。微细磨料磨削,用于超精密镜面磨削的树脂结合剂砂轮的金刚石磨粒平均直径可小至4 μm。日本用激光在研磨过的人造单晶金刚石上切出大量等高性一致的微小切刃,对硬脆材料进行精密磨削加工,效果很好。超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025 μm。日本开发了电解在线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料的高精度、高效率的超精密磨削。作平面研磨运动的双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高的平面度。电泳磨削技术也是一种新的超精密及纳米磨削技术。 随着磨削技术的发展,磨床在加工机床中也占有相当大的比例。据1997年欧洲机床展览会(E MO)的调查数据表明,25%的企业认为磨削是他们应用的最主要的加工

超高速磨削及其砂轮技术发展

超高速磨削及其砂轮技术发展1 李长河1,蔡光起2 1 青岛理工大学机械工程学院,山东青岛(266033) 2东北大学机械工程与自动化学院,辽宁沈阳(110004) E-mail:sy_lichanghe@https://www.360docs.net/doc/229093549.html, 摘要:高速超高速磨削加工是先进制造方法的重要组成部分,集粗精加工与一身,达到可与车、铣和刨削等切削加工方法相媲美的金属磨除率,而且能实现对难磨材料的高性能加工。本文主要论述了高速超高速磨削工艺技术的特点;分析了超高速砂轮用电镀或涂层超硬磨料(CBN、金刚石)的特点以及修整方法,介绍了在高速及超高磨床上得到广泛应用的德国Hofmann公司生产的砂轮液体式自动平衡装置。 关键词:超高速磨削,砂轮,关键技术 1. 超高速磨削的特点 超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。德国著名磨削专家T.Tawakoli.博士将超高速磨削誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。在1996年国际生产工程学会(CIRP)年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术[1]。 高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining)的概念是由德国切削物理学家Carl.J.Salomon博士于1931年首先提出,他发表了著名的Salomon曲线,创造性地预言了超越Talor切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。 通常将砂轮线速度大于45m/s的磨削称为高速磨削,而将砂轮线速度大于150m/s的磨削称为超高速磨削。砂轮周速提高后,在单位宽度金属磨除率一定的条件下,单位时间内作用的磨粒数大大增加;如进给量与普通磨削相同,则每颗磨粒的切削厚度变薄、负荷减轻。因此高速与超高速磨削有以下特点[2]: 1.1生产效率高。 由于单位时间内作用的磨粒数增加,使材料磨除率成倍增加,最高可达2000mm3/mm?s,比普通磨削可提高30%~100%。实验表明,200m/s超高速磨削的金属切除率在磨削力不变的情况下比80m/s磨削提高150%,而340m/s时比180m/s时提高200%。采用CBN砂轮进行超高速磨削,砂轮线速度由80m/s提高至300m/s时,比金属切除率由50mm3/mm·s提高至1000mm3/mm·s,因而可使磨削效率显著提高 1.2砂轮使用寿命长 1本课题得到国家自然科学基金资助项目(50475052)和教育部科学技术研究重大项目(104190)的资助。

磨削加工原理

7.3.2珩磨 珩磨是磨削加工的 1 种特殊形式,属于光整加工。需要在磨削或精镗的基础上进行。珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。 (1)珩磨原理 在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。 (2)珩磨方法 珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图 7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。 (3)珩磨的特点 1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50~1/100 。此外,珩磨的切削速度较低,一般在 100m/min 以下,仅为普通磨削的 1/30~1/100 。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。 2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025 。由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm 。 3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。一般镗孔后的珩磨余量为 0.05~0.08mm ,铰孔后的珩磨余量为 0.02~0.04mm ,磨孔后珩磨余量为0.01~0.02mm 。余量较大时可分粗、精两次珩磨。 4)珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜

精密和超精密砂带磨削时磨削机理的研究现状及发展趋势

精密和超精密砂带磨削时磨削机理的研究现状及发展趋势 机电工程系 20124329049 齐伟 摘要:介绍了砂带磨削的特点、应用及关键技术,论述了砂带磨削技术的发展趋势。砂带磨削作为一种新的加工技术,在国外已得到广泛应用,发展非常迅速。砂带磨削是一种高效率、低成本、多用途的磨削加工新方法,它对于各种材料及形状零件加工的适应性和灵活性远超过常规砂轮磨削工艺。 关键词:砂带;磨削;砂带磨削 目录 一、砂带磨削的机理和特点 (1)

二、国内外砂带磨削技术的研究及应用现状 (3) 三、砂带磨削趋势 (6) 引言: 随着汽车、建材、航空及轻工业的进步和发展, 对金属材料和非金属材料特别是难加工材料如不锈钢、钛合金、半导体材料、陶瓷材料等的表面加工质量、

精度、完整性等提出了更高要求, 若采用传统的车削、铣削等工艺方法难以满足这些要求。而砂带磨削作为一种磨削和抛光的新工艺, 是一种优质、高效、低耗的加工方法, 已成为精密、超精密加工的有效方法之一, 在各行各业发挥着越来越大的作用, 现已成为国内外材料和机械交叉学科中引人注目的领域, 具有很大的发展潜力。 一、砂带磨削的机理和特点 1.砂带的结构特点: 砂带是特殊形态的多刀、多刃的切削工具,其切削功能主要是由粘附在基底上的磨粒来完成。 如上图所示,砂带由基材、磨料和粘结剂三要素组成。基材可以是布或纸;粘接剂为胶或人造树脂;磨料可为刚玉、碳化硅或者玻璃砂等。基材在运动的过程中采用高压静电植砂的办法粘结上磨粒,因此砂带上的磨粒几乎都是垂直于基底,锐端向外,定向排列,分布均匀,多刃也基本上是等高排列的。 2.砂带磨削的切削原理: 砂带磨削是根据工件的形状与大小,以相应的方式,使高速运转的砂带与工件表面接触进行磨削或抛光的一种新工艺。 砂带机一般由电机、砂带、接触轮、张紧轮、张紧弹簧与支架、吸尘器及其它辅助部件等组成: 接触轮通常多采用橡胶轮,具有弹性接触的性能,并能在磨削的过程中起一定

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

砂带磨削技术及其应用

砂带磨削技术及其应用砂带磨削技术应用 新闻来源:中国研磨网发布日期:2008-2-10 砂带磨削技术及其应用 ■特邀嘉宾/黄云黄智 中国研磨:在工业发达国家的先进制造技术中,砂带磨削技术已经被广泛的应用,同样这个趋势在我国也逐渐显现。您能简要谈一下砂带磨削在现代工业中的重要作用吗? 黄云:砂带磨削是一种高效、经济、用途广泛,并有“万能磨削”之称的新型磨削工艺。在现代工业中,砂带磨削技术已被当作是与砂轮磨削同等重要的一种不可缺少的加工方法。在工业发达国家,砂带磨削应用已十分普遍,各种高精度、高效率、自动化程度很高的砂带磨床被广泛应用于航天、航空、舰船、汽车、冶金、化工及能源设备等制造行业,并成为国际上名牌机床公司竞争的一个领域。 中国研磨:在了解砂带磨削技术应用之前,可否请您讲解一些砂带磨削原理方面的知识,比如砂带磨削方法的理论知识和单颗磨粒在磨削过程当中的注意问题? 黄云:第一,砂带磨削方法。 砂带磨削是砂带这一特殊形式的涂附磨具,借助于张紧机构使之张紧,和驱动轮使之高速运动,并在一定压力作用下,使砂带与工件表面接触以实现磨削加工的整个过程。 广义地讲,砂带磨削与砂轮磨削同样都是高速运动的“微刃切削刀具”――磨粒的微量切削而形成的累积效应,因而其磨削机理大致上也是相同的。但由于砂带本身的构成特点和使用方式不同,使砂带磨削不论是在磨削加工机理方面,还是其综合磨削性能方面都有别于砂轮磨削,这主要表现在: 1)砂轮磨削是刚性接触磨削,而砂带磨削则是弹性接触磨削,而且即使是在使用无弹性的钢制接触轮的情况时也是如此,因为组成砂带的基材、粘结剂都具有一定的弹性,更何况大多数情况下都采用有弹性的橡胶作接触轮。 正因为如此,砂带磨削除了具有砂轮同样的滑擦、耕犁和切削作用外,还有磨粒对工件表面的挤压作用,并使之产生塑性变形、冷硬层变化和表层撕裂,以及由于摩擦使接触点温度升高,而引起的热塑性流动等综合作用。所以,从这点来看,砂带磨削同时具有磨削、研磨和抛光的多重作用。而这也正是砂带磨削表面质量好的原因。 另一方面,由于砂带的这种弹性磨削特点,还使砂带在磨削区域内与工件接触的长度比砂轮大,同时参加磨削的磨粒数目多,单颗磨粒所受载荷小,且均匀,磨粒破损小。而使整个砂带的磨耗比(磨削材料去除量与砂带磨粒消耗量之比称为磨削比,而磨削比的倒数就称为磨耗比)比砂轮要小得多。 2)砂轮的磨粒在磨削表面上的分布是杂乱无章的,很不规则,实际磨削时,磨粒都是以较大的负前角、小后角甚至负后角的刃口进行切削,切削条件很恶劣。砂带则不同,砂带的磨料是专门制造的,磨粒的几何形状常呈长三角体,并多采用静电植砂等一系列先进工艺制作,磨粒的大小和分布均匀,等高性好,并且是尖刃朝外的形式植于砂带基材表面上,露出复胶

如何解决砂带在磨削过程中容易出现的问题及砂带磨削的特点

如何解决砂带在磨削过程中容易出现的问题 及砂带磨削的特点 砂纸:https://www.360docs.net/doc/229093549.html,/ 1、砂带在磨削过程中容易出现的问题及解决方法 (1) 砂带太软 这个问题一般都发生在动物胶的砂带上特别是雨季,动物胶容易吸潮而发软发粘,因此,在雨季或潮湿的在地区应选用半树脂或全树脂粘结剂生产的砂带。对动物胶的砂带不宜过早折开砂带包装物,以避免过度吸潮。如有条件时,再受过潮动物胶再凉干或烘干亦可,但温度不宜过高,以免胶层起泡或焦化。 (2) 磨料容易钝,但不脱落 砂带磨削时,若接触轮太软,则容易出现砂面的磨料虽不脱落但不锋利的状况。如有这种情况的发生,应该增加磨削的压力或更换较硬的接触轮或更换齿轮较宽的接触轮或者更换小直径的接触轮,或者降低砂带的线速度等等,则可以解决砂面不锋利的状况。 (3) 容易脱砂,基底外露 这主要是磨粒粘结不牢,应更换砂带。或者选用较软的接触轮或较大直径的接触轮,以增大砂带的曲率半径,减少磨削压力,或者选用较窄齿轮的接触轮,以提高砂带的线速度。(4) 磨料层堵塞 主要是砂带选择的不对路,若加工油漆,宜选用有特殊涂层的砂带,如加工铝合金、不锈钢、铜等软金属材料时,宜选用抗润滑,抗冷却剂的耐水砂带,以抗水抗潮,磨削木材及其制品时,宜选用黑碳化硅或棕刚玉的磨料。 2、砂带保管注意事项 无论是动物胶或者是全树脂的砂带,都会受气候的影响而产生一定的变化,尤其是动物胶产品的影响最大,即或是半树脂、全树脂的产品因为基体是植物纤维又未经过耐水处理,在不同气候条件下也会产生物理变化。如在室内湿度太大的地方存放太久,就会过多的吸潮而产生卷曲。朝砂面卷曲的原因是粘结剂层与基体吸潮的程度不同,基体吸潮量较多,因而膨胀。若继续吸潮,再加上温度上升,则会发生霉变,导致砂带无法使用。若存放的地方湿度太小,即气候干燥,则产品中的水分过度散发,基本面产生收缩,因而产品容易向基体面卷曲。严重时,产品发脆,容易断裂。因此,砂布等涂附磨具应保存在阴凉、干燥、通风的仓库内。最佳的保管条件是温度15-20C室内相对湿度50-60%。 此外,产品在使用前不宜过早的开箱,开包,最好是随用随开,最多在用前两天开箱为宜。包装好的砂箱,不宜受重压,以免导致砂带折痕,无法使用。半树脂、动物胶的砂带,一般不应超过一年。全树脂砂带不宜超过两年。超过上述期限时,砂带应重新经过检查,确认无问题后方能使用。 砂带在使用前,应提前2-3天将砂带送到工作现场,并将其悬挂起来,使其与工作环境内的温度、湿度达到平衡,并消除或减轻因包装卷挠而产生的卷曲痕迹。 上部用直径大于100mm的空心钢管,管长应大于砂带的宽度。下部要压一直径大于150mm 的空心钢管,上下拉直后放在现场存放。

先进磨削技术的发展

先进磨削技术的新发展 摘要:磨削是指用磨料或磨具去除材料的加工工艺方法,磨削与车、铣削在常规加工材料上竞争可能难分高下。尽管硬车削已经替代了很多磨削加工,但由于粘结技术的进步、高级磨料的应用,磨削依然保持强势。作为先进制造技术中的重要领域,磨削加工技术已在机械、国防、航空航天、微加工、芯片制造等众多领域得到广泛应用。磨削加工的发展趋势正朝着采用超硬磨料、磨具,高速、高效、高精度磨削工艺及柔性复合磨削、绿色生态磨削方向发展。如今磨削加工的发展趋势,主要包括高速磨削、超高速磨削、精密和超精密磨削、缓进给磨削、高效深切磨削、砂带磨削及绿色磨削技术。我们也需要了解超高速磨削加工的机理及超高速磨削的优越性,把握高速超高速磨削加工技术的发展前景。 关键词:磨削精密磨削高效磨削超高速磨削 正文:磨削加工技术是利用磨料去除材料的加工方法,也是人类最早使用的生产技艺方法。18世纪中期世界上第一台外圆磨床问世,由石英石、石榴石等天然磨料构成,随后又研制出平面磨床。20世纪40年代末,人造金刚石出现;1957年立方氮化硼研制成功;随着磨削技术的发展,特别是超硬磨料人造金刚石砂轮与立方氮化硼党的应用,磨削加工范围日益增大,磨削加工精度和加工效率也不短提高。 磨削技术发展趋势 如今磨削加工技术正朝着高速化,精细化方向发展。因此,我们了解超高速磨削加工的机理及超高速磨削的优越性,把握高速超高速磨削加工技术的发展前景是很有必要的。主要包括高速磨削、超高速磨削、精密和超精密磨削、缓进给磨削、高效深切磨削、砂带磨削及绿色磨削技术 首先了解一下精密及超精密磨削机理,精密磨削一般使用金刚石和立方氮化硼等高硬度磨料砂轮,主要用金刚石修整刀具以极小而又均匀的微进给(10~15mm/min)对砂轮进行精细修整,以获得众多的等高微刃,加工表面的磨痕较细,加工过程中,由于微切削、滑移、摩擦等综合作用,加工工件达到了小的表面粗糙度值和高的精度要求。超精密磨削则采用较小的修整导程和较小的背吃刀量修整砂轮,靠超细微磨粒等高微刃的磨削作用进行磨削加工。现在我们就对以上提到的磨削技术详细了解一下。 高效磨削技术 高效磨削是一种先进的制造技术,在其不断的发展中达到了一个崭新的水平。所谓高效磨削,是指加大磨削负荷或提高砂轮线速度,增加单位时间金属比切除率和单位时间的金属去除量,以达到和车削、铣削那样高的金属切除率,或者甚至更高。高效磨削主要包括高速磨削、缓进给磨削、高效深磨和砂带磨削,现已成为磨削加工技术发展的总体趋势。高效磨削技术的大力推广可有效地提高磨削效率、加工质量、砂轮耐用度,并降低生产成本。 缓进给磨削 缓进给磨削是继高速磨削之后发展起来的一种高效加工方法,对成型表面的加工有显著的成效。缓进给磨削是强力磨削的一种,又称深切缓进给磨削或蠕动磨削。缓进给磨削与普通磨削的不同在于采用增大磨削深度、降低磨削速度、砂轮与工件有较大的接触面积和高的速度比,达到很高的金属切除率。磨削工件时,只需经过一次或数次行程即可磨到所需的形状和尺寸精度。由于砂轮的磨削深度大,致使砂轮与工件的接触面积加大,有效抑制了磨削时振动的产生,磨

车工中级理论复习题目

车工中级理论复习题 一、填空题 1.常用的车刀材料有和两大类。 2.基准不重合误差是由于定位基准和不重合。 3.磨粒磨损实际上是工件或切屑上的将刀具表面上刻划出深浅不一的沟痕而造成的磨损。4.刀具的磨损形式有的磨损、的磨损、同时磨损。 5.磨削时,因砂轮转速快,温度高,必须使用。 6.锥角大,长度短的圆锥面通常采用法进行加工。 7.选择刃倾角时,应考虑因素的影响。 8.造成刀具磨损的主要原因是。 9.影响位置精度的因素中,主要是工件在机床上的位置。 10.刀具的寿命与有密切关系。取切削力增大,切削温度上升,造成刀具寿命。11.螺纹的主要测量参数有,顶径和中径尺寸。 12.高速车削梯形螺纹是为了防止切屑向两侧排出而拉毛螺纹表面,所以不宜采用切削法,只采用车削。 13.低速切削梯形螺纹时,进刀方法可分直进法、槽法和左右切削法三种。 14.磨软材料时采用粗粒度的硬砂轮,是为了防止。 15.左右切削法和直进法不易产生现象。 16.刀具正常磨损的形式可分为面磨损、前、后刀面同时磨损和前刀面磨损。17.从切削用量方面考虑,对刀具寿命影响最大的是。 18.刃倾角为正值时,切削流向工件加工表面方向。 19.砂轮的硬度是指砂轮表面上的磨料在外力作用。 20.测量蜗杆分度圆直径的方法有单针和测量。 21.车刀的前角是和之间的夹角。 22.车刀副切削刃是前刀面与相交部位。 23.切削用量中对断屑影响最大的是。 24.用硬质合金车刀车削表面粗糙度较小的工件,应选用的切削速度。 25.为了防止切断时产生振动,应适当地增大切断刀的角。 26.常用的标准圆锥有圆锥和圆锥两种。 27.切削时工件上形成表面、表面和表面。 28.钻孔时,主要关键技术是和问题。 29.加工钢料用的硬质合金车刀,一般都应磨出适当的。 30.粗加工时应选较的前角。 31.切削层的尺寸规定在刀具中测量。 32.负前角仅用于硬质合金车刀切削高的材料。 33.多线螺纹的分线方法有轴向分线和两大类。 34.刀具材料的硬度越高,耐磨性。 35.针对磨花钻的缺点,可进行双重刃磨、开分屑槽、修磨横刃、面和棱边的刃磨。36.车细长轴时为了避免振动,车刀的主偏角取较为合理。 37.在车削长轴是为了克服工件的热伸长所造成的工件变形,故尾座采用顶尖。38.影响切削温度的主要因素有工件材料、、刀具几何参数和冷却条件等。 39.普通高速钢是加工一般金属材料用的高速钢,常用牌号有W6Mo5Cr4V2和。

内径磨削的理论与实际操作技巧

精密部内径工序培训资料 ——内径磨削的工艺特性及实际操作要领 滚动轴承属于精磨机械产品,实际生产中多采用精密磨削的方法进行加工。轴承内圈内径作为轴承的径向安装定位基准面,其形位公差和形位公差都要求极为严格,因此在轴承零件的磨削加工中,内径磨削是一个关键工序之一。内径加工的废品率占到轴承磨削加工废品的60~70%,因此,它也是磨削加工中的最薄弱环节。下面将内径磨削的工艺特性和磨削加工的操作要点和注意事项分述如下: 一、内径磨削的工艺特性 1.内径磨削时砂轮受孔径的限制,使用的砂轮直径较小,砂轮容易钝化,需要经常修整和更 换,因而增加了磨削的辅助时间。 2.由于内径砂轮较小,要获得最有利的磨削速度,就必须有很高的砂轮的转速,因而对砂轮 主轴系统的刚性提出了较高的要求。 3.由于内径磨削的砂轮直径较小,紧固砂轮的砂轮接杆直径更细,悬伸长度又较大,所以磨 削时砂轮接杆刚性较差,容易产生弯曲变形和振动,进而影响工件的加工精度和表面粗糙度,为使接杆的振动和弯曲变形满足工艺要求,磨削用量必然受到影响,进而影响生产效率的提高 4.内径磨削与外径磨削相比砂轮与工件的接触弧面比外径磨削时大,参与磨削的砂轮磨粒较 外径少许多倍,砂轮容易钝化,容易产生磨削热。

5.磨削时冷却水不能充分喷射到磨削区域,冷却效果较差。同时,由于孔径的限制排削困难, 磨屑容易堵塞砂轮使砂轮失去磨削性能,所以需经常修正砂轮,以保持砂轮的切削性能。 由于上述原因的存在,为了保证产品质量和提高生产效率,对内径磨削原理的分析和不断总结和并在生产实践中总结快速有效的操作方法显得尤为重要。 二、内径磨削时砂轮的选择 内径磨削作为磨削工序的薄弱环节,其砂轮的磨料、粒度,、软硬、组织,结合剂选择是否合适,将直接影响工件的加工效率和加工质量。 1. 磨料的选择主要依据工件的材料而定,在磨削一般碳素钢、用棕刚玉磨料;磨削淬火钢、 高速钢高碳合金钢时用白刚玉,磨削轴承钢不锈钢时用单晶刚玉,或单晶微晶混合磨料,铬刚玉磨料在磨削轴承钢时也有较普遍的使用。 2. 砂轮粒度的选择,一般在材料相同的情况下粗磨时选择60~80粒度的砂轮,精磨时选择 80~120粒度的砂轮。 3. 砂轮的软硬则依据材料的硬度及工件磨量的大小进行选择,对于磨量大、材料硬工件, 为避免烧伤和增加其自锐性能应选择砂轮的硬度稍软一些J 或K级的硬度。而对于被 磨削材料较软或磨量小的工件,可采用硬度稍硬的砂轮,K或L级硬度的砂轮。 4. 砂轮的组织在磨削轴承内径时一般选择偏疏松8~10级的组织号,以利于容屑和散热。 5. 结合剂方面一般选择陶瓷结合剂,以利于砂轮形成更多的空隙,改善内径加工磨削性能。

机械设计及答案

机械设计习题及答案 第一篇总论 第一章绪论 一.分析与思考题 1-1 机器的基本组成要素是什么? 1-2 什么是零件?什么是构件?什么是部件?试各举三个实例。 1-3 什么是通用零件?什么是专用零件?试各举三个实例。 第二章机械设计总论 一.选择题 2-1 机械设计课程研究的内容只限于_______。 (1) 专用零件的部件(2) 在高速,高压,环境温度过高或过低等特殊条件下工作的以及尺寸特大或特小的通用零件和部件(3) 在普通工作条件下工作的一般参数的通用零件和部件(4) 标准化的零件和部件 2-2 下列8种机械零件:涡轮的叶片,飞机的螺旋桨,往复式内燃机的曲轴,拖拉机发动机的气门弹簧,起重机的起重吊钩,火车车轮,自行车的链条,纺织机的纱锭。其中有_____是专用零件。 (1) 3种(2) 4种(3) 5种(4) 6种 2-3 变应力特性可用σmax,σmin,σm, σa, r 等五个参数中的任意_____来描述。 (1) 一个(2) 两个(3) 三个(4) 四个 2-4 零件的工作安全系数为____。 (1) 零件的极限应力比许用应力(2) 零件的极限应力比零件的工作应力 (3) 零件的工作应力比许用应力(4) 零件的工作应力比零件的极限应力 2-5 在进行疲劳强度计算时,其极限应力应为材料的____。 (1) 屈服点(2) 疲劳极限(3) 强度极限(4) 弹性极限 二.分析与思考题 2-1 一台完整2-3 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-2 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-3 什么是零件的强度要求?强度条件是如何表示的?如何提高零件的强度? 2-4 什么是零件的刚度要求?刚度条件是如何表示的?提高零件刚度的措施有哪些? 2-5 机械零件设计中选择材料的原则是什么? 2-6 指出下列材料的种类,并说明代号中符号及数字的含义:HTl50,ZG230-450, 2-7 机械的现代设计方法与传统设计方法有哪些主要区别? 第三章机械零件的强度 一.选择题 3-1 零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之_____。 (1) 增高(2) 不变(3) 降低 3-2 零件的形状,尺寸,结构相同时,磨削加工的零件与精车加工相比,其疲劳强度______。 (1) 较高(2) 较低(3) 相同 3-3 零件的表面经淬火,渗氮,喷丸,滚子碾压等处理后,其疲劳强度_______。 (1) 增高(2) 降低(3) 不变(4) 增高或降低视处理方法而定 二.分析与思考题

超高速磨削加工的关键技术及其装备开发

1引言 为适应现代工业技术和高性能科技产品对机械零件加工精度、表面粗糙度与完整性、加工效率和批量化质量稳定性的要求,近年出现了一些先进的磨削加工技术,其中以超高砂轮线速度和超硬磨料砂轮为主要技术特征的超高速外圆磨削、高效深切磨削、快速点磨削技术的发展最为引人注目。 2超高速磨削技术 超高速磨削(Vs≥150m/s)是近年迅猛发展的一项先进制造技术,被誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。国际生产工程学会(CIRP)将超高速磨削技术确定为面向21世纪的中心研究方向之一。东北大学自上世纪80年代开始一直跟踪高速/超高速磨削技术发展,并对超高速磨削机理、机床设备及其关键技术等开展了连续性的研究,建造了我国第一台额定功率55kW、最高砂轮线速度达250m/s的超高速试验磨床,进行了超高速大功率磨床动静压主轴系统研究、电镀CBN超高速砂轮设计与制造、超高速磨削成屑机理及分子动力学仿真研究、超高速磨削热传递机制和温度场研究、高速钢等材料的高效深磨研究、超高速单颗磨粒CBN磨削试验研究、超高速磨削砂轮表面气流场和磨削摩擦系数的研究等,部分研究成果达到国际先进水平。 2.1超高速磨削技术特点 (1)大幅度提高磨削效率,设备使用台数少;(2)磨削力小、磨削温度低、加工表面完整性好;(3)砂轮使用寿命长,有助于实现磨削加工的自动化;(4)实现对难加工材料的磨削加工。 超高速磨削不仅可对硬脆材料实行延性域磨削,而且对钛合金、镍基耐热合金、高温合金、铝及铝合金等高塑性的材料也可获得良好的磨削效果[1、2]。超高速磨削纯铝的实验表明,当磨削速度超过200m/s(纯铝静态应力波速度)时,工件表面硬化程度和表面粗糙度值开始减小,表面完整性得到改善。因为加载速度提高使得塑性应变点后移,增加了材料在弹性小变形阶段被去除的机率。因此塑性材料静态应力波速是实现“脆性”加工的临界点。 超高速磨削加工的关键技术及其装备开发 蔡光起修世超 (东北大学机械工程与自动化学院沈阳,110004) 摘要:介绍了超高速磨削和快速点磨削的关键技术及国内外发展现状,以及东北大学在这一技术领域的研究成果,提出了跟踪国际先进超高速磨削加工技术,提高我国制造技术水平的途径和策略。 关键词:超高速磨削CNC快速点磨削 Keytechnologyandequipmentofsuper-highspeedgrinding CaiGuangqiXiuShichao (SchoolofMechanicalEngineering&Automation,NortheasternUniversity, Shenyang110004,China) Abstract:Thekeytechnologyandprogressofsuper-highspeedgrindingandquick-pointgrindingwereintroduced,andsomeresearchesandproductionsofNortheasternUniversityinthefieldwerealsopresented.Thestrategyandsignificancewereputforwardtoabsorbtheadvancedtechnologyofsuper-highspeedgrindingintheworldandpromoteourmanufacturingindustry. Keywords:Super-highspeedgrinding,CNC,Quick-pointgrinding

相关文档
最新文档