电力电子技术—单相半波可控整流电路

合集下载

电力电子技术——单相整流电路

电力电子技术——单相整流电路
电镀等。
• 变压器起变换 电压和隔离的 作用,其一次 侧和二次侧电 压瞬时值分别 用 u1 和 u2 表 示 , 有效值分别用 U1和U2表示。
Goback
• 原理分析:
➢ 在u2正半周,VT承受正向阳极电压,wt1时刻给VT门极
加触发脉冲。
➢ 在t1刻之前,SCR处于正向阻断状态,电路中无电流, 负载电阻两端电压为零,u2全部施加于VT两端。
习题: 2-1,2
转波形
§2.2 单相桥式全控整流电路
Single Phase Bridge Controlled Rectifier
1. 电阻性负载
• 在u2正半周,ua>ub ,若4只管均未触发导通,则 输 出 id=0 , ud=0 , VT1 、 VT4 承 受 正 向 电 压 , 各 承受u2 的一半。
➢ uR随着id而变化,当 uR=u2时did/dt=0, id到达峰值 u2/Rd( L中贮能达最大)。
➢ u2由正变负过零,力图使SCR关断,但L的自感电 势总是反抗其电流的减小,使SCR延续导通。L大
则延续时间长。
转波形
Goback
➢在u2过零点处,id尚处于减小的过程中,能量尚在释 放。 u2=0,但SCR仍正偏,因为did/dt<0,下正上负 的自感电势使SCR正偏而继续导通。此自感电势的极 性表明,L往外供出能量,一方面供给电阻消耗,另 一方面供给变压器副边吸收能量,反送给交流电源。
R2
I T
1 (a
2U 2
sin
wt)2
d(wt)
U 2
2 R
2R
1 sin 2a a
2
• 变压器副边电流有效值I2与输出电流有效值相等:
II 2

2021年单相半波可控整流电路实验报告

2021年单相半波可控整流电路实验报告

试验一、单相半波可控整流电路试验王季诚(1496)一、试验目(1)掌握单结晶体管触发电路调试步骤和方法。

(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时工作情况。

(3)了解续流二极管作用。

二、试验所需挂件及附件5 D42 三相可调电阻6 双踪示波器自备7 万用表自备三、试验线路及原理单结晶体管触发电路工作原理及线路图已在1-3节中作过介绍。

将DJK03-1挂件上单结晶体管触发电路输出端“G”和“K”接到DJK02挂件面板上反桥中任意一个晶闸管门极和阴极, 并将对应触发脉冲钮子开关关闭(预防误触发), 图中R负载用D42三相可调电阻, 将两个900Ω接成并联形式。

二极管VD1和开关S1均在DJK06挂件上, 电感L d 在DJK02面板上, 有100mH、200mH、700mH三档可供选择, 本试验中选择700mH。

直流电压表及直流电流表从DJK02挂件上得到。

图3-6单相半波可控整流电路四、试验内容(1)单结晶体管触发电路调试。

(2)单结晶体管触发电路各点电压波形观察并统计。

(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特征测定。

(4)单相半波整流电路带电阻电感性负载时续流二极管作用观察。

五、预习要求(1)阅读电力电子技术教材中相关单结晶体管内容, 搞清单结晶体管触发电路工作原理。

(2)复习单相半波可控整流电路相关内容, 掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时工作波形。

(3)掌握单相半波可控整流电路接不一样负载时U d、I d计算方法。

六、试验方法(1)单结晶体管触发电路调试将DJK01电源控制屏电源选择开关打到“直流调速”侧, 使输出线电压为200V, 用两根导线将200V交流电压接到DJK03-1“外接220V”端, 按下“开启”按钮, 打开DJK03-1电源开关, 用双踪示波器观察单结晶体管触发电路中整流输出梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。

电力电子技术最新版配套习题答案详解第2章

电力电子技术最新版配套习题答案详解第2章

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第2章 整流电路1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。

解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。

在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。

因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A) 此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为222U ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。

电力电子技术整流电路总结

电力电子技术整流电路总结

电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。

触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。

直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。

带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。

续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。

2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

3.实际上很少应用此种电路。

4.分析该电路的主要目的建立起整流电路的基本概念。

单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。

向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。

单相半波整流可控电路(纯电阻,阻感,续流二极管)

单相半波整流可控电路(纯电阻,阻感,续流二极管)

电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。

1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。

3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。

1. 电路的结构与工作原理................................................................... 错误!未定义书签。

2. 单相半波整流电路建模................................................................... 错误!未定义书签。

3. 仿真结果与分析............................................................................... 错误!未定义书签。

4. 小结................................................................................................... 错误!未定义书签。

三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。

1. 电路的结构与工作原理................................................................... 错误!未定义书签。

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。

(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。

(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。

(4)了解三种不同负载电路的工作原理及波形。

二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。

其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。

(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。

(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。

(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。

2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。

如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。

设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。

α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。

电力电子技术第五版课后习题及答案

电力电子技术第五版课后习题及答案

电力电子技术第五版课后习题及答案第二章电力电子器件2-1 与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。

2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。

低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。

2-2. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。

或:uAK>0且uGK>0。

2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。

要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。

2-4 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为Im π4π4π25π4a)b)c)图1-43图2-27 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m =π2m I (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πm I (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t I m =22m I π2143+≈0.6741I m c) I d3=π21⎰20)(πωt d I m =41 I m I 3 =⎰202)(21πωπt d I m =21 I m 2-5 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I ≈329.35,I d1≈0.2717 I m1≈89.482 / 16 b) I m2≈6741.0I ≈232.90,I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314,I d3=41I m3=78.5 2-6 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能?答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益a1和a2,由普通晶阐管的分析可得,a1+a2=1是器件临界导通的条件。

单相半波可控整流电路实验

单相半波可控整流电路实验

重庆三峡学院实验报告课程名称电力电子技术实验名称单相半波可控整流电路实验实验类型验证学时 2系别电信学院专业电气工程及自动化年级班别 2015级2班开出学期 2016-2017下期学生姓名袁志军学号 4228 实验教师谢辉成绩2017 年 4 月 30 日发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。

调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动图3-6 单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-6电路图接线。

将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U d和电源电压U2,记录于下表中。

五、数据记录及处理实验台实测数据:α36°60°90°126°154°U2/V 213 213 213 213 213U d/V(记录值)75 56 37 9 2U d/U2U d/V(计算值)(1)α =30°Ud =75V,U2=220V,Ud/U2=,=(1+cosα)/2=;|Ud-|/*100%=%;α =60°。

U d=56V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =90°,U d=37V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =120°,U d=9V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =150°;U d=2V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%。

电力电子课程设计 单相半波可控整流

电力电子课程设计  单相半波可控整流

电力电子课程设计单相半波可控整流目录1. .......................................................................................................................... 绪论 (2)2. 单相半控桥式整流电路电路设计 (2)2.1电路原理图 (2)2.2单相桥式半控整流电路的计算公式 (3)2.3带阻感负载时的工作情况 (3)3. MATLUB仿真 (4)3.1 MATLUB仿真图 (4)3.2 元器件参数设置 (4)3.2.1设置晶闸管参数 (4)3.2.2设置交流电源参数 (5)3.2.3设置负载参数 (5)3.2.4设置脉冲参数 (6)3.3 仿真结果展示 (7)4. 结论 (8)参考文献 (9)1. 绪论电力电子技术是以电力、电能为研究对象的电子技术,又称电力电子学(Power Electronics)。

它主要研究各种电力电子半导体器件,以及由这些电力电子器件所构成的各式各样的电路或设置,以完成对电能的变换和控制。

电力电子学是横跨“电子”“电力”“控制”三个领域的一个新兴工程技术学科。

由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能的变换和控制,而构成的一门完整的学科。

故其学习方法与电子技术和控制技术有很多的相似之处。

单相桥式整流电路是一种相对重要的整流电路,把交流电能转换成直流电能的一种桥式整流电路。

它可以应用到很多的地方,在许多的元器件中都有用到,范围广泛。

本课程设计内容是设计一个单相桥式半控整流电路为PL负载提供直流电源。

本文需要研究的是设计一个主电路、控制电路组成的总电路,以及要进行MATLAB仿真实验。

其中主电路是要设计一个单相半控桥式整流电路,控制电路是要同步信号为锯齿波的触发电路。

2. 单相半控桥式整流电路电路设计单相半控桥式整流电路总体设计框图如图所示2.1 电路原理图实验电路如图所示。

单相半波可控整流电路的实验流程及设计要点

单相半波可控整流电路的实验流程及设计要点

单相半波可控整流电路的实验流程及设计要点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!单相半波可控整流电路的实验流程及设计要点1. 实验介绍。

电力电子实验1-单相半波

电力电子实验1-单相半波

实验一单相半波可控整流电路实验实验序号:1020226001一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。

(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。

(3)了解续流二极管的作用。

三、实验线路及原理利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1所示。

图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

图1 单结晶体管触发电路原理图工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压U P时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压U v,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。

在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。

充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

单结晶体管触发电路的各点波形如图2所示。

图2 单结晶体管触发电路各点的电压波形(α=900)电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。

课题3.单相半波可控整流电路(电阻性负载)

课题3.单相半波可控整流电路(电阻性负载)
R
单相半波可控整流电路—电阻性负载
2.工作原理
电源 波形 u 2 0 ug 0a ud
wt1
p
2p
wt
当 0 a 45o 时,晶闸管虽承受正 向电压,但晶闸管的控制极无触发
门极 脉冲
wt
信号,晶闸管处于关断截止状态,
负载上无电压输出
u d =0。
输出 电压
wt1
p
2p
q
uVT 0
wt
VT电压 波形
o
输出 电压
wt1
p
2p
a 30
ud
形状的波形。
VT电压 波形 uVT 0
q
wt
wt1
p
2p
wt
单相半波可控整流电路—电阻性负载
2.工作原理
电源 波形 u 2 0 ug 0a ud
wt1

2p
wt
当 p a p 时,晶闸管承受反向
门极 脉冲
wt
电压,同时,晶闸管的控制极有触
发信号,晶闸管处于关断截止状态, 负载上无电压输出
6. 功率因数
P UI cos S U 2I
π a sin 2a 2 π 4 π
T
VT
u1
u2
u VT
id
ud
R
二、单相半波可控整流电路—阻感性负载
1.电路图
阻感负载的特点:电感对电
流变化有抗拒作用,使得流
过电感的电流不发生突变。
二、单相半波可控整流电路—阻感性负载
2.工作原理
课题三 单相半波可控整流电路 --电阻性负载
《电力电子技术》
学习上次课程内容
1.晶闸管导通条件是什么? 2.晶闸管关断条件是什么?

电力电子技术-第三章--单相整流讲解

电力电子技术-第三章--单相整流讲解

3.1.1 单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)
1. 电阻负载的工作情况
在工业生产中,某些负载基本上是电阻性的, 如电阻加热炉、电解和电镀等。
电阻性负载的特点是电压与电流成正比,波形 相同并且同相位,电流可以突变。 • 1. 工作原理 • 首先假设以下几点: • (1) 开关元件是理想的,即开关元件(晶闸管)导通 时,通态压降为零,关断时电阻为无穷大; • 一般认为晶闸管的开通与关断过程瞬时完成。 • (2) 变压器是理想的,即变压器漏抗为零,绕组的 电阻为零、励磁电流为零。
id 的连续波形每周期分为两 段:u2过零前一段流经SCR, 时宽为π-α;之后一段流经 VDR ,时宽为π+α。由两器 件电流拼合而成。
若近似认为id为一条水平线,恒为Id,则有
SCR 平均值: I a I
dVT
2 d
(2-5)
SCR 有效值:
IVT
1
2
a
I
d2d
(t
在ωt=0到α期间,晶闸管uAK大于零, 但门极没有触发信号,处于正向关断状
态,输出电压、电流都等于零。
在ωt=α时,门极有触发信号,晶闸管 被触发导通,负载电压ud= u2。 在ωt1时刻,触发VT使其开通,u2加 于负载两端,id从0开始增加。这时,交 流电源一方面供给电阻R消耗的能量, 另一方面供给电感L吸收的磁场能量。
)

a 2
I
(2-6)
d
VDR 平均值: VDR 有效值:
a IdVDR 2 Id
(2-7)
IVDR
1
2
2 a

第2章 单相可控整流电路

第2章 单相可控整流电路
(2-9)
向负载输出的平均电流值为:
Id U d 2 2U 2 1 cos a U 1 cos a 0.9 2 R pR 2 R 2
b) u VT c) 0 i2 d) 0 ud id 0 a
1,4
d d
(2-11)
流过晶闸管的电流平均值只有 输出直流平均值的一半,即: 1 U 1 cos a I dVT I d 0.45 2 2 R 2
d)
0 i2 0
wt
wt
到触发脉冲即导通,当 u2 过
零时关断。
单相全控桥式带电阻 负载时的电路及波形
2.2 单相桥式全控整流电路
数量关系
1 p 2 2U 2 1 cos a 1 cos a U d 2U 2 sin wtd(wt ) 0.9U 2 p a p 2 2 a 角的移相范围为180。
VT
R
R
2.1 单相半波可控整流电路
单相半波可控整流电路的特点
VT的a 移相范围为180。 简单,但输出脉动大,变压器二次侧电流中含直流分 量,造成变压器铁芯直流磁化。 实际上很少应用此种电路。 分析该电路的主要目的建立起整流电路的基本概念。
1.exe
1.exe
2.2 单相桥式全控整流电路
单相桥式全控整流电路(Single Phase
ud E O i
d
α
q

wt
I
电流连 续
d
O
电流断续
wt
b)
单相桥式全控整流电路接反电动势—电阻负载时的波形
当α < 时,触发脉冲到来时,晶闸管承受负电压,不可能导通。 触发脉冲有足够的宽度,保证当wt=时刻有晶闸管开始承受正电 压时,触发脉冲仍然存在。这样,相当于触发角被推迟为。

电力电子技术项目化教程配套课件1.3 知识点2:单相半波可控整流电路

电力电子技术项目化教程配套课件1.3 知识点2:单相半波可控整流电路
例1-3 单相半波可控整流电路,阻性负载,
电源电压U2为220V,要求的直流输出电压
为50V,直流输出平均电流为20A,试计算: –晶闸管的控制角。 –输出电流有效值。 –电路功率因数。 –晶闸管的额定电压和额定电流,并选 择晶闸管的型号。
20
解:1.由计算输出电压
练习题
电压为50V时的晶闸管控制角α求得α =90°
目录
Contents
01 知识点1:认识晶闸管
02 知识点2:单相半波可控整流电路
03 知识点3:单结晶体管触发电路
04
扩展知识点:门极可关断晶闸管GTO
03
1.3 知识点2:单相半 波可控整流电路
调光灯电路的主电路是一个单相半波可控整流电路。整流电路是使用最早的电力电子 电路之一,它的作用就是将交流电变为直流电。整流电路按组成器件分为不可控型、半控 型和全控型整流电路三种,按照电路结构分为桥式电路和零式电路两种,按照交流输入相 数分为单相电路和多相电路,按照变压器二次侧电流的方向是单相或双向,又分为单拍电 路和双拍电路。
16
3.基本物理计算
ud
ωt
α
π

1)输出直流平均电压
1
Ud 2
2U2 sintdt
1 cos
0.45U2 2
2)输出电压有效值
U
1 (
2
2U2 sint)2dt
U2
1 sin2
4
2
17
3.基本物理计算
ud
ωt
α
π

3)输出电流平均值
Id
Ud R
0.45 U2 R
即改变控制角的大小。
移相范围:移相范围是指一个周期内触发脉 冲的移动范围,它决定了输出电压的变化范 围。

现代电力电子——单相半波可控整流电路

现代电力电子——单相半波可控整流电路

现代电力电子技学院:姓名:学号:术目录1 绪论 (1)电力电子实验仿真背景 (1)1.1.1 电力电子技术概述 (1)1.1.2 电力电子技术的应用 (1)1.1.3 国内外电力电子技术发展概况 (2)计算机仿真的意义 (4)本文研究的主要内容 (5)2 SIMULINK模型库及使用 (6)2.1 SIMULINK的模块库介绍 (6)2.2 电力系统模块库的介绍 (6)2.3 SIMULINK仿真的步骤 (7)3 交流-直流变流器(整流器)———单相半波可控整流电路 (9)3.1 电路结构与工作原理 (9)3.2单相半波可控整流电路建模 (9)3.3仿真与分析 (10)4 结论 (15)1 绪论电力电子实验仿真背景1.1.1 电力电子技术概述电能是现代工农业、交通运输、通信和人们日常生活不可缺少的能源。

电能一般分为直流电和交流电两大类,现代科学技术的发展使人们对电能的要求越来越高,不仅需要将交流电转变成直流电,直流电转变成交流电,以满足供电电源与用电设备之间的匹配关系,还需要通过对电压、电流、频率、功率因数夫和谐波等的控制和调节,以提高供电的质量和满足各种各样的用电要求,这些要求在电力电子技术出现之前是不可能实现的。

随着现代电力电子技术的发展,各种新型的电力电子器件的研究、开发和应用,使人们可以用电力电子变流技术为各种各样的用电要求提供高品质的电源,提高产品的质量和性能,提高生产效率,改善人们的生活环境。

将来从电网得到的工频电能大部分都需要经过电力电子装置的二次变换处理,电力电子的应用领域将越来越广阔。

1.1.2 电力电子技术的应用电力电子技术主要包括电力电子器件、电力电子电路和电力电子装置及其系统。

近年来,功率变流技术得到了迅猛发展,经过变流技术处理的电能在整个国民经济的耗电量中所占比例越来越大,成为其他工业技术发展的重要基础。

电力电子技术应用非常广泛,举例如下:(1)电气传动电力电子技术是电动机控制技术发展的最重要的物质基础,电力电子技术的迅猛发展促使电动机控制技术水平有了突破性的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术—单相半波可
控整流电路
-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
整流电路
1、单相半波可控整流电路
电阻负载:
注:电阻负载的特点是电压d u 与电流d i 成正比,两者波形相同。

g u :触发脉冲;α:触发角;θ:导通角
1、直流输出电压平均值: ()()2
145.0122sin 221222ααπωωππαCOS U COS U t td U U d +=+==⎰ 2、相控方式:通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式
阻感负载:
1、流过电感的电流变化时,在其两端产生感应电动势dt di L ,它的极性反过来阻止电流减小。

L 的存在使d i 不能突变,d i 从0开始增加。

2、2u 由正变负的过零点处,d i 已经处于减小的过程中,但尚未降到零,因此VT 仍处于通态。

3、2t ω时刻,d i 降至零,VT 关断并立即承受反压。

4、由于电感的存在延迟了VT 的关断时刻,使d u 波形出现负的部分,与带电阻负载时相比其平均值d U 下降。

5、
()22L R Z ω+=,R L
ωϕarctan =
6、若ϕ为定值,ɑ角大,θ越小。

若ɑ为定值,ϕ越大,θ越大,且平均值
U
d 越接近零。

阻感负载(带续流二极管):
i连续,且其波形接近一条水平线。

1、若L足够大,
d
2、流过晶闸管的电流平均值IdT 和有效值IT 分别为:
续流二极管的电流平均值IdDR 和有效值IDR 分别为:
3、其移相范围为180°,其承受的最大正反向电压均为2u的峰值即
2U。

续流
2
二极管承受的电压为-ud ,其最大反向电压为
2U,亦为u2 的峰值。

2。

相关文档
最新文档