六年级数学奥数题
小学六年级奥数题(六篇)
小学六年级奥数题(六篇)1、哥哥今年18岁,弟弟今年12岁。
当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。
甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。
最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的'足球中拿出与这时甲校个数相同的足球并入甲校。
经过这样的变动后,三校足球的个数正好相等。
已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题1、求下列时刻的时针与分针所形成的角的度数。
(1)9点整(2)2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。
【篇三】小学六年级奥数题1、小明和小英各自在公路上往返于甲、乙两地。
设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?2、一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。
六年级数学奥数题100道
六年级数学奥数题100道1.一定角ABC的对边分别是a,b,c,且sin A = 1/2,则a^2 + b^2 = _______2.已知圆O的半径为6,若点P在圆O上,且OP=3,则点P 到圆心O的距离是_______3.若△ABC中,AB=6,BC=14,CA=20,则△ABC的面积为_______4.已知函数f(x)=3x-4,若f(2)=5,则f(x)=_______5.已知正方形ABCD中,若AB=2,AC=4,那么正方形ABCD的面积为_______6.已知扇形中,半径为12,角度为90°,则扇形的面积为_______7.已知三角形ABC,AB=4,BC=8,角A=30°,若△ABC的面积为9,则角C等于_______8.台阶有20级,每级台阶高10厘米,上完台阶后,相当于爬了多少米的高度_______9.已知数列{an}的通项公式为an = 3n-1,则a8 =_______10.圆形的周长为20,半径为5,则该圆的面积为_______11.一个几何体的三视图如下,则该体的表面积等于_______┏┓┃┃┗━┛━━12.已知正多边形ABCDE中,AB=2,BC=4,CD=6,DE=8,AE=10,则正多边形ABCDE的周长等于_______13.一个圆的直径是18米,若将这个圆的面积分成八个部分,每部分的面积都相等,则每部分的面积是_______14.已知圆O的半径为6,P为圆O的一点,且OP=3,则弦PO所在的圆心角等于_______15.若△ABC中,AB=2,BC=4,CA=2,到A,B,C三点的距离之和为_______16.一定角ABC的对边分别是a,b,c,且tan B = 3/2,则a^2 + b^2 =_______17.已知函数f(x)= 4x+1,若f(-3)= -13,则f(x)=_______18.已知正方形ABCD中,若AB=6,CD=4,那么正方形ABCD的面积为_______19.已知扇形中,半径为8,角度为135°,则扇形的面积为_______20.若△ABC中,AB= 3,BC= 5,CA= 7,则△ABC的面积为_______21.已知圆O的半径为4,若点P在圆O上,且OP=2,则点P到圆心O的距离是_______22.已知正多边形ABCDE中,AB=4,BC=6,CD=8,DE=10,AE=12,则正多边形ABCDE的周长等于_______23.一个几何体的三视图如下,则该体的表面积等于_______┏━┓┃┃┗━┛━━24.圆形的周长为30,半径为7,则该圆的面积为_______25.一个圆的直径是14米,若将这个圆的面积分成六个部分,每部分的面积都相等,则每部分的面积是_______26.台阶有25级,每级台阶高12厘米,上完台阶后,相当于爬了多少米的高度_______27.已知数列{an}的通项公式为an = 4n-2,则a9 =_______28.已知三角形ABC,AB=3,BC=6,角A=60°,若△ABC的面积为18,则角C等于_______29.已知正多边形ABCDE中,AB=3,BC=5,CD=7,DE=9,AE=11,则正多边形ABCDE的周长等于_______30.若△ABC中,AB=2,BC=4,CA= 3,到A,B,C三点的距离之和为_______ 答案解析:16. 2517. -518. 3619. 64π20. 621. 422. 3023. 1224. 154π25. 47π26. 300米27. 3428. 60°29. 3030. 18。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了×7=(千米),=++(千米).就知道第四次相遇处,离乙村(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配解答:从最不利的情形考虑。
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。
【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。
这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。
【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。
【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。
六年级能学的奥数题及答案
六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
小学六年级奥数题及答案(全)
小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每若干元,现在每降低3元出售,观众增加一半,收入增加五分之一,一电影票原价多少元?解:设一电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款.解答:解:设乙存款x元,则甲存款是9600-x元,由题意得:(9600-x)(1-40%)x=(1-40%)x+2×120,5760-60%x=60%x+240,60%x+60%x=5760-240,1.2x=5520,x=4600;答:乙的存款4600元.点评:解答此题的关键是根据题意设出未知数,另一个未知数用设出的字母表示,再根据数量关系等式:甲存款的(1-40%)等于乙存款的(1-40%)加上2个120元,列出方程解决问题.4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
六年级奥数题及答案-20道题
六年级奥数题及答案-20道题【题-001】抽屉原理有5个小朋友;每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明;这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【题-002】牛吃草:(中等难度)一只船发现漏水时;已经进了一些水;水匀速进入船内.如果10人淘水;3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完;要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子;全部口朝上;每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”;都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)用一个自然数去除另一个整数;商40;余数是16.被除数、除数、商数与余数的和是933;求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字;使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时;恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时;灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时;比第一周多用了15分钟.第四周他三个管同时打开;灌满一池水用了2小时20分;第五周他只打开甲管;那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克;现在又分别倒入100克和400克的A、B两种酒精溶液;瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍;那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水;另一个钢桶里盛着牛奶;由于牛奶乳脂含量过高;必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶;使其中液体的体积翻了一番;然后我又把B桶里的液体倒进A桶;使A桶内的液体体积翻番.最后;我又将A桶中的液体倒进B桶中;使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体;而在B桶中;水比牛奶多出1升.现在要问你们;开始时有多少水和牛奶;而在结束时;每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时;某年级的学生站成一个实心方阵时(正方形队列)时;还多10人;如果站成一个每边多1人的实心方阵;则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数;如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数;那么这个自然数是11的倍数;例如1001;因为1+0=0+1;所以它是11的倍数;又如1234;因为4+2-(3+1)=2不是11的倍数;所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数;其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分;得分最低的是30分;得同样分的学生不超过3人;每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除;求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班;以均匀速度行驶.他观察来往的公共汽车;发现每隔12分钟有一辆汽车从后面超过他;每隔4分钟迎面开来一辆;如果所有汽车都以相同的匀速行驶;发车间隔时间也相同;那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步;马跑4步的距离狗跑7步;现在狗已跑出30米;马开始追它。
小学六年级奥数题【6篇】
小学六年级奥数题【6篇】1.小学六年级奥数题1、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。
这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。
6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。
现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付 1.8元。
该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。
小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。
问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。
他兑换了两种面额的人民币各多少张?2.小学六年级奥数题1、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。
6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。
六年级奥数题10道及答案巨难
六年级奥数题10道及答案巨难1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
小学六年级数学奥数题100题附答案(完整版)
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级奥数题及答案【5篇】
小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
小学六年级数学奥数练习题精选10道
⼩学六年级数学奥数练习题精选10道 许多家长同学认为奥数数学是数学天才们才需要去学习的,其实不然。
下⾯就是⼩编给⼤家带来的⼩学六年级数学奥数练习题精选10道,希望⼤家能够喜欢! 奥数题1 甲⼄两校共有22⼈参加竞赛,甲校参加⼈数的5分之1⽐⼄校参加⼈数的4分之1少1⼈,甲⼄两校各多少⼈参赛? 解:设甲校有x⼈参加,则⼄校有(22-x)⼈参加。
0.2 x=(22-x)×0.25-1 0.2x=5.5-0.25x-1 0.45x=4.5 x=10 22-10=12(⼈) 答:甲校有10⼈参加,⼄校有12⼈参加。
奥数题2 甲⼄在银⾏存款共9600元,如果两⼈分别取出⾃⼰存款的40%,再从甲存款中提120元给⼄。
这时两⼈钱相等,求⼄的存款。
答案:取40%后,存款有9600×(1-40%)=5760(元) 这时,甲有:(5760+120×2)÷2=3000(元) 甲原来有:3000÷(1-40%)=5000(元), ⼄存款:9600-5000=4600(元) 奥数题3 某书店⽼板去图书批发市场购买某种图书,第⼀次购书⽤100元,按该书定价2.8元出售,很快售完并获利40元。
第⼆次购书时,每本的批发价⽐第⼀次增多了0.5元,⽤去150元,所购数量⽐第⼀次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该⽼板第⼆次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少? 答案: (100+40)/2.8=50(本) 原进价: 100/50=2(元) , 150/(2+0.5)=60(本), 60×80%=48(本) 48×2.8+2.8×0.5×(60-48)-150=1.2 答:盈利1.2元。
奥数题4 李明的爸爸经营个⽔果店,按开始的定价,每买出1千克⽔果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利⽐原来增加了50%。
小学六年级奥数题及答案(可直接打印) 图文百度文库
一、拓展提优试题1.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.2.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.3.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?4.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?5.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.6.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.7.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).8.被11除余7,被7除余5,并且不大于200的所有自然数的和是.9.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.16.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.17.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.18.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.19.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.20.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.21.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.22.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).23.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).25.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.26.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.27.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?28.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.29.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.30.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.31.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.32.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.33.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.34.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.35.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.36.如图所示的“鱼”形图案中共有个三角形.37.已知自然数N的个位数字是0,且有8个约数,则N最小是.38.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.【参考答案】一、拓展提优试题1.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.2.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.3.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.4.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.5.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.6.解:==,答:这三个分数中最大的一个是.故答案为:.7.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.8.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.9.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.16.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100017.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4018.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.19.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.20.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.21.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.22.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.23.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.25.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.26.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.27.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.28.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.29.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:930.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.31.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.32.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.33.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.34.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.35.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.36.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.37.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.38.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.。
六年级的奥数题大全
1.小学六年级奥数练习题及答案解析甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?【解析】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。
2.小学六年级奥数练习题及答案解析有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。
两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。
小学六年级奥数题50道题精编版
小学六年级奥数题50道题精编版1.已知一张桌子比一把椅子贵10倍,且比一把椅子多288元,求一张桌子和一把椅子各多少元。
2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。
求每支铅笔的价格。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,求两地之间的距离。
6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
求第一小组追上第二小组需要多长时间。
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,求甲、乙两仓各储存粮食多少吨。
8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
求甲、乙两队每天共修多少米。
9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,求桌子和椅子的单价各是多少元。
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,求甲乙两地相距多少千米。
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
求托运中损坏了多少箱玻璃。
12.五年级一中队和二中队要到距学校20千米的地方去春游。
六年级奥数题(含答案)
1.有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?【分析与解】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)2.一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。
求这个班男生有多少人?【分析与解】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。
全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。
3.小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。
问这是他第几次测验?【分析与解】100分比86分多14分,这14分必须填补到前几次的平均分84分中去,使其平均分成为86分。
每次填补86-84=2(分),14里面有7个2.所以,前面已经测验了7次,这是第8次测验。
4.小杜从A地到B地,先骑自行车行完全程的一半,每小时行12千米。
剩下的步行,每小时走4千米。
小杜行完全程的平均速度是每小时多少千米?【分析与解】求行完全程的平均速度,应该用全程除以行全程所用的时间。
由于题中没有告诉我们A 地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米。
[六年级小学生奥数题及答案和解析]六年级小学生奥数练习题
[六年级小学生奥数题及答案和解析]六年级小学生奥数练习题奥数题中常常出现一些数量关系非常特殊的题目用普通的方法很难列式解答有时根本列不出相应的算式来。
我们可以用枚举法根据题目的要求一一列举基本符合要求的数据然后从中挑选出符合要求的答案。
以下是本站整理的《六年级小学生奥数练习题【三篇】》希望帮助到您。
六年级小学生奥数练习题篇一1、已知△和☆表示两个自然数并且△/5+☆/11=37/55△+☆等于多少?2、已知1999×△+4×□=9991其中△□是自然数那么□等于多少?3、箱子里有乒乓球若干个其中25%是一级品五分之几是二级品其余91个是三级品箱子里有乒乓球多少个?4、某班同学分成若干小组去植树若每组植树n棵且n为质数则剩下树苗20棵若每组植树9棵则还缺少2棵树苗这个班的同学共分成几组?5、数学测试卷有20道题做对一道得7分做错一道扣4分不答得0分张红得100分她有几道题没答?6、x是自然数x÷810=0a25字母a表示一个数字x是多少?7、某青年1997年的年龄等于出生年份各数字的和那么他的出生年份是多少?8、王老师家电话号码是七位数将前四位数组成的数与后四位数组成的数相加得9063将三位数组成的数与后四位数组成的数相加得2529王老师家电话号码是多少?9、如果在分数28/43的分子分母上加上自然数a、b所得结果是7/12那么a+b的最小值等于多少?10、有三个分子相同的量减假分数化成带分数后为a(2/3)b(5/6)c(7/8)已知a、b、c小于10a是多少?六年级小学生奥数练习题篇二1、将一个棱长6分米的立方体钢材熔铸成一个底面积是48平方分米的圆锥形模具这个模具的高是多少分米?2、某建筑队修筑一段公路原计划每天修56米15天完成实际上每天多修4米实际用了几天?3、两个车间共有150人如果从一车间调出50人这时一车间人数是二车间的二车间原有多少人?4、甲筐苹果的重量是乙筐的3倍。
小学六年级经典奥数题十道,附答案
小学六年级经典奥数题十道,附答案1. 一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行 75 千米,慢车每小时行 65 千米,相遇时快车比慢车多行了 40 千米,甲乙两地相距多少千米?2. 学校买来 6 张桌子和 5 把椅子共付 455 元,已知每张桌子比每把椅子贵 30 元,桌子和椅子的单价各是多少元?3. 3 箱苹果重 45 千克。
一箱梨比一箱苹果多 5 千克,3 箱梨重多少千克?4. 甲乙二人从两地同时相对而行,经过 4 小时,在距离中点 4 千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?5. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了 7 支,李军又给张强 0.6 元钱。
每支铅笔多少钱?6. 甲乙两辆客车上午 8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午 2 点。
甲车每小时行 40 千米,乙车每小时行 45 千米,两地相距多少千米?(交换乘客的时间略去不计)7. 学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走 4.5 千米,第二小组每小时行 3.5 千米。
两组同时出发 1 小时后,第一小组停下来参观一个果园,用了1 小时,再去追第二小组。
多长时间能追上第二小组?8. 有甲乙两个仓库,每个仓库平均储存粮食 32.5 吨。
甲仓的存粮吨数比乙仓的 4 倍少 5 吨,甲、乙两仓各储存粮食多少吨?9. 甲、乙两队共同修一条长 400 米的公路,甲队从东往西修 4 天,乙队从西往东修 5 天,正好修完,甲队比乙队每天多修 10 米。
甲、乙两队每天共修多少米?10. 已知一张桌子的价钱是一把椅子的 10 倍,又知一张桌子比一把椅子多 288 元,一张桌子和一把椅子各多少元?答案如下:1. 思考:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块.两人原来各有多少钱?书多少钱?设丽丽有x元钱家家有y元钱得出:3/5x=2/3y2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3)解2元一次方程得x=50 y=45 即丽丽50元家家45元书30元一本2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?8除4/5=10(km/)4/5除8=0.1(kg)3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?30÷1/2=60千米1÷60=1/60小时4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23求出x=285.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?62-24=38(只)3/5红=2/3黄9红=10黄红:黄=10:938/(10+9)=2红:2*10=20黄:20*9=186.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?2.16/(1+1/11)=1.98(立方米)8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?现在甲乙各有560÷2=280吨原来甲有280÷(1-2/9)=360吨原来乙有560-360=200吨9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是200÷2/11=2200元现价是2200-200=2000元10.一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?全程的1-2/5=3/5是20+70=90千米甲乙两地相距90÷3/5=150千米11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?第一天看的占全书的3/8-1/5=7/40这本书共有28÷7/40=160页12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?假设这批零件共有X个1/28X=84-631/28X=19X=532所以这批零件共有532个.13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?15÷(7/10-1/2)=75(千克)14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?(106*5)/(1-(3/5))=530/0.4=1325(km)15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?男女生人数比是:4/5:3/2=8:15男生人数:46/(8+15)*8=16人女生人数46-16=30人16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?(1-1/3)/(1/5)=10/3还要3 1/3个小时抄完17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?600/(60+75)=40/9(小时)经过40/9小时两车可以相遇.18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?64×3/4=48千米19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?第一天卖出水果总重量的3/5,则,第二天卖了2/5,3/5-2/5=1/5,第一天比第二天多的,30÷1/5=150千克,算式是,1-3/5=2/53/5-2/5=1/530÷1/5=150千克20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?910*4/7=(910*4)/7=520.女生910-520=390.男生21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?4/5*5/8=(4*5)/(5*8)=1/2(米)4/5-1/2=8/10-5/10=3/10(米)22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?9÷3×7=21条23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?132÷(6+5)=12人男同学有12×6=72人女同学有12×5=60人24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.甲:乙=2:3=8:12乙:丙=4:5=12:15甲:乙:丙=8:12:15甲:丙=8:1525.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.1.2:1=6:526.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?250000×20分之9=112500台27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.干部占全厂职工总数的1-3分之2-9分之2=9分之1这个厂的工人,技术人员和干部人数的比是3分之2:9分之2:9分之1=6:2:128.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.这个班的男生和女生各有多少人..因为人数为整数,所以班级人数能被5+6=11整除所以班级人数为44人男生有44÷(5+6)×5=20人女生有44-20=24人29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几? 文艺书原有:300÷(7/12-5/9)=10800(本)文艺书比原来增加了:300÷10800≈2.8%30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少? 原来里面水是90,糖是10倒出10克,那里面还剩90,其中水81,糖9再加满水又水为91,糖还是9那就是9/9131.五、六年级只有学生175人.分成三组参加活动.一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人? (1)一、二组共有学生175人-67人=108人(2)一组学生有108人×5/9=60人(3)二组学生有108人×4/9=48人32.某校有学生465人,其中女生的2/3比男生的4/5少20人.男·女各个多少?女生的3分之2比男生的5分之4少20人女生比男生的(4/5)/(2/3)=6/5少20/(2/3)=30人男生有(465+30)/(1+6/5)=225(人)女生有465-225=240(人)33.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?9除以(5分之2-7分之1)=9除以35分之9=35(页)答:这见稿件有35页.34.一块地,长和宽的比是8:5,长比宽多24米.这块地有多少平方米?设长是8份,则宽是5份,多了:3份,即是24米那么一份是:24/3=8米即长是:8*8=64米,宽是:8*5=40米面积是:64*40=2560平方米35.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?女同学为单位1男同学为1+25%=125%女同学的人数比男同学少(125%-1)÷125%=20%36.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?去年养猪:(1987+245)/3=744今年比去年多养猪:1987-744=124337.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?设小伟捐了X元所以2:5=X:35 得:X=14元小伟捐了14元38.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么第3个数是8.4解:设第3个数为x,列方程为:3*[9.2+(x-0.8)+x]=8.4解得x=8.439.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?设第二根长x米,则第二根长1.5x米1.5x-x=30.5x=3x=66×1.5=9(米)第一根长6米第二根长9米40.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?4+5=9设这条路全长x米:(5/9-4/9)x=251/9x=25x=225这条路全长225米41.某工厂6月份计划用煤54吨,前半月平均每天烧煤1.6吨,剩下的煤如果每天烧1.5吨,还可以烧多少天?42.“三跳”活动中,参加跳绳的人数是踢毽人数的3倍,已知跳绳人数比踢键子人数多18人,跳绳和踢毽子的同学各有多少人? 43.商店有一批运动衣,第一天卖出35件,第二天卖出28件,第二天比第一天少收入168元,每件运动衣售价多少元?44.缝纫组里有布27.8米,计划先做8套成人衣服,每套用布2.6米,剩下的布再做成儿童服装,按每套用布1.4米计算,能做成儿童服装多少套?45.小明看一本450页的书,前3天每天看30页,余下的每天看40 页,看完这本书还需多少天?46.一辆汽车从甲地开往乙地,前2小时共行120千米,后3小时共行210千米,平均每小时行多少千米?47.一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?48.同学们为灾区捐献衣服,第一次捐了890件,第二次捐了950件,两次一共捐了多少件?49.学校举行跳绳比赛,四年级组跳了800个,五年级组跳了950个,五年级组比四年级组多跳了多少个?50.学校举行跳绳比赛,四年级组跳了800个,五年级组比四年级组多跳了150,五年级组跳了多少个?51.飞机每小时飞行360千米,7小时一共飞行多少千米? 52.幼儿园买来苹果36千克,梨12千克,苹果的重量是梨的重量的几倍?53.幼儿园买来梨12千克,苹果的重量是梨的3倍,苹果有多少千克? 54.幼儿园买来苹果36千克,苹果的重量是梨的3倍,梨有多少千克?55. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A 地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 56. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?57. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?58. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.59. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 60. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?61. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?62. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.63. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?64. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱? 小学数学应用题综合训练(02)65. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?66. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的0%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.67. 一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?68. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?69. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?70. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?71. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?72. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?73. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?74. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?75. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A 的等于几米?76. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?77. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?78. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?79. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?80. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?81. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?82. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.83. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?84. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?小学数学应用题综合训练(04)85. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?86. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?87. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?88. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?89. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?90. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?91. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?92. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?93. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?94. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?小学数学应用题综合训练(05)95. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?96. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?97. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?98. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几? 99. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?100. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。