七年级下册人教版数学教案(表格式)

合集下载

(完整版)最新人教版七年级下数学教案(表格式)

(完整版)最新人教版七年级下数学教案(表格式)

七年级数学备课组集体备课教案课题 5.1 相交线课时1课时教学目标1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题教学重点邻补角与对顶角的概念.对顶角性质与应用教学难点理解对顶角相等的性质的探索教学过程教学过程一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题。

二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达:AODAOC∠∠与有一条公共边OA,它们的另一边互为反向延长线;BODAOC∠∠与有公共的顶点O,而且AOC∠的两边分别是BOD∠两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:教师备注两条直线相交所形成的角 分类 位置关系 数量关系教师提问:如果改变AOC ∠的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。

2024年人教版七年级下册数学教案全册

2024年人教版七年级下册数学教案全册

2024年人教版七年级下册数学教案全册一、教学内容1. 第一章:数的概念与运算第一节:有理数的乘方与开方第二节:实数的概念与运算第三节:数的估算与无理数2. 第二章:代数式与方程第一节:单项式与多项式第二节:一元一次方程第三节:不等式与不等式组3. 第三章:图形的认识与图形的测量第一节:平行线与相交线第二节:三角形的概念与性质第三节:四边形的概念与性质二、教学目标1. 理解有理数乘方、开方及实数的概念,掌握实数的混合运算方法。

2. 学会解一元一次方程,掌握不等式与不等式组的解法。

3. 掌握平行线、相交线、三角形及四边形的性质,提高空间想象能力。

三、教学难点与重点1. 教学难点:实数的概念、一元一次方程的解法、不等式组的解法、图形的性质。

2. 教学重点:实数的运算、方程与不等式的解法、图形的测量。

四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。

2. 学具:练习本、铅笔、三角板、直尺。

五、教学过程1. 导入:通过生活实例引入数的概念,激发学生学习兴趣。

2. 新课导入:讲解教材内容,结合例题进行讲解。

3. 随堂练习:设计实践情景,让学生动手操作,巩固所学知识。

6. 课后作业:布置适量的作业,巩固所学知识。

六、板书设计1. 板书内容:章节、重要概念、公式、典型例题、解题步骤。

2. 板书要求:条理清晰、层次分明、重点突出。

七、作业设计1. 作业题目:课后习题1.1、1.2、1.3;课后习题2.1、2.2、2.3;课后习题3.1、3.2、3.3。

2. 答案:课后习题答案附后。

八、课后反思及拓展延伸2. 拓展延伸:针对学生的实际情况,设计拓展性练习,提高学生的思维能力。

重点和难点解析一、教学难点与重点1. 实数的概念与运算:实数是数学中的一个基本概念,包括有理数和无理数。

实数的运算是学生容易出错的地方,需要重点关注。

补充说明:在讲解实数的概念时,可以通过具体例子(如π、√2等)来帮助学生理解无理数的存在。

新人教版七年级数学下册教案全册

新人教版七年级数学下册教案全册

新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线详细内容:平行线的性质与判定,垂直线,斜率的概念及计算。

2. 第六章:概率初步详细内容:事件的分类,概率的定义,概率的基本性质,计算方法。

3. 第七章:三角形详细内容:三角形的基本概念,三角形的判定,等腰三角形,勾股定理及应用。

4. 第八章:图形的变换详细内容:平移,旋转,对称,相似变换。

二、教学目标1. 知识与技能:使学生掌握相交线与平行线的性质,理解概率初步知识,掌握三角形的基本概念及勾股定理,学会图形的变换。

2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。

3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的合作精神和探索精神。

三、教学难点与重点1. 教学难点:相交线与平行线的判定,概率的计算,勾股定理的应用,图形变换。

2. 教学重点:平行线的性质,概率的基本性质,三角形的判定,图形变换。

四、教具与学具准备1. 教具:黑板,粉笔,多媒体设备。

2. 学具:直尺,圆规,量角器,三角板,计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,引入相交线与平行线的概念,激发学生学习兴趣。

2. 例题讲解:详细讲解相交线与平行线的性质与判定,概率初步知识,三角形的基本概念及勾股定理,图形变换。

3. 随堂练习:针对每个知识点设计练习题,巩固所学知识。

4. 小组讨论:对重难点知识进行分组讨论,培养学生的合作精神。

六、板书设计1. 新人教版七年级数学下册2. 内容:按照章节顺序,列出每个章节的知识点,用不同颜色粉笔标注重点和难点。

七、作业设计1. 作业题目:(1)相交线与平行线的性质与判定。

(2)概率的基本性质及计算方法。

(3)三角形的判定及勾股定理的应用。

(4)图形的变换。

八、课后反思及拓展延伸2. 拓展延伸:布置拓展性作业,提高学生的思维能力和创新能力。

如:研究生活中的概率问题,探索图形变换的奥秘等。

【核心素养目标】数学人教版七年级下册5.4 平移 教案含反思(表格式)

【核心素养目标】数学人教版七年级下册5.4 平移 教案含反思(表格式)

5.4平移一、创设情境导入新知思考图片中拉抽屉、开窗户这一运动有何特点?师生活动:学生独立思考,选几名先举手的学生回答问题.预设:抽屉和窗户只会向着某一方向来回移动.二、探究新知知识点一:平移的相关概念探究1如何在一张半透明的纸上,画出一排形状和大小如图所示雪人呢?师生活动:学生独立完成绘图(用事先准备好的半透明纸,盖在课本的图案上先描出一个雪人,如何安同一方向抽动这张纸,描出第二个第三个...),完成后教师播放课件,让学生观察几个雪人的位置关系,顺势总结定义.定义总结:平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.例1请欣赏埃舍尔的作品,并举例生活中平移的运用.师生活动:学生精进观察欣赏,感受平移的特征与美感;教师选几名学生回答问题.练习 1. 下列现象中不属于平移的是( )A. 滑雪运动员在平坦的雪地上滑雪B. 火车在一段笔直的铁轨上行驶C. 高楼的电梯在上上下下D. 时针的旋转师生活动:学生独立思考.知识点二:平移的性质探究2把画出的这些雪人和第一个雪人相比较,什么改变了,什么没改变?设计意图:感受数学在绘画方面的艺术美,体会平移知识在实际生活中的价值与作用.设计意图:在做题过程中加深学生对平移的概念的理解.设计意图:培养观察、总结能力,在小组讨论中发展发散性思维和交流能力.师生活动:学生独立思考后小组讨论,选派代表回答,教师总结讨论结果——形状不变,大小不变,位置改变.定义总结:平移的性质1:把一个图形整体沿着某一直线方向的移动会得到一个新的图形,新图形与原图形形状和大小完全相同.探究3分组探究位置不同的具体原因以及对应点所连接的线段有什么关系.师生活动:学生独立思考后小组讨论,选派代表回答,教师总结讨论结果(顺势补充:A和A′叫做对应点);师生根据讨论结果共同总结定义.预设1:AA′= BB′= CC′预设2:AA′∥BB′∥CC′定义总结:平移的性质2:连接各组对应点的线段平行(或都在同一条直线上)且相等.追问平移方向不同,结论是否仍成立?师生活动:学生独立思考分析,共同作答——成立.例2 (1) 如图,图中哪条线段可以由线段b经过平移得到?如何进行平移?设计意图:学生在自主观察中总结定义,加深对定义的理解,培养自主学习能力.设计意图:充分调动学生的主观能动性和学习积极性,平移的性质和内容相对都比较浅显,可以让学生自己发掘.设计意图:锻炼学生推理意识与能力.设计意图:通过该例题,进一步掌握平移的性质,师生活动:学生独立思考分析,选学生回答第1问,其他同学判断正误;选学生板书第2问,教师巡视.(2) 如下图,在网格中有△ABC,将点A平移到点P,画出△ABC平移后的图形.①将点A向___平移___格,再向___平移___格,得到点P;②点B,C与点A平移的____一样,得到B′,C′;③连接____,得到△ABC平移后的三角形____.师生活动:学生独立思考完成填空,并根据填空画出△ABC平移后的图形.问题你能总结出画平移后的图形的方法吗?师生活动:学生独立思考,回顾例2中图形的画法,小组讨论选派代表回答,教师总结讨论结果——找出平移轨迹,再根据轨迹画出其他平移后的点,最后描图.练习2. 如图,经过平移,三角形ABC的顶点A 移到了点D处,作出平移后的三角形.师生活动:学生独立思考,选一名学生板书作图,教师指点作图步骤.教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.本节课体现了平行线知识在实际生活中的应用,其目的在于用平移把几何和数。

人教版七年级数学下册教案(10篇)

人教版七年级数学下册教案(10篇)

人教版七年级数学下册教案(10篇)七年级数学下册教案篇1一、指导思想:根据学生的实际情况,从生活入手,结合教材内容。

通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。

最终圆满完成七年级下册数学教学任务。

二、情况分析:通过上学期的考试,我们发现这个班的学生数学成绩并不理想。

基础知识不扎实,计算能力差,思维不灵活,缺乏创新思维能力,特别是解决疑难问题的能力低。

整体来看,低分多,两极分化比较严重。

三、教学目标知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。

过程与方法目标:学会从实际问题中提取数学信息,发展几何思维方式。

培养学生的观察能力和思考能力,特别是独立探索的能力。

情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。

四、教材分析第5章,交线和平行线:本章主要研究有理数的基本性质和运算。

本章重点介绍有理数的概念、性质和运算。

本章的难点是理解有理数的基本性质和运算规则,并应用于解决实际问题和计算。

第六章、实数:本章主要是学习单项式和多项式的加减运算。

本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。

本章难点在于理解合并同类项和去括号的法则。

第七章,平面笛卡尔坐标系:本章主要研究一元一次方程的概念,方程的基本性质,一元一次方程的求解及应用。

本章的重点内容是理解平等的基本属性;掌握解一元一次方程的一般步骤;用列方程解决实际问题的基本思想。

本章的难点在于解一元一次方程,利用一元一次方程解决简单实用的问题。

第八章:二元线性方程组和不等式:本章主要研究线段和角度的性质。

本章的重点是区分直线、射线、线段和角度的性质和计算;了解补角和余角的性质和应用。

本章的难点在于线段和角度的计算。

五、教学措施1.深入研读教材,根据学生实际情况有针对性地备课,精心设置课堂教学内容和模式。

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第1章:有理数1.1 有理数的概念与分类1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方2. 第2章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 实际问题与一元一次方程3. 第3章:几何图形3.1 线段、射线与直线3.2 角的概念与分类3.3 三角形的性质3.4 平行线的性质与判定二、教学目标1. 理解有理数的概念,掌握有理数的分类、加减乘除及乘方运算。

2. 掌握一元一次方程的解法,并能解决实际问题。

3. 掌握几何图形的基本概念与性质,培养空间想象能力。

三、教学难点与重点1. 教学难点:有理数的乘除法及乘方运算一元一次方程的解法几何图形的性质及判定2. 教学重点:有理数的运算规律方程的解法几何图形的基本性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等。

2. 学具:练习本、铅笔、直尺、圆规、量角器等。

五、教学过程1. 实践情景引入:通过生活实例引入有理数的概念与运算。

通过实际问题引入方程的概念。

通过观察身边的几何图形,引入几何图形的性质。

2. 例题讲解:讲解有理数的加减乘除、乘方运算的法则与例题。

讲解一元一次方程的解法及实际应用例题。

讲解几何图形的性质与判定方法。

3. 随堂练习:进行有理数运算的练习。

解答一元一次方程的练习题。

识别与判断几何图形的练习。

4. 课堂小结:六、板书设计1. 有理数的概念、分类及运算规律。

2. 一元一次方程的解法及实际应用。

3. 几何图形的性质与判定。

七、作业设计1. 作业题目:有理数运算练习题。

一元一次方程实际应用题。

几何图形的识别与判断题。

答案:见课后练习册。

八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生掌握程度进行查漏补缺。

2. 拓展延伸:引导学生探索有理数的更多运算性质。

介绍更高层次的方程解法,如二元一次方程组。

引导学生观察生活中的几何图形,培养空间想象能力。

人教版初中数学七年级下册教案全册

人教版初中数学七年级下册教案全册

人教版初中数学七年级下册教案全册教案:人教版初中数学七年级下册一、教学内容1. 第1章:整式的加减2. 第2章:平行线与相交线3. 第3章:数据的收集与处理4. 第4章:概率初步5. 第5章:二元一次方程组6. 第6章:不等式与不等式组7. 第7章:函数的概念8. 第8章:平面图形的认识二、教学目标1. 学生能够掌握整式的加减运算方法,并能够灵活运用。

2. 学生能够理解平行线与相交线的性质,并能够运用到实际问题中。

3. 学生能够掌握数据的收集与处理方法,提高数据分析能力。

4. 学生能够理解概率的基本概念,并能够计算简单事件的概率。

5. 学生能够解决二元一次方程组的问题,并能够运用到实际问题中。

6. 学生能够理解不等式与不等式组的概念,并能够解决相关问题。

7. 学生能够理解函数的概念,并能够识别和运用函数解决实际问题。

8. 学生能够认识平面图形的基本性质,并能够运用到实际问题中。

三、教学难点与重点1. 教学难点:数据的收集与处理、概率的计算、函数的概念和平面图形的认识。

2. 教学重点:整式的加减运算、平行线与相交线的性质、二元一次方程组的解决方法、不等式与不等式组的解法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:笔记本、笔、尺子、量角器、剪刀、胶水。

五、教学过程1. 实践情景引入:通过实际问题引入整式的加减运算,让学生感受数学与生活的联系。

2. 例题讲解:讲解整式的加减运算的例题,让学生理解并掌握运算方法。

3. 随堂练习:布置随堂练习题,让学生巩固整式的加减运算。

4. 平行线与相交线的性质:通过实际问题引入平行线与相交线的性质,让学生理解并掌握。

5. 数据的收集与处理:讲解数据的收集与处理方法,让学生学会如何分析数据。

6. 概率初步:讲解概率的基本概念,让学生理解并能够计算简单事件的概率。

7. 二元一次方程组:讲解二元一次方程组的解决方法,让学生学会解决实际问题。

8. 不等式与不等式组:讲解不等式与不等式组的概念和解法,让学生理解并能够解决相关问题。

人教版七年级数学下册全册教学设计(完整版)教学设计

人教版七年级数学下册全册教学设计(完整版)教学设计

人教版七年级数学下册全册教学设计(完整版)教学设计一. 教材分析人教版七年级数学下册全册教学设计涵盖了第二章《整式的乘除》和第三章《因式分解》两章内容。

本册教材主要介绍整式的乘除运算和因式分解的方法,为八年级的学习打下基础。

二. 学情分析七年级的学生已经掌握了整数和分数的基本运算,具备一定的逻辑思维能力。

但是,对于整式的乘除运算和因式分解的方法,学生可能还不够熟悉,需要通过大量的练习来巩固。

三. 教学目标1.让学生掌握整式的乘除运算方法,能够熟练进行整式的乘除运算。

2.让学生掌握因式分解的方法,能够将多项式进行因式分解。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.整式的乘除运算方法。

2.因式分解的方法和技巧。

五. 教学方法采用讲授法、示范法、练习法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。

六. 教学准备1.教材和人教版七年级数学下册全册教学设计。

2.教学PPT。

3.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入整式的乘除运算和因式分解的概念。

2.呈现(15分钟)讲解整式的乘除运算方法和因式分解的方法,通过示例让学生理解并掌握。

3.操练(20分钟)让学生进行一些整式的乘除运算和因式分解的练习,巩固所学知识。

4.巩固(15分钟)通过一些综合性的题目,让学生运用所学知识解决问题,巩固所学内容。

5.拓展(10分钟)讲解一些整式运算和因式分解的拓展知识,提高学生的数学素养。

6.小结(5分钟)对本节课的内容进行小结,让学生明确所学知识。

7.家庭作业(5分钟)布置一些整式的乘除运算和因式分解的练习题目,让学生巩固所学知识。

8.板书(5分钟)板书本节课的主要知识点和公式,方便学生复习。

本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,让学生掌握了整式的乘除运算和因式分解的方法。

在教学过程中,注意启发学生的思维,引导学生进行自主学习,提高了学生的学习效果。

人教版七年级数学下册全册教案(完整版)教案

人教版七年级数学下册全册教案(完整版)教案

人教版七年级数学下册全册教案(完整版)教案一. 教材分析人教版七年级数学下册全册教案,主要包括了代数、几何、概率和统计等多个方面的内容。

这一册教材旨在让学生掌握基本的数学知识,培养学生的数学思维能力和解决问题的能力。

在学习过程中,学生需要逐步理解并掌握各个知识点,为今后的数学学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,但是个别学生在数学学习上还存在一定的困难。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。

同时,要激发学生的学习兴趣,提高他们的学习积极性,帮助他们建立自信心。

三. 教学目标1.知识与技能:让学生掌握本册教材中的各个知识点,能够运用所学知识解决实际问题。

2.过程与方法:通过自主学习、合作学习、探究学习等方式,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,提高他们的学习积极性,培养他们具有良好的学习习惯和团队协作精神。

四. 教学重难点1.教学重点:教材中的各个知识点。

2.教学难点:理解并掌握各个知识点的应用,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,让学生在实际情境中感受数学知识的重要性。

2.启发式教学法:引导学生主动思考,发现问题的规律,培养学生的问题解决能力。

3.合作学习法:学生进行小组讨论,共同完成学习任务,培养学生的团队协作精神。

六. 教学准备1.教材:人教版七年级数学下册全册。

2.教具:黑板、粉笔、投影仪等。

3.课件:根据教学内容,制作相应的课件。

七. 教学过程1.导入(5分钟)利用课件或实物,创设生活情境,激发学生的学习兴趣,引导学生思考与本节课相关的问题。

2.呈现(10分钟)讲解本节课的知识点,通过举例、讲解、演示等方式,让学生理解并掌握各个知识点。

3.操练(10分钟)设计一些练习题,让学生在课堂上进行练习,巩固所学知识。

教师应及时给予反馈,指导学生纠正错误。

2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。

2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。

2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。

3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。

4. 理解实数的概念,掌握实数的运算方法,培养运算能力。

三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。

2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。

2. 学具:直尺、圆规、量角器、练习本、笔。

五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。

1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。

1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。

1.3 以实际问题的形式,让学生感受不等式与实数的应用。

2. 新课导入:讲解新课内容,阐述重点与难点。

2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。

2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。

2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。

2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。

3. 随堂练习:巩固所学知识,检验学习效果。

人教版七年级数学下册全册教案(完整版)教学设计

人教版七年级数学下册全册教案(完整版)教学设计

人教版七年级数学下册全册教案(完整版)教学设计第五章相交线与平行线5.1 相交线5.1.1 相交线(第1课时)教学目标一、基本目标【知识与技能】1.理解邻补角、对顶角的概念,能在图形中辨认邻补角和对顶角.2.掌握对顶角的性质及其推证过程,并能运用它进行计算.【过程与方法】经历邻补角、对顶角的概念及对顶角的性质的探索过程,体会分类思想,在探究过程中发展学生的抽象概括能力,进一步培养说理能力.【情感态度与价值观】激发学生求知欲,感受数学与生活的联系,培养学生独立思考与合作交流的能力,让学生享受成功的喜悦,感悟数学学习是一种美的享受.二、重难点目标【教学重点】邻补角和对顶角的概念,对顶角的性质及其应用.【教学难点】对顶角性质的探索,在复杂图形中找出邻补角和对顶角.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点.两条直线相交,形成4个角.如图,∠1与∠2是直线AB、CD相交得到的,有公共顶点O,且有一条公共边OC,它们的另一边互为反向延长线,像这样的两个角叫做邻补角.∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,像这样的两个角叫做对顶角.2.下列图形中∠1与∠2互为对顶角的是( C )3.如图,下列判断正确的是( D )A .图(1)中∠1与∠2是一组对顶角B .图(2)中∠1与∠2是一组对顶角C .图(3)中∠1与∠2是一组邻补角D .图(4)中∠1与∠2是一组邻补角4.已知∠A 与∠B 是一组邻补角,如果∠A =36°,那么∠B 的度数为144°. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,直线AB 、CD 相交于点O ,若∠BOD =42°,OA 平分∠COE ,求∠DOE 的度数.【互动探索】(引发学生思考)根据对顶角的性质,可得∠AOC 与∠BOD 的关系,根据OA 平分∠COE ,可得∠COE 与∠AOC 的关系,根据邻补角的性质,可得答案.【解答】由对顶角相等,得∠AOC =∠BOD =42°. 因为OA 平分∠COE , 所以∠COE =2∠AOC =84°.由邻补角的性质,得∠DOE =180°-∠COE =180°-84°=96°.【互动总结】(学生总结,老师点评)解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.【例2】如图,直线AC 、EF 相交于点O ,OD 是∠AOB 的平分线,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =72°,求∠AOF 的度数.【互动探索】(引发学生思考)因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE =x ,则∠EOC =2x ,然后根据对顶角和邻补角找到等量关系,列方程解答.【解答】设∠BOE =x ,则∠EOC =2x . 因为∠AOB 与∠BOC 互为邻补角, 所以∠AOB =180°-3x . 因为OD 平分∠AOB ,所以∠DOB =12∠AOB =90°-32x .因为∠DOE =72°,所以90°-32x +x =72°,解得x =36°.所以∠AOF =∠EOC =2x =72°.【互动总结】(学生总结,老师点评)在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.活动2 巩固练习(学生独学)1.如图,直线AB 、CD 相交于点O ,已知∠AOD =160°,则∠BOC 的大小为( D )A .20°B .60°C .70°D .160°2.如图,直线AB 和CD 相交所成的四个角中,∠1的邻补角是∠2和∠4.3.如图,直线AB 与CD 相交于点O ,已知∠BOD =30°,OE 是∠BOC 的平分线,则∠EOA =105°.4.如图,已知直线AB 、CD 相交于点O ,∠COE =90°. (1)若∠AOC =36°,求∠BOE 的度数;(2)若∠BOD ∶∠BOC =1∶5,求∠AOE 的度数.解:(1)∠BOE =180°-∠AOC -∠COE =180°-36°-90°=54°. (2)因为∠BOD ∶∠BOC =1∶5,∠BOD +∠BOC =180°, 所以∠BOD =30°. 因为∠AOC =∠BOD , 所以∠AOC =30°,所以∠AOE =∠COE +∠AOC =90°+30°=120°. 活动3 拓展延伸(学生对学)【例3】我们知道:两条直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对; (2)n (n ≥2)条直线交于一点,对顶角有________对. 【互动探索】(1)如图1,两条直线交于一点,图中共有4-2×44=2(对)对顶角;如图2,三条直线交于一点,图中共有6-2×64=6(对)对顶角;如图3,四条直线交于一点,图中共有8-2×84=12(对)对顶角……按这样的规律,10条直线交于一点,那么对顶角共有20-2×204=90(对).(2)由(1)得n (n ≥2)条直线交于一点,对顶角的对数为2n2n -24=n (n -1). 【答案】(1)90 (2)n (n -1)【互动总结】(学生总结,老师点评)解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.环节3 课堂小结,当堂达标 (学生总结,老师点评)相交线⎩⎪⎨⎪⎧邻补角:邻补角之和为180°对顶角:对顶角相等练习设计请完成本课时对应练习!5.1.2 垂线(第2课时)教学目标一、基本目标【知识与技能】1.了解垂直的概念.2.理解垂线的性质:经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线.3.会用三角尺或量角器过一点画一条直线的垂线.【过程与方法】通过探索、猜测,进一步体会推理的必要性,发展学生初步推理能力.【情感态度与价值观】通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,感受推理过程的严谨以及结论的确定性.二、重难点目标【教学重点】垂直的概念、性质和画法.【教学难点】两条直线互相垂直的性质和画法.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P3~P6的内容,完成下面练习.【3 min反馈】(一)垂线1.当两条直线相交所成的四个角中,有一个角是直角(90°)时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足.垂直用“⊥”表示,如a、b互相垂直,则记为:a⊥b或b⊥a.2.下面四种判定两条直线垂直的方法,正确的有①②③④.①两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直;②两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直;③两条直线相交,所成的四个角相等,则这两条直线互相垂直;④两条直线相交,有一组对顶角互补,则这两条直线互相垂直.3.在同一平面内,过一点有且只有一条直线与已知直线垂直.(二)垂线段4.连结直线外一点与直线上各点的所有线段中,垂线段最短.即:垂线段最短.5.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.6.如图所示,点A到直线l的距离是( A )A.线段AD的长度B.线段AE的长度C.线段AB的长度D.线段AC的长度环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】(1)如图1,过点P画AB的垂线;(2)如图2,过点P分别画OA、OB的垂线;(3)如图3,过点A画BC的垂线.【互动探索】(引发学生思考)理解画垂线的步骤,根据画垂线的步骤求解.【解答】如图所示.【互动总结】(学生总结,老师点评)垂线的画法需要三步完成:一落:让三角板的一条直角边落在已知直线上,使其与已知直线重合;二移:沿直线移动三角板,使其另一直角边经过所给的点;三画:沿此直角边画直线,则这条直线就是已知直线的垂线.【例2】如图所示是一条河的示意图,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.【互动探索】(引发学生思考)根据垂线的性质可得,即过点C作CE⊥AB,再根据“垂线段最短”可得CE最短.【解答】如图所示,沿CE铺设水管能让路线最短.因为垂线段最短.【互动总结】(学生总结,老师点评)在利用垂线的性质解决生活中最近、最短距离的问题时,要依据“两点之间,线段最短”和“垂线段最短”来解决.活动2 巩固练习(学生独学)1.如图,直线a、b相交于点A,点B在直线a上,过点B作直线b的垂线,垂足为点C,若∠1=50°,则∠2的度数为( A )A.40°B.50°C.60°D.140°2.体育课上,老师测量跳远成绩的依据是( C )A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线3.如图,点A为直线BC外一点,AC⊥BC,垂足为点C,AC=3,点P是直线BC上的动点,则线段AP的长不可能是( A )A.2 B.3C.4 D.54.如图,∠ACB=90°,CD⊥AB于点D,能表示点到直线的距离的线段有5条.活动3 拓展延伸(学生对学)【例3】如图,已知直线AB、CD相交于点O,且OE⊥AB.(1)过点O画直线MN⊥CD;(2)若点F是(1)中所画直线MN上任意一点(O点除外),若∠AOC=35°,求∠EOF的度数.【互动探索】(1)根据题意画出直线MN即可;(2)当点F在射线OM上时,根据垂直定义求出∠EOF=∠BOD,根据对顶角求出∠BOD=∠AOC,即可求出答案;当点F在射线ON上时,求出∠AOM的度数,根据对顶角求出∠BON的度数,求出∠EOB+∠BON即可.【解答】(1)如图所示.(2)①当点F在射线OM上时.因为OE⊥AB,MN⊥CD,所以∠EOB=∠MOD=90°,所以∠MOE+∠EOD=90°,∠EOD+∠BOD=90°,所以∠EOF=∠BOD=∠AOC=35°.②当点F在射线ON上时,如图中点F′.因为MN⊥CD,所以∠MOC=90°=∠AOC+∠AOM,所以∠AOM=90°-∠AOC=55°,所以∠BON=∠AOM=55°,所以∠EOF′=∠EOB+∠BON=90°+55°=145°,即∠EOF的度数是35°或145°.【互动总结】(学生总结,老师点评)本题考查了垂线的作法、角的计算、对顶角、垂线等知识点的应用,关键是根据这些性质求出∠EOM 和∠AOM 的度数,题目较好,难度不大,注意分类讨论思想的运用.环节3 课堂小结,当堂达标 (学生总结,老师点评)垂线⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫定义作法⎩⎪⎨⎪⎧一落二移三画性质:垂线段最短求最短距离 练习设计请完成本课时对应练习!5.1.3 同位角、内错角、同旁内角(第3课时)教学目标 一、基本目标 【知识与技能】1.理解“三线八角”中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角.2.通过比较、观察,掌握同位角、内错角、同旁内角的特征. 3.能在复杂图形中正确识别图形中的同位角、内错角和同旁内角. 【过程与方法】通过图形的识别训练,培养学生的识图能力. 【情感态度与价值观】在活动中培养学生乐于探索、合作学习的习惯,培养学生“用数学”的意识和能力. 二、重难点目标 【教学重点】同位角、内错角、同旁内角的概念. 【教学难点】能在复杂图形中正确识别图形中的同位角、内错角和同旁内角. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P6~P7的内容,完成下面练习. 【3 min 反馈】1.(1)如图,∠1与∠5,∠4与∠8,∠2与∠6,∠3与∠7都是同位角.(2)如图,∠3与∠5,∠4与∠6都是内错角.(3)如图,∠3与∠6,∠4与∠5都是同旁内角.2.如图,∠B的同位角可以是( D )A.∠1 B.∠2C.∠3 D.∠4环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?【互动探索】(引发学生思考)识别同位角、内错角和同旁内角要弄清哪两条直线被哪一条直线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.【互动总结】(学生总结,老师点评)(1)同位角中的“同”字有两层含义:“一同”是指两角在截线的同旁;“二同”是指它们在被截两直线同方向.(2)在表述“三线八角”中某种位置关系的角时,可用以下方法:“∠×和∠×是直线×和直线×被直线×所截形成的×角”.(3)认一认:与两条被截直线的位置关系与截线的位置关系同位角(F型) 两直线同旁截线同侧内错角(Z型) 两直线之间截线异侧同旁内角(U型) 两直线之间截线同侧活动2 巩固练习(学生独学)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是( A )A.∠2 B.∠3C.∠4 D.∠52.如图,下列说法中不正确的是( C )A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角3.如图,写出图中∠A所有的内错角:∠ACD,∠ACE.活动3 拓展延伸(学生对学)【例2】如图,图1中有几对同旁内角?图2中呢?图3中呢?图4中呢?观察图形,根据上述结论得出第8个图形中有几对同旁内角.…【互动探索】根据同旁内角的定义找到图1、2、3、4中同旁内角的对数,分析并找到对数的规律,根据规律解决问题.【解答】图1中,有3对同旁内角;图2中,有3×2+4=10(对)同旁内角;图3中,有3×3+4×2+3=20(对)同旁内角;图4中,有3×4+4×3+3×2+2=32(对)同旁内角;所以第8个图形中有3×8+4×7+3×6+5×2+4×2+3×2+2×2+2=100(对)同旁内角.【互动总结】(学生总结,老师点评)本题在进行对数的规律总结时,要考虑全面,难度较大,可以再画一个图形,然后总结规律.环节3 课堂小结,当堂达标 (学生总结,老师点评) 三线八角⎩⎪⎨⎪⎧同位角 “F ”型内错角 “Z ”型同旁内角 “U ”型练习设计请完成本课时对应练习!5.2 平行线及其判定 5.2.1 平行线(第1课时)教学目标 一、基本目标 【知识与技能】1.了解平行线的概念及平面内两条直线相交或平行的两种位置关系. 2.掌握平行公理以及平行公理的推论.3.会用符号语言表示平行公理的推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.【过程与方法】能从模型的操作及实际生活中抽象出平行线的概念. 【情感态度与价值观】通过对几何模型的操作,培养学生的直觉思维和创造性思维,使学生获得成就感. 二、重难点目标 【教学重点】探索和掌握平行公理及其推论. 【教学难点】 对平行公理的理解. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P11~P12的内容,完成下面练习.【3 min反馈】1.在同一平面内,若直线a和b不相交,那么就称直线a和b平行,记作a∥b.2.经过直线外一点,有且只有一条直线与已知直线平行.3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即如果b∥a,c∥a,那么b∥c.4.过直线外一点画已知直线的平行线的方法:(1)把三角尺一边落在已知直线上;(2)把直尺紧靠三角尺的另一边;(3)沿直尺推动三角尺,使三角尺与已知直线重合的边过已知点;(4)沿三角尺过已知点的边画直线.5.同一平面内,直线l与两条平行线a、b的位置关系是( A )A.l与a、b平行或相交B.l可能与a平行,与b相交C.l与a、b一定都相交D.l可能与a垂直,与b平行环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)认识平行线欣赏幻灯片,认识平行线.【教师点拨】播放的这些图片给你一种什么印象?(不相交、平行)师生共同得出平行线的定义:在同一平面内,不相交的两条直线叫做平行线.(二)探索教材P11“思考”与P12“思考”教师通过演示实物模型,引导学生观察、讨论,通过步步设问,引导学生思考下列问题.(1)在木条转动过程中,有没有直线a与直线b不相交的位置呢?(2)在同一平面内,两条直线的位置关系有哪些呢?(3)过直线AB外一点P,你能画出直线AB的平行线吗?能画出几条?(4)练习:过点P画直线MN的平行线.(5)在木条转动过程中,有几个位置使得a与b平行?过点B画直线a的平行线,能画出几条?类比前面学过的“垂线的画法”,你能得出什么结论?(三)平行公理已知直线AB和直线外一点P.(1)过点P画一条直线和已知直线AB平行.(幻灯片演示)(2)经过点P能画出几条直线与直线AB平行?【教师点拨】通过作图,进行观察分析,与“垂线的画法”进行类比,得出平行公理.平行公理:平面内经过直线外一点,有且只有一条直线与这条直线平行.(四)平行公理的推论如图1,三条直线AB、CD、EF,如果AB∥EF,CD∥EF,那么直线AB与CD可能相交吗?图1图2【教师点拨】如图2,假设AB与CD相交,且AB与CD相交于点P.因为AB∥EF,CD∥EF,于是过点P就有两条直线AB、CD都与EF平行.根据平行公理,这是不可能的.也就是说,AB与CD不能相交,只能平行.平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.几何语言表达:因为b∥a,c∥a(已知),所以b∥c(平行公理的推论).活动2 巩固练习(学生独学)1.在同一平面内,两条不重合直线的位置关系可能是( C )A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交2.有下列四种说法:①过直线外一点有且只有一条直线与这条直线平行;②同一平面内,过一点能且只能作一条直线与已知直线垂直;③直线外一点与直线上各点连结的所有线段中,垂线段最短;④平行于同一条直线的两条直线互相平行.其中正确的个数是( D ) A.1 B.2C.3 D.43.在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有2个交点.4.已知a ∥b ,b ∥c ,则a ∥c .理由是平行于同一直线的两条直线平行.5.如图,如果CD ∥AB ,CE ∥AB ,那么C 、D 、E 三点是否共线?你能说明理由吗?解:共线.因为过直线AB 外一点C 有且只有一条直线与AB 平行,CD 、DE 都经过点C 且与AB 平行,所以点C 、D 、E 三点共线.活动3 拓展延伸(学生对学)【例题】将一张长方形的硬纸片ABCD 对折后打开,折痕为EF ,把长方形ABEF 平摊在桌面上,另一面CDFE 无论怎样改变位置,总有CD ∥AB 存在,为什么?【互动探索】根据平行公理的推论得出答案即可. 【解答】因为CD ∥EF ,EF ∥AB ,所以CD ∥AB .【互动总结】(学生总结,老师点评)利用平行公理的推论进行证明时,关键是找到与要证的两边都平行的第三条边进行说明.环节3 课堂小结,当堂达标 (学生总结,老师点评)平行线⎩⎪⎨⎪⎧概念两条直线的位置关系:平行或相交性质⎩⎪⎨⎪⎧平行公理平行公理的推论练习设计请完成本课时对应练习!5.2.2 平行线的判定(第2课时)教学目标 一、基本目标 【知识与技能】1.掌握两直线平行的判定方法.2.了解两直线平行的判定方法的证明过程.3.灵活运用两直线平行的判定方法证明直线平行.【过程与方法】会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严谨性,深刻理解直线平行的判定方法.【情感态度与价值观】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理的表达能力;掌握直线平行的条件,并能解决一些简单问题.二、重难点目标【教学重点】理解直线平行的判定方法,并会根据判定方法进行简单的推理应用.【教学难点】平行线判定方法的灵活运用和其推导过程中的转化思想的认识.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P12~P14的内容,完成下面练习.【3 min反馈】1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.4.在同一平面内,如果两条直线都垂直与同一条直线,那么这两条直线平行.5.符号“∵”表示“因为”,符号“∴”表示“所以”.环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)平行线的判定方法1【教师点拨】回忆并叙述上节用三角板和直尺过一点P画已知直线AB的平行线的过程,发现这种画法实际上是画一对同位角相等.(让学生观察图形后回答,这两个角是直线AB、CD被EF截得的同位角)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简记为“同位角相等,两直线平行”.结合图形,引导学生用符号语言表述平行线判定方法1:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).实际应用:你能说出木工师傅用图中这种叫角尺的工具画平行线的道理吗?解:同位角相等,两直线平行.(二)平行线的判定方法2先采用探讨问题的方式,启发学生去思考,能不能从内错角之间的关系或同旁内角之间的关系来判定两条直线平行呢?让学生观察图形分析∠1与∠2在什么条件下满足判定方法1,引导学生分析角之间的关系,发现新结论.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两直线平行.简记为“内错角相等,两直线平行”.结合图形引导学生用符号语言表述上面的推理过程:已知:直线AB、CD被EF所截,∠1=∠2.求证:AB∥CD.证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).∴AB∥CD(同位角相等,两直线平行).(三)平行线的判定方法3如图,如果∠1+∠2=180°,能判定a∥b吗?解:能.∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角定义),∴∠2=∠3(同角的补角相等).∴a∥b(同位角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.简记为“同旁内角互补,两直线平行”.(四)拓展:平行线的判定方法4【例1】(教材P14例题)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【互动探索】(引发学生思考)垂直总与直角联系在一起,我们学过哪些判定两条直线平行的方法?【解答】这两条直线平行.理由如下:如图所示,∵b⊥a,c⊥a,∴∠1=∠2=90°(垂直的定义).∴b∥c(同位角相等,两直线平行).判定方法4:在同一平面内,两条直线都与第三条直线垂直,则这两条直线平行.简记为“垂直于同一直线的两直线平行”.定理的使用格式:∵a⊥b,a⊥c(已知),∴b∥c(垂直于同一直线的两条直线平行).活动2 巩固练习(学生独学)1.如图,下列条件中不能判定AB∥CD的是( D )A.∠3=∠4B.∠1=∠5C.∠1+∠4=180°D.∠3=∠52.如图,下列说法错误的是( C )A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c3.如图,给出下列条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;⑤∠B=∠D.其中,一定能判定AB∥CD的条件有①③④(填写所有正确的序号).4.如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).活动3 拓展延伸(学生对学)【例2】如图,∠1=∠2=55°,∠3等于多少度?直线AB、CD平行吗?说明理由.【互动探索】利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.【解答】∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠3=∠1=55°,∴AB∥CD(同位角相等,两直线平行).【互动总结】(学生总结,老师点评)准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F ”型)相等,从而可以应用“同位角相等,两直线平行”判断两直线平行.【例3】如图,∠1=35°,∠B =55°,AB ⊥AC ,AD 与BC 有怎样的位置关系?为什么?【互动探索】先根据∠1=35°,∠B =55°,AB ⊥AC 得出∠B 与∠BAD 的关系,进而得出结论.【解答】AD ∥BC .理由如下: ∵∠1=35°,∠B =55°,AB ⊥AC , ∴∠BAD =90°+35°=125°. ∵∠BAD +∠B =125°+55°=180°, ∴AD ∥BC (同旁内角互补,两直线平行).【互动总结】(学生总结,老师点评)本题中易得到同旁内角(“U ”型)互补,从而可以应用“同旁内角互补,两直线平行”判定两直线平行.环节3 课堂小结,当堂达标 (学生总结,老师点评) 平行线的判定方法:(1)定义法:同一平面内,不相交的两条直线平行. (2)平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行(3)同一平面内,垂直于同一直线的两直线平行. 练习设计请完成本课时对应练习!5.3 平行线的性质5.3.1 平行线的性质(第1课时)教学目标 一、基本目标 【知识与技能】1.理解并掌握平行线的三个性质,能够进行简单的推理. 2.能运用平行线的性质进行推理证明. 【过程与方法】经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.【情感态度与价值观】让学生在活动中体验探索、交流、成功的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度.二、重难点目标【教学重点】平行线的三个性质的探索.【教学难点】平行线三个性质的应用.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P18~P19的内容,完成下面练习.【3 min反馈】1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.2.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.3.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)小组合作探究平行线的性质1.学生画图活动:用直尺和三角尺画出两条直线a、b,使a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如教材图5.3-1).2.学生测量这些角的度数,把结果填入表内.3.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜想.学生活动:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?5.师生归纳平行线的性质.。

2024年新人教版七年级数学下册教案全册

2024年新人教版七年级数学下册教案全册

2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的性质与判定5.3 两条平行线的距离2. 第六章:概率初步6.1 概率的基本概念6.2 概率的计算6.3 概率的实际应用3. 第七章:三角形7.1 三角形的性质7.2 三角形的判定7.3 三角形的面积二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法,能够运用相关知识解决实际问题。

2. 了解概率的基本概念,学会计算简单事件的概率,并能应用于实际情境。

3. 掌握三角形的性质、判定和面积计算方法,培养空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:平行线的判定方法、概率的计算、三角形面积的计算。

2. 教学重点:相交线与平行线的性质、概率的基本概念、三角形的性质和判定。

四、教具与学具准备1. 教具:多媒体教学设备、几何画板、三角板、量角器。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 实践情景引入:通过展示生活中常见的相交线与平行线实例,引导学生发现其中的数学问题。

概率部分,通过掷骰子、抽签等游戏,让学生感受概率现象。

三角形部分,利用图片和实物展示,让学生观察三角形的特点。

2. 例题讲解:结合教材中的例题,详细讲解相交线与平行线的性质、判定方法、概率的计算以及三角形的性质、判定和面积计算。

3. 随堂练习:设计相应的练习题,让学生巩固所学知识,并及时给予反馈。

结合实际情境,设计拓展延伸题,提高学生的应用能力。

六、板书设计1. 相交线与平行线:性质、判定方法、应用实例。

2. 概率:基本概念、计算方法、实际应用。

3. 三角形:性质、判定、面积计算。

七、作业设计1. 作业题目:相交线与平行线:判断下列图形中哪些是平行线,并说明理由。

概率:掷两个骰子,求得到两个相同点数的概率。

三角形:已知三角形两边和一角,求第三边。

2. 答案:相交线与平行线:根据判定方法,判断出平行线。

人教版七年级数学下册全册教案可打印

人教版七年级数学下册全册教案可打印

人教版七年级数学下册全册教案可打印一、教学内容1. 第5章:相交线与平行线2. 第6章:实数3. 第7章:平面直角坐标系4. 第8章:二元一次方程组5. 第9章:不等式与不等式组6. 第10章:数据的收集、整理与描述二、教学目标1. 理解并掌握相交线、平行线的性质及判定方法,能运用其解决实际问题。

2. 掌握实数的概念及分类,理解实数与数轴的关系,提高数学运算能力。

3. 熟悉平面直角坐标系的概念,能准确地在坐标系中表示点的位置。

4. 学会解二元一次方程组,能运用方程组解决实际问题。

5. 掌握不等式与不等式组的解法,了解其在生活中的应用。

6. 学会收集、整理数据,并能用图表、统计量进行描述。

三、教学难点与重点1. 教学难点:平面直角坐标系、二元一次方程组、不等式与不等式组的解法。

2. 教学重点:相交线与平行线的性质、实数的概念、数据的收集与整理。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 实践情景引入:通过生活中的实例,引出相交线、平行线的概念。

2. 教学新课:(1)相交线与平行线:讲解性质、判定方法,进行例题讲解、随堂练习。

(2)实数:讲解概念、分类,介绍数轴,进行例题讲解、随堂练习。

(3)平面直角坐标系:讲解概念,进行点的坐标表示,例题讲解、随堂练习。

(4)二元一次方程组:讲解解法,进行例题讲解、随堂练习。

(5)不等式与不等式组:讲解解法,进行例题讲解、随堂练习。

(6)数据的收集、整理与描述:讲解方法,进行实例分析、随堂练习。

六、板书设计1. 黑板左侧:列出本章重点知识点,以供学生随时查阅。

2. 黑板右侧:展示例题、解答过程,以及随堂练习。

七、作业设计1. 作业题目:(1)判断下列说法是否正确:两条平行线的夹角是90°。

(2)计算:|3| + 2.5。

(3)在平面直角坐标系中,求点(2,3)关于x轴的对称点。

2024年新版人教版七年级数学下册教案全册

2024年新版人教版七年级数学下册教案全册

2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。

2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。

3. 能够运用所学知识解决实际问题。

三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。

平面直角坐标系的建立和点的坐标表示。

2. 教学重点:理解并运用相交线与平行线的性质。

掌握平面直角坐标系的概念和应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。

提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。

讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。

3. 例题讲解解答第五章相交线与平行线的相关例题。

解答第六章平面直角坐标系的相关例题。

4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。

学生完成第六章平面直角坐标系的随堂练习题。

5. 知识巩固学生互相讨论,加深对知识的理解。

六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。

2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。

3. 中间部分:例题解答、随堂练习题。

七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。

第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。

答案:见教材课后习题答案。

八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。

人教版七年级下册数学教案最新版(优秀5篇)

人教版七年级下册数学教案最新版(优秀5篇)

人教版七年级下册数学教案最新版(优秀5篇)人教版七年级数学下册教案篇一在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力。

(2)学生认识到相交线、平行线在日常生活中有着广泛的应用。

(3)学生学习数学的。

兴趣。

教师出示剪刀图片,提出问题。

学生独立思考,画出相应的几何图形,并用几何语言描述。

教师深入学生中,指导得出几何图形,并在黑板上画出标准图形。

教师提出问题。

学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征。

学生可结合概念特征找到图中的两对邻补角与两对对顶角。

在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述。

(2)学生能否从角的位置关系上对角进行分类。

(3)学生是否能够正确区分邻补角、对顶角。

(4)学生参与数学学习活动的主动性,敢于发表个人观点。

《相交线与平行线》单元测试题25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∥ACB=90°,且∥DAB=∥BAC,直线BD平分∥FBC交直线GH于D(1)若点C恰在EF上,如图1,则∥DBA=_________(2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由(3)若将题目条件“∥ACB=90°”,改为:“∥ACB=120°”,其它条件不变,那么∥DBA=_________(直接写出结果,不必证明)《第五章相交线与平行线》单元测试题一、选择题(每题3分,共30分)1、如图1,直线a,b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°人教版七年级数学下册教案篇二教学目标知识技能1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示2.会用计算器求算术平方根3.了解无限不循环小数的特点数学思考1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维2.通过探究的大小,培养学生估算意识,了解两个方向无限逼近的数学思想解决问题1.通过拼大正方形的活动,体现解决问题方法的多样性,发展形象思维2.在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果情感态度1.通过学习算术平方根,认识数学与人类生活的密切联系2.通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情教学重点、难点重点:算术平方根的概念,感受无理数难点:探究的大小的过程教学过程与流程设计活动1创设情景,引入算术平方根20xx年10月16日,我国进行首次载人航天飞行取得圆满成功。

2024年人教版七年级数学下册全册精彩教案可打印

2024年人教版七年级数学下册全册精彩教案可打印

2024年人教版七年级数学下册全册精彩教案可打印一、教学内容第一章《整式的乘除与因式分解》详细内容包括:整式的乘法法则、整式的除法法则、提公因式法、平方差公式、完全平方公式。

二、教学目标1. 理解并掌握整式的乘除法则,能够熟练地进行整式乘除运算。

2. 学会运用因式分解的方法,解决实际问题时能够将复杂问题转化为简单问题。

3. 能够运用概率知识解决实际问题,理解概率在生活中的应用。

三、教学难点与重点教学难点:整式的乘除法则、因式分解方法、概率的计算。

教学重点:整式的乘除法则、因式分解的应用、概率在实际问题中的应用。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:教材、练习本、计算器。

五、教学过程1. 导入:通过实际情景引入,如购物时如何计算折扣、彩票中奖的概率等,激发学生学习兴趣。

2. 讲解:讲解整式的乘除法则、因式分解方法、概率的计算,结合例题进行讲解。

3. 互动:引导学生参与课堂讨论,回答问题,进行随堂练习。

4. 练习:布置课后作业,巩固所学知识。

六、板书设计1. 整式的乘除法则2. 因式分解方法3. 概率的计算公式4. 例题及解答七、作业设计1. 作业题目:(1)计算:\( (x+3)(x2) \)(2)因式分解:\( 2x^2+5x3 \)(3)已知一枚硬币投掷的概率是\(\frac{1}{2}\),求连续投掷两次硬币,出现两个正面的概率。

2. 答案:(1)\( x^2+x6 \)(2)\( (2x1)(x+3) \)(3)\(\frac{1}{4}\)八、课后反思及拓展延伸1. 反思:本节课学生掌握了整式的乘除法则、因式分解方法,但在概率计算方面还需要加强练习。

2. 拓展延伸:引导学生思考整式的乘除法则与小学乘法法则的联系与区别,了解概率在实际生活中的应用。

重点和难点解析1. 整式的乘除法则2. 因式分解方法3. 概率的计算4. 教学过程中的互动与随堂练习5. 作业设计及答案解析详细补充和说明:一、整式的乘除法则1. 单项式乘以单项式:将系数相乘,相同字母的指数相加,其余字母保持不变。

2024年新版人教版七年级数学下册教案全册

2024年新版人教版七年级数学下册教案全册

2024年新版人教版七年级数学下册教案全册一、教学内容详细内容:1. 第一章:整式的乘法、整式的除法、多项式乘多项式、平方差公式、完全平方公式。

2. 第二章:直线、射线、线段、角的度量、角的分类、相交线与平行线。

3. 第三章:随机事件、概率的定义、概率的计算、事件的独立性。

4. 第四章:数据的收集、数据的整理、统计图表、频数与频率。

5. 第五章:一元一次不等式的解法、一元一次方程的解法、实际问题与一元一次方程。

6. 第六章:三角形的性质、三角形的判定、等腰三角形、直角三角形。

7. 第七章:平行四边形的性质、平行四边形的判定、特殊的平行四边形。

二、教学目标1. 理解并掌握整式的乘除、几何图形的认识、概率初步、数据的收集与整理、一元一次不等式与方程、三角形、平行四边形等基本概念和性质。

2. 培养学生的逻辑思维能力和空间想象力,提高解决问题的能力。

3. 培养学生运用数学知识解决实际问题的能力,增强数学在实际生活中的应用。

三、教学难点与重点1. 教学难点:整式的乘除、概率的计算、一元一次不等式与方程的解法、平行四边形的判定。

2. 教学重点:几何图形的认识、数据的收集与整理、三角形的性质与判定、平行四边形的性质。

四、教具与学具准备1. 教具:多媒体教学设备、几何模型、计算器。

2. 学具:直尺、圆规、量角器、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,引出整式的乘除、几何图形的认识、概率初步等概念。

2. 例题讲解:详细讲解整式的乘除、几何图形的性质、概率的计算、一元一次不等式与方程的解法等例题。

3. 随堂练习:针对每个知识点设置相应的练习题,巩固所学知识。

4. 小组讨论:分组讨论难点问题,培养学生的合作精神。

六、板书设计1. 2024年新版人教版七年级数学下册教案2. 知识点:按照章节顺序,列出每个章节的知识点。

3. 例题:精选具有代表性的例题,展示解题过程。

4. 练习题:设置随堂练习题,巩固所学知识。

人教版七年级下册数学教案全册

人教版七年级下册数学教案全册

人教版七年级下册数学教案全册一、教学内容1. 第五章:相交线与平行线详细内容:平行线的判定与性质,相交线的性质,平行线的应用。

2. 第六章:三角形详细内容:三角形的基本概念,三角形的判定,三角形的性质,全等三角形,相似三角形。

3. 第七章:实数详细内容:有理数的平方根,无理数,实数的性质,实数的运算。

4. 第八章:二次根式详细内容:二次根式的定义,二次根式的性质,二次根式的运算。

二、教学目标1. 理解并掌握相交线、平行线的判定与性质,能够运用这些知识解决实际问题。

2. 掌握三角形的基本概念、判定与性质,以及全等三角形和相似三角形的判定方法。

3. 理解实数的概念,掌握实数的运算,能够正确计算二次根式。

4. 培养学生的逻辑思维能力和空间想象力,提高解决问题的能力。

三、教学难点与重点1. 教学难点:(1)平行线的判定与性质的应用。

(2)全等三角形和相似三角形的判定方法。

(3)实数的概念及二次根式的运算。

2. 教学重点:(1)平行线、三角形的性质与判定。

(2)实数的概念、性质与运算。

四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器。

2. 学具:练习本、草稿纸、铅笔、直尺、圆规。

五、教学过程1. 实践情景引入:通过生活中的实例,引导学生发现平行线、三角形等数学概念。

2. 例题讲解:(1)讲解平行线的判定与性质。

(2)讲解全等三角形和相似三角形的判定方法。

(3)讲解实数及二次根式的运算。

3. 随堂练习:(1)练习平行线、三角形的性质与判定。

(2)练习实数及二次根式的运算。

4. 学生自主探究:让学生通过自主探究,发现数学规律,提高解决问题的能力。

六、板书设计1. 知识点框架图。

2. 例题解答过程。

3. 关键性质与定理。

七、作业设计1. 作业题目:(2)已知三角形ABC中,AB=AC,∠B=∠C,求证:三角形ABC 是等腰三角形。

(3)计算:(√3+√2)²。

2. 答案:(1)错误。

两条不相交的直线可能平行,也可能重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线和平行线5.1相交线第一课时教材章节:第五章课题名称: 5.1.1相交线教学目标1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题教学重点邻补角与对顶角的概念.对顶角性质与应用知识难点理解对顶角相等的性质的探索教具:电脑、投影仪、课件资源、投影片教学过程(师生活动)设计理念设置情境引入课题一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题从实际生活入手,引入新课分析问题探究新知二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达延长线它们的另一边互为反向有一条公共边与OA,AODAOC∠∠;BODAOC∠∠与有公共的顶点O,而且AOC∠的两边分别是BOD∠两边的反向延长线把“相邻”、“对顶”关系用几何语言准确表达对帮助学生理解,增加印象起到关键作用。

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置教师提问:如果改变AOC∠的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质通过学生自主探究,体验知识生成过程,加深了学生对知识的理解。

课堂练习三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象注重知识的应用。

小结与作业课堂小结教师提问:1.这节课我们都学习了哪些概念?2.通过这节课你都认识了哪些角?它们都怎样定义的?学生回答后,教师再做总结.系统整理相关知识。

本课作业巩固运用例题:如图,直线a,b相交,401=∠,求4,3,2∠∠∠的度数。

[巩固练习](教科书5页练习)已知,如图,80∠COFAOC,求:DOF=35=,∠∠和的度AOD∠数板书设计:两条直线相交所形成的角分类位置关系数量关系对顶角:叉叉相对角邻补角:直线上相邻角本课教育评注(课堂设计理念,实际教学效果及改进设想)相交线产生的四对邻补角两对对顶角,通过学生自主探究都能较好掌握.但在非两条直线相交中,学生进行判断时需要根据对顶角和邻补角的几何定义来判断,结合上期所学知识要注意引导学生注意邻补角和补角的区别和联系。

特别是同角或等角的补角相等的应用,在有了邻补角的概念后,要通过练习加深学生印象。

另外,角的等量关系的转换也是一个重点,如等量代换。

而这些知识都是今后几何证明的基础,需要不断强化。

第二课时解:略例3 如图,一辆汽车在直线形公路AB上由A向B行驶,M,N分别是位于公路两侧的村庄,设汽车行驶到点P位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

小结与作业课堂小结1.要掌握好垂线、垂线段、点到直线的距离这几个概念;2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

系统整理相关知识。

本课作业练习册。

教材第9页5、6.板书设计:垂线(一)垂线的定义(二)垂线的画法(三)垂线的性质(四)点到直线的距离本课教育评注(课堂设计理念,实际教学效果及改进设想)垂线的定义学生掌握较好,在垂线的画法上部分学生操作能力较差,拿着三角板就是比划不出来,对个别学生需耐心辅导.在垂线的性质上关键要让学生能区别垂线和垂线段,能根据垂线段最短的性质,对存在直角的图进行线段长短比较。

这节课看似内容较少,实则内容很丰富,需要拓展训练的点较多,教学中为完成任务在拓展上做的是不够的,看了还要让学生吃“回锅肉”才行。

第三课时第四课时C第五课时第六课时第七课时第八课时第九课时教材章节:第五章课题名称:5.4平移教学目标1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题2、培养学生的空间观念,学会用运动的观点分析问题.教学难点平移的作图.知识重点平移的概念和作图方法.教具:电脑、投影仪、课件资源、投影片量角器、一套三角板、教学过程(师生活动)设计理念设置情境引入课题一.观察图形形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明.从生活知识入手,引入新课分析问题探究新知二.提出新知实践探索平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案引导学生找规律,发现平移特征三.典例剖析深化巩固从已有知识入手,寻求已有知识经验帮助学生理解。

例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC先观察探讨,再通过点的平移,线段的平移总结规律,给出定义探究活动可以使学生更进一步了解平移通过演示增强学生印象。

课堂练习课本33页:1,2,4,5,6,7.注重知识的应用。

小结与作业课堂小结在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。

2利用平移的特征,作平行线,构造等量关系是接7题常用的方法.系统整理相关知识。

本课作业课本P33页习题5.4第3题板书设计平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移本课教育评注(课堂设计理念,实际教学效果及改进设想)充分调动学生的积极性和创造性,为学生创造一个可以发挥自己才能的空间,本节课在现有教材内容的基础上,利用两副三角板,引导学生学会平移作图.同时,利用本节课教材内容易懂的条件,进行发散性思维的训练,使学生的思维活跃,深入.6.1平方根(1)6.1平方根(2)问题与情境设计师生活动设计情景引入1 能否用两个面积为1的小正方形拼成一个面积为2的大正方形?问:拼成的这个面积为22dm的大正方形的边长应该是多少呢?边长为2dm,2有多大呢?请同学们猜想年级七年级课题 6.1平方根(2) 课型新授教学目标知识技能1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.2.用计算器求一个非负数的算术平方根.过程方法通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;情感态度通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。

教学重点用有理数估计无理数的大致范围教学难点能用有理数估计一个带算术平方根符号的无理数的大致范围.教学方法启发、探究、推理教学手段多媒体教学过程设计自主探究2有多大呢?(大于1而小于2 )你是怎样判断出2大于1而小于2的?42,1122==而421<<,∴221<<你能不能得到2的更精确的范围?,25.25.1,96.14.122==而,25.2296.1<<5.124.1<<∴,9881.141.12=0614.242.12=,而0164,229881.1<<,∴42.1241.1<<,999396.1414.12=,00225.2415.12=而,002225.22999396.1<<∴415.12414.1<<……例1 用计算器求下列各式的值:(1)3136;(2)2(精确到0.001)解:(1)依次按键3136显示:56.∴3136=56(2)依次按键2,显示:1.414213562.∴2≈1.414学会估计无理数的大致范围让学生学会使用计算器深化运用解决章引言中提出的问题你知道宇宙飞船离开地球进入轨道正常运行的速度在什么范围吗?这时它的速度要大于第一宇宙速度1v(单位:sm/)而小于第二宇宙速度2v(单位:sm/)。

1v,2v的大小满足,21gRv=gRv222=.其中2/8.9smg=,R是地球半径,mR6104.6⨯≈,怎样求1v,2v呢?因此,第一宇宙速度1v大约是sm/109.73⨯,第二宇宙速度2v大约是sm/101.14⨯。

探究规律利用计算器计算,并将计算结果填在表中,你发现了什么规律?(课本P43探究)应用规律你能用计算器计算3(精确到0.001)吗?并利用刚才得到的规律说出03.0,300,30000的近似值.例题讲解小丽想用一块面积为400cm2为的长方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?你会表示1v,2v吗?gRv=1,gRv22=被开方数每扩大100倍,其算术平方根就扩大10倍你能否根据3的值说出30的值?你能将这个问题转化为数学问题吗?64229.8 6.410 1.110v≈⨯⨯⨯≈⨯6319.8 6.4107.910v≈⨯⨯≈⨯6.1平方根(3)师生互动归纳新知问题(三)平方根与算术平方根有什么异同?由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?联系(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种。

(2)0的平方根和算术平方根都是0。

相关文档
最新文档