《图形的初步认识》复习课件

合集下载

《几何图形初步认识》课件

《几何图形初步认识》课件

几何图形在生活中的应用
建筑学
建筑设计、施工图绘制 等都离不开几何图形。
工程学
机械零件设计、工程结 构分析等需要运用几何
知识。
艺术
雕塑、绘画等艺术形式 中,几何图形也是重要
的创作元素。
日常生活
生活中的许多物品,如 桌子、椅子、门窗等, 都是几何图形的具体应
用。
02
平面几何图形
圆形
总结词
完美的对称性,只有一条对称轴
圆柱体
总结词
由两个平行圆面和一个侧面组成,侧面 是一条弯曲的线段。
VS
详细描述
圆柱体是一个三维图形,由一个顶部的圆 面、一个底部的圆面和一个连接它们的侧 面组成。侧面是一条从顶部圆心到底部圆 心的弯曲线段,其形状类似于一个椭圆。
圆锥体
总结词
有一个圆形底面和一个侧面组成,侧面由一条曲线围绕底面圆心而成。
03
立体几何图形
正方体
总结词
具有六个面,每个面都是正方形,对 角线相等。
详细描述
正方体是一个特殊的长方体,它的六 个面都是正方形,并且所有面的面积 都相等。正方体的对角线长度也相等 ,并且是所有棱长的√3倍。
球体
总结词
所有点距离球心等距,表面积与体积的计算公式。
详细描述
球体是一个三维图形,其中所有点都位于一个中心点(即球 心)的距离相等。球体的表面积和体积有特定的计算公式, 对于半径为r的球体,其表面积S=4πr²,体积V=(4/3)πr³。
《几何图形初步认识》ppt课件
目 录
• 几何图形简介 • 平面几何图形 • 立体几何图形 • 几何图形的性质与特点 • 几何图形的周长、面积和体积计算 • 实践与应用:生活中的几何图形

华东师大版数学七年级上册第4章图形的初步认识复习课件

华东师大版数学七年级上册第4章图形的初步认识复习课件

三、解答题 13.如图所示是一多面体的表面展开图,每个面上都标注了字母,请 回答: (1)如果F面在前面,从左面看是B面,那么哪一面会在上面? (2)折叠成长方体后,俯视图与D面一致,左视图与C面一致,那么 主视图是哪面的视图? 解:(1)C面 (2)A面或F面
14.如图是一个由若干个棱长相等的正方体构成的几何体的从三个方 向看到的形状图.
角的特殊关系
1.∠1与∠2互余,∠1是∠2的余角,∠2是∠1的余角。
∠1+∠2=90°
2.∠1与∠2互补,∠1是∠2的补角,∠2是∠1的补角。
∠1+∠2=180°只考虑数量关系,与位置无关。
结论:同角(等角)的补角相等。
结论:对顶角相等
判断下列各图中的∠1和∠2是不是对顶角。
A.11° B.11.25° C.11.45° D.12.25°
二、填空题 8.(2015秋·南江县期末)已知∠α的余角是35°36′,则∠α的度数是 ___5_4_°__2_4_′ __。. _ 9.如图,水平放置的长方体的底面是长为4,宽为2的长方形,它的
左视图的面积为6,则长方体的体积等于_2_4_。_.。
16.A,B两点在数轴上的位置如图,O为原点,现A,B两点分别以1 个单位/秒,4个单位/秒的速度同时向左运动。
(1)几秒后,原点恰好在两点正中间? (2)几秒后,恰好有OA∶OB=1∶2?
解:(1)设运动时间为x秒,x+3=12-4x,x=1.8,答:1.8秒后,
原点恰好在两点之间。
(2)设运动时间为t秒。①B与A相遇前:12-4t=2(t+3),t=1;②B 与A相遇后:4t-12=2(t+3),t=9。答:1秒或9秒后,恰好有OA∶OB =1∶2。
线段
封闭
每个多边形可以分割 N-2 不重合的三角形。

华师大版七年级上册数学四单元(图片的初步认识)习题复习课件

华师大版七年级上册数学四单元(图片的初步认识)习题复习课件

18.写出下列立体图形的具体名称:
圆锥
四棱锥
圆柱
三棱柱

7 个面,____ 10 个顶点. 19.如果有一个直棱柱有15条棱,那么它有____ 20.指出如图所示的立体图形中的柱体、锥体、球.
解:①②⑤⑦⑧是柱体;④⑥是锥体;③是球
21.如图是一个直七棱柱,它的底面边长都是2cm,侧棱长是5cm,观
(1)这个棱柱共有多少个面?计算出它的侧面积.
(2)这个棱柱共有多少条棱? (3)这个棱柱共有多少个顶点?
解:(1)有8个侧面,2个底面,共有8+2=10个面,它的侧面积 为:3×6×8=144 cm2 (2)这个棱柱共有棱:8+8×2=24(条) (3)这个棱柱共有8×2 =16个顶点
12.埃及的金字塔,给我们的形象是( B )
左视图 ,通常将__________ 主视图 、___________ 俯视图 与 到的投影,称为__________
__________ 左视图 称做一个物体的三视图.
知识点:由立体图形到视图
1.如图所示的立体图形,其主视图是( C )
2.如图几何体的俯视图是( D )
3.(2014·河南)将两个长方体如图放置,则所构成的几何体的左视图
3.下列几何体中,棱柱有( C )
A.1个 B.2个 C.3个 D.4个
4.如图中的几何体中,由4个面围成的几何体是( C )
5.下列图形中,含有曲面的是( C )
A.①② B.①③ C.②③ D.②④ 6.下列说法中,正确的个数是( C ) ①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面 是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形. A.2个 B.3个 C.4个 D.5个

《几何图形》图形认识初步PPT课件 图文

《几何图形》图形认识初步PPT课件  图文
鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人
小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人
十七、所有的深爱都是秘密,所有的深 情都只 为你。 你是我 期待又 矛盾的 梦想, 抓住却 不能拥 抱的风 ,想喝 又怕醉 的酒。
十八、注定要在一起的人,晚点也真的 没关系 。愿你 能在人 海茫茫 中,和 你的命 中注定 撞个满 怀,所 爱之人 最后成 为你的 爱人。
十九、一个人对你好很容易,喜欢你也 很容易 ,重要 的是坚 持,一 个人和 你在一 起的时 候对你 好,是 喜欢你 ,但是 你们没 有在一 起,他 还对你 好,那 是真的 爱你。
到城雕
从古剪代纸 到现代 从长城 到立交 从植物 到动物
从2008北京奥运
• 对于生活中的各种各样的物体,数学中关注的是 1、它们的 形状 (如方的、圆的等);
2、 大小 (如长度、面积、体积等); 3、 位置 (如相交、垂直、平行等)。
它们的颜色、重量、材料等则是其他学科所关注。
4.1.1 几何图形
只看棱、顶点等到局部,得到的是 线段、点等
图形间的联系
以下立体图形的表面包含哪些平面图形?
长方体
六棱柱

期末复习第四章《图形的初步认识》

期末复习第四章《图形的初步认识》

第三章《图形初步认识》总复习年级:七年级主备人:邓秋科、吴月玉组员:吴月玉、林海飞、邓秋科、邱小菊、何美兴、周堪保、冼彬彬、何尚莲、吴福荣授课类型:复习课课时安排:1课时教案目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.教案重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教案手段引导——活动——讨论教案方法启发式教案教案过程b5E2RGbCAP<一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。

1、几何图形平面图形:三角形、四边形、圆等。

主<正)视图---------从正面看2、几何体的三视图侧<左、右)视图-----从左<右)边看俯视图---------------从上面看<1)会判断简单物体<直棱柱、圆柱、圆锥、球)的三视图。

<2)能根据三视图描述基本几何体或实物原型。

3、立体图形的平面展开图<1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。

<2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。

4、点、线、面、体<1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

<2)点动成线,线动成面,面动成体。

<二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线。

简单地:两点确定一条直线。

3、画一条线段等于已知线段<1)度量法<2)用尺规作图法4、线段的大小比较方法<1)度量法<2)叠合法5、线段的中点<二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。

(沪科版)中考数学总复习课件【第15讲】图形的初步认识

(沪科版)中考数学总复习课件【第15讲】图形的初步认识

第15讲┃图形的初步认识
3.三线八角
名称 关键点回顾
直线a,b被直线l所截,构成八个角(如图):
图形
同位角 内错角
∠1和∠5,∠4和∠8,∠2和∠6,∠3和∠7是同位角 ∠2和∠8,∠3和∠5是内错角
同旁内角
∠5和∠2,∠3和∠8是同旁内角
第15讲┃图形的初步认识
经典示例
例2 [2014·河南] 如图 15 -8, 直线 AB , CD 相交于点 O,
第15讲
图形的初步认识
┃考点梳理与跟踪练习 ┃ 核心考点一 相关知识 1.直线、线段的性质 一 条直线,并且只有______ 一 条直线; (1)经过两点有________ 两直线相交,有且只有________ 个交点. 一 线段 最短. (2)两点之间的所有连线中,________ 2.线段的中点 线段、角的相关概念和性质
第15讲┃图形的初步认识
9. [2014·厦门] 已知直线 AB , CB, l 在同一平面内, 若 AB⊥l, 垂足为 B,CB⊥l,垂足也为 B,则符合题意的图形可以是( C )
图 15 -10
第15讲┃图形的初步认识
10. [2014·贺州] 如图 15-11,OA⊥OB, 若∠1=55 °, 则∠2 的度数是( A )
第15讲┃图形的初步认识
核心练习
11. [2014·合肥四模] 如图 15-13,直线 a∥b,a, b 被 AB , AC 所截,∠1=70 °,∠2=40 °,则∠BAC= ( D )
A.40° B.50° C.60° D.70°
图 15 -13
第15讲┃图形的初步认识
12. [2013·桐城区二模] 如图 15-14,把一块含有 30 °角的 直角三角板的两个顶点放在直尺的对边上, 如果∠1= 20°, 那么∠2 的度数为( D )

第四章图形认识初步复习课件

第四章图形认识初步复习课件
经过两点有一条直线,并且只有一条直线 或者说成:两点确定一条直线
直线的特点: 没有端点,向两方无限延伸,不可 度量,不能比较大小
下面的知识点你掌握了吗?
知识点 2 射线的表示方法:
返回
用两个大写字母表示,端点字母写在前面; 用一个小写字母表示 射线的特点: 有一个端点,向一方无限延伸,不可以度量, 不能比较大小
● ● ●
A
1 AC CB AB 2
C
B
或 AB=2AC=2CB
线段的比较:
(1)目测法(2)度量法(3)叠合法

按语句画图:
1、直线EF经过点C; 2、点A在直线a外; 3、经过点O的三条线段a、b、c; 4、点P在两条相交直线AB、CD外。
1、直线EF经过点A;
E 2、点A在直线a外;
A
8cm
D C E B
(4)已知线段AC和线段BC在同一直线上,若 AC=5.6cm,BC=2.4cm.求线段AC的中点与线 段BC中点之间的距离。4cm或1.6cm
1、 A
M C N B
2、 A
M B N
C
(1)如下图,已知点c在线段AB上,且AC=6cm,BC=4cm, 点M和N分别是线段AC,BC的中点,求线段MN= 5 cm. (2)在(1)中,如果AC=acm,BC=bcm ,其它条件不变, 你能猜出线段MN= ½(a+b) cm .请你用一句简洁的话表述你 发现的规律. (3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm ,BC=4cm ,点C在直线上,点M、N分别是线段AC、BC的 中点,求线段MN的长度.”结果会有变化吗?如果有,求出 结果. 图1 10c m
A B C
2、判断下列说法是否正确: (1)延长射线OA;(2)直线比射线长,射线比 线段长;(3)直线AB和直线CD相交于点m;(4) A、B两点间的距离就是连结A、B两点间的线段。

《图形的初步认识》PPT课件

《图形的初步认识》PPT课件

精选ppt
3
3、主要几何体的性质:
名 称
棱柱
棱柱中,任何
相 关 定 义
两个相邻的 面的交线都 叫做棱,相 邻两个侧面 类
数来分类。 也可以分成 直棱柱和斜
棱柱
棱锥
圆柱
圆锥
棱锥的所有 由两个圆形 由一个圆形的
侧棱交于 的底面和 底面和一
一点,叫 一个曲面 个曲面组
棱锥的顶 组成的封 成的封闭
的掌握情况。
精选ppt
2
知识点: 一、几种常见的几何体
1、面与面相交成线,线与线相交得到点。也 可以理解成:点动成线,线动成面,面动成 体。
2、几何体一般可以分成多面体和旋转体。
多面体:由多个平面组成的封闭的几何体叫 多面体,多面体的各个面都是平面。
主要的多面体:棱柱、棱锥、棱台体。
主要的旋转体:圆柱、圆锥、球体、圆台体。
15
6、画两个角的和,以及画两个角的差
主视图
长方形 和棱
三角形 和棱
长方形
三角形
左视图
长方形 和棱
三角形 和棱
长方形
三角形
多边形 俯视图 多边形 和顶
点 精选ppt

圆和顶

8
二、生活中的平面图形
多边形:在平面内,由一些线段首尾顺次 相接组成的图形叫做多边形、三角形、四边 形、五边形、六边形等都是多边形。
弧:圆上两点之间的部分叫做弧。
(3)直线的表示方法有两种:一是用直线上 的两个点来表示,二是用一个小写的英文字 母来表示。
精选ppt
11
3、直线公理:过两点有且只有一条直线。 简称两点确定一条直线。
4、线段的比较
(1)叠合比较法;(2)度量比较法。

图形的初步认识复习课件

图形的初步认识复习课件

ASA全等判定
两角和它们的夹边 分别相等的两个三 角形全等。
HL全等判定
斜边和一条直角边 分别相等的两个直 角三角形全等。
05 多边形及其内角和
多边形定义和分类
多边形的定义
由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。
多边形的分类
按照边数可以分为三角形、四边形、五边形等;按照形状可以分为凸多边形和凹多边形。
圆的定义
平面上到定点的距离等于定长的所有点 组成的图形。
VS
相关术语
圆心、半径、直径、弦、弧、圆周角等。
圆的基本性质
圆的对称性
圆是中心对称图形,也是 轴对称图形。
圆的旋转不变性
圆绕圆心旋转任意角度, 其形状和大小均不发生变 化。
圆的切线性质
圆的切线垂直于半径,且 切线与半径的交点是切点。
圆心角、弧、弦间关系定理
用两个大写字母表示,如线段AB; 或用一个小写字母表示,如线段a。
线段性质
线段有两个端点,可以度量长度, 是有限长的。
直线、射线和线段间关系
联系
射线、线段都是直线的一部分;任意两点确定一条直线,也 可以确定一条线段;把线段向一方无限延伸可得到射线,向 两方无限延伸可得到直线。
区别
直线没有端点,射线有一个端点,线段有两个端点;直线可 向两方无限延伸,射线可向一方无限延伸,线段不能延伸; 直线没有方向性,射线有方向性。
03 角度与角平分线
角度概念及度量单位
01
பைடு நூலகம்
02
03
角度概念
两条射线或线段在一个平 面上相交,所形成的夹角 的度量。
度量单位
角度的度量单位有度、分、 秒,其中1度等于60分,1 分等于60秒。

人教版七年级上册数学《余角和补角》图形初步认识说课教学复习课件

人教版七年级上册数学《余角和补角》图形初步认识说课教学复习课件
1
2
3
掌握去分母解一元一次方程的方法
能熟练运用最小公倍数去分母,求解一元一次方程
(数字系数),能判别方程解的合理性.
能够找出实际问题中的已知数和未知数,分析它们
之间的数量关系,列出方程
自主学习
自主学习任务1:阅读课本95-98页并学习,掌握下列知识要点。
1、怎样运用去分母的方法
解一元一次方程?
2、去分母时注意的问题?
是( D )
典型例题
(2)如图所示,射线OA表示北偏西70° 方向,
射线OB表示 南偏东15°
方向.

A
70°
西
O
15°

B

课堂练习
1.已知∠α的补角是125°,则∠α的度数是( A ).
A.55°
B.65°
C.75°
D.85°
2.下列说法:①锐角的补角一定是钝角;②一个角的补角一定大于这
个角;③如果两个角是同一个角的余角,那么它们相等;④锐角和钝角
解:由180°- ∠α=3 ∠α,
解得∠α=45°.
典型例题
例5 .如果一个角的补角是这个角的余角的3倍,求这个角.
解:设这个角为x,则它的补角为180°-x,
它的余角为90°-x.于是就有
180°-x=3(90°- x).
解得:x=45°.
典型例题
例 6.(1)如图,四条表示方向的射线中,表示北偏东30°的
会直接入袋,此时∠1=∠2, 其中∠FDC=90º,那么各个角与∠1有什
么关系?
问题情境
E
F
D
2
1
A
B
C
有的角与∠1的和等于90º,例如(∠ADC );

华东师大版数学七年级上册第4章图形的初步认识小结与复习课件

华东师大版数学七年级上册第4章图形的初步认识小结与复习课件

课堂小结
立体图形 几 何 图 形
平面图形
从不同方向看立体图形
展开立体图形 直线、射线、线段
角的度量 角 角的比较与运算
余角和补角
平面图形
线段大小的比较 两点确定一条直线 两点之间,线段最短
角的平分线 等(同)角的补角相等
等(同)角的余角相等
A
B
C
A
图①
(2)如图②,AC=AB-BC=3-1=2(cm).
C
B
图②
考点四 角的度量及角度的计算
例5 45°52′48″=______°; 126.31°= ____°____′____″; 25°18′÷3=__________;
解:45°52′48″=45°+52′+(48÷60)′=45°+52.8′ =45+(52.8÷60)°=45.88
由图可得
MN==MC(A12-CN-CB=C)A=C-b12 (cmBC)12 .
1 2
针对训练
6.点A,B,C 在同一条直线上,AB=3 cm, BC=1 cm.求AC的长.
【解析】因点A,B,C的顺序不确定,所以要考虑B在线段AC上,B在 线段AC的延长线上两种情况 .
解:(1)如图①,因AB=3cm,BC=1cm, 所以,AC=AB+BC=3+1=4(cm).
从一个角的顶点出发的一条射线,把这个角分成两个相等的角,这条射
线叫做这个角的平分线.
线段和角的大小比较:度量法、叠合法.
同角(等角)的补角相等
同角(等角)的余角相等
考点讲练
考点一 平面图形与立体图形
例1 将下列几何体进行分类:
【解析】正方体和长方体是直棱柱的特殊情况,应将它们归入棱柱一 类.

浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解

浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解

《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
6
9
A
C
D
B
你能解决下列问题吗?
1、图中共有几条线段?几条射线?几条直 线?能用字母表示出来的分别用字母表示说法是否正确:
(1)延长射线OA;(2)直线比射线长,射线比 线段长;(3)直线AB和直线CD相交于点m;(4) A、B两点间的距离就是连结A、B两点间的线段。
知识点3:直线
(1)直线的概念:把线段向两方无限延伸所形 成的图形. (2)直线的表示方法:可用这条直线上的两个 点表示,也可以用一个小写字母表示. (3)直线的基本性质:经过两点有一条直线,并 且只有一条直线. (4)直线的特点:没有端点,向两方无限延伸, 不可度量,不能比较大小.
第四章
(复习课)
华美中学赵红岩
一、多姿多彩的几何图形
1、几何图形的分类: 几何图形分为
平面
图形

立 体
图形两类。
2、常见的平面图形
正方形
菱形
圆形
椭圆
长方形 等腰三角形
梯形
六边形 直角三角形
立体图形可分为
多面体

旋转体
两类。
多面体:围成立体图形的每个面都是 平的面,如棱柱、棱锥、棱台等。
旋转体:一个平面图形绕某条直线旋 转一周所形成的立体图形, 如圆锥、圆柱、圆台、球。
.
正方体
长方体
三棱柱
四棱锥 三棱柱
五棱锥
归纳:正方体 的表面展开图 有以下11种。你能看 出有什么规律吗?
阶 一 四 一 型 二 三 一 型 梯 型
四、 点和线
1、点A ——用一个大写字母表示。
线段 2、线 射线 直线
学会区分没有
直线、射线、线段的比较
名称
线段
a A B O
射线
l
C
直线
l
A B 直线AB、直 线BA、直线l
方位角:
1、方位角是以正南、正北方向 为基准,描述物体的运动方向。 2、北偏东45 °通常叫做东北方 西 向,北偏西45 °通常叫做西北 方向,南偏东45 °通常叫做东 南方向,南偏西45 °通常叫做 西南方向。 3、方位角在航行、测绘等实际 生活中的应用十分广泛。

30°
50°

O
45°
60°
A
3.用一个钉子把一根细木条钉在木 板上,用手拔木条,木条能转动,这表 明__ __ _______ ; 过一点有无数条直线 用两个钉子把细木条钉在木板上,就 能固定细木条,这说明 ________________ 。 两点确定一条直线
4.如图所示,一只蚂蚁要从圆柱体A点沿表面 尽可能地爬到B点,因为那里有它的食物, 而它饿得快不行了,怎么爬行路线最短?
向两方无限 延伸
图形
表示法 延伸性 端点个数 作图叙述
线段AB 、线 射线OC、 段BA、线段a 射线l
无 沿OC方向 延伸
2 连接AB
1
0
以点O为端 过A、B两点 点作射线OC 作直线AB
下面的知识点你掌握了吗?
知识点1:线段 (1)线段的概念:它是直线的一部分,它的长度 是有限的,它有两个端点. (2)线段的表示方法:可用它的两个端点的大写 字母或用一个小写字母来表示. (3)线段的画法:可用直尺先量出线段的长度, 再画一条等于这个长度的线段.
3或7
(2)如图,AC=8cm,CB=6cm,如果O是线段 AB的中点,求线段OC的长度。
A O C B
1cm
探究一、有关距离问题
1.如图,在一条笔直的公路a两侧,分别有A、B 两个村庄,现要在公路a上建一个汽车站C,使 汽车站到A、B两村距离之和最小,问汽车站 C的位置应该如何确定? A
C
·
B
a
B
·
A
B
A
·
3.如图,蚂蚁在圆锥底边的点A处,它想绕圆锥爬 行一周后回到点A处,你能画出它爬行的最短路 线吗?
A
5、按要求画图
1、连接AB 2、画直线DC 3、画射线CB 4、画线段AD 5、延长AD,交CB 反向延长线于E点。
E D
C
A
B
6.有关线段的计算问题
(1)A、B、C是直线l上三点,且线段AC=5, BA=2,则线段BC=_____.
下面的知识点你掌握了吗?
(4)线段的基本性质:两点之间线段最 短. (5)两点间的距离:连结两点的线段的 长度,叫做这两点间的距离. (6)线段的特点:有两个端点,不能向任 何一方伸展,可以度量,可以比较长短.
知识点2:射线
(1)射线的概念:把线段向一方无限延伸所形成 的图形叫做射线. (2)射线的表示方法:可用两个大写字母表示, 第一个大写字母表示它的端点;也可用一个 小写字母表示. (3)射线的特点:只有一个端点,向一方无限延 伸,无法度量,不能比较长短.

练习、在右图中画出表示下列方向的射线: (1)北偏西30 °(2)北偏东50 ° (3)西南方向
的精努保 有神力持 效是向积 途获上极 径得的的 成进心 功取态
!
常见的立体图形可分为 和 四类。


球 柱


柱体

棱柱
圆柱
三棱柱
锥体
四棱柱

五棱柱

棱锥
圆锥
三棱锥 四棱锥
六棱柱

五棱锥
六棱锥
二、立体图形的三视图
立体图 三视图
正视图
左视图 俯视图
例2:分别从正面、左面、上面看圆柱、圆锥、 球,各能得到什么平面图形?
立体图形 从正面看 从左面看 从上面看
.
C
D
A
O
B
角的特殊关系
1、∠1与∠2互余,∠1是∠2的余角, ∠2是∠1的余角. ∠1+∠2=90 ° 2、∠1与∠2互补,∠1是∠2的补角, ∠2是∠1的补角. ∠1+∠2=180 ° 结论: 同角(等角)的余角(补角)相等
3、52°24′的余角是__ ____ 37° 36′, 补角是_____ ___ . 127°36′
用尺规法作一个角等于已知角。
角的平分线
1、定义:一条射线把一个角分成两个相等 的角, 这条射线叫做这个角的平分线. 2、几何语言表达: ∵ OC是∠AOB的平分线 ∴∠1=∠2=
1 ∠AOB 2 1 A C 2 B
或∠AOB=2∠1=2∠2 O
练习
如图,AOB为直线,OC平分 ∠AOD,∠BOD=40°, 则∠AOC的度数是 70° 。
A
A
B
C
用一个大写字母表示点, 用二个大写字母表示线, 用三个大写字母表示角,
A B C
o
1
ABC
o
1
角度的转化: 1°=60′ 1′=60 〞 1°=3600 〞 角度的加减: 1. 度加(减)度;分加(减)分; 秒加(减)秒 2. 60进一;借一成60
1 度量法
2 叠合法
∠ABC<∠DEF ∠ABC=∠DEF ∠ABC>∠DEF
·
2.平原上有A、B、C、D四个村庄,如图所示, 为解决当地缺水问题,政府准备投资修建一 个蓄水池,不考虑其他因素,请你画图确定蓄 水池H的位置,使它与四个村庄的距离之和 最小.
·· · ·
A B C
D
(4).如图所示,洋河酒厂有三个住宅区A、 B、C各分别住有职工30人、15人、10 人,且这三个区在酒家大道上(A、B、C) 三点共线,已知AB=100米,BC=200米. 为了方便职工上下班,该厂的接送车打 算在此间只设一个停靠点,为使所有的 人步行到停靠点的路程之和最小,那么 该停靠点的位置应设在_____区.
3、点与直线的位置关系
第一种关系:点在直线上,或者说直线经 过点; 第二种关系:点在直线外,或者说直线不 经过点。
如图:点 A 在直线 m 上,
直线m不经过点 B 。 A
m
B
4、线段的中点
1、点C是AB的中点,AB=6,CB=
3
B

A
C
2、如图点C、D是AB的三等分点,且AD=6, 则DB= , CB= ,AB= 。
相关文档
最新文档