八年级数学函数及其图象PPT优秀课件
合集下载
八年级数学19.1《函数》(共70张PPt)
的值为a时的函数值。
【例题】
【例】一辆汽车的油箱中现有汽油50L,如果不再加油,那 么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增 加而减少,平均耗油量为0.1L/km. (1)写出表示y与x的函数关系的式子. (2)指出自变量x的取值范围. (3)汽车行驶200km时,油箱中还有多少汽油? 【解析】(1)行驶里程x是自变量,油箱中的油量y是x的 函数,它们的关系为 y=50-0.1x.像y=50-0.1x这样,用关 于自变量的数学式子表示函数与自变量之间的关系,是描 述函数的常用方法,这种式子叫做函数的解析式.
【备选例题】(2017·内江中考)在函数y= x 3 中, x4 自变量x的取值范围是 ( )
A.x>3
C.x>4
B.x≥3
D.x≥3且x≠4
【解析】选D.∵x-3≥0,∴x≥3,∵x-4≠0,∴x≠4, 综上,x≥3且x≠4.
【微点拨】 确定自变量取值范围的方法
(1)函数解析式是整式,自变量的取值范围是任意实数.
【观察发现】
共同特征:
1.都有两个变量.
2.其中的一个变量取定一个值,另一个变量的值也唯一 确定. 我们称另一个变量是这个变量的函数.
例如:对于函数y = 2 x ,取定x=3,y有唯一的
值6与x=3对应,此时我们把6叫做当自变量的做当自变量
【自主解答】(1)表中反映了弹簧长度与所挂砝码质量 之间的关系;其中所挂砝码质量是自变量,弹簧长度是
所挂砝码质量的函数.
(2)弹簧的原长是18cm;当所挂砝码质量为3g时,弹簧长 24cm.
(3)根据表中数据可知,砝码质量每增加1g,弹簧的长度
增加2cm. 【互动探究】你能知道在弹性限度内,x=10g时,弹簧的 长度吗? 提示:当x=10时,y=18+2×10=38,故当x=10g时,弹簧的 长度为38cm.
函数及其图象PPT课件
s
s
s
s
t
t
O
O
A
B
O
t
C
t
O D
3、(09湖州市)如图,一只蚂蚁从 O 点出发,沿着扇形 OAB 的边缘匀速
爬行一周,设蚂蚁的运动时间为 t ,蚂蚁到 O 点的距离为 S ,则 S 关于 t 的函数图象大致为( C )
A
S
S
S
S
O
O
tO
tO
tO
t
第(3)题
B
A.
B.
C.
D.
4、(09内江市)打开某洗衣机开关(洗衣机内无水),在洗涤衣服时,洗衣机 经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗
(2)(09大连)函数y x 2 中,自变量x的取值范围是 ( D )
A.x < 2 B.x ≤2 C.x > 2 D.x≥2
x x 2
(3)(09哈尔滨)函数y=
的自变量 的取值范围是_____________.
x2
x (4)(09齐齐哈尔)函数 y x 的自变量 的取值范围是_x_≥_0_且__x_≠1 ___. x 1
5000
4000 3000 2000
乙
甲
A
1000
O
5
10 15
20 x(分)
(3)解: x 15 时,甲的路程是: 25015 5000 1250 米,
乙的路程是2000米, 两人相距:2000 — 1250 = 750米
在15<x<20的时段内, 乙速:2000÷(20 — 15)= 400 米/分 两人速度之差: 400 — 250 = 150米/分
热身练习:
八年级函数ppt课件ppt课件
感谢各位观看
递减。
周期性是指函数值按照一定 的周期重复出现。
04
05
对称性是指函数图象是否关 于某条直线对称。
02
一次函数
一次函数的定义
01
一次函数是形如y=kx+b的函数, 其中k和b是常数,k≠0。
02
一次函数表示的是一条直线,当 k>0时,函数图像为上升直线; 当k<0时,函数图像为下降直线 。
一次函数的图像
商家经常使用函数来计算商品打折后 的价格,例如,购买金额超过一定阈 值后,可以享受一定的折扣率。
在物理和体育领域中,物体的运动轨 迹可以用函数来表示,例如抛物线、 直线等。
工资计算
工资计算中,员工的工资往往与工作 时间、职位等级等因素有关,这些因 素之间的关系可以用函数来表示。
函数在数学中的应用
01
一次函数的图像是一 条直线,其斜率为k ,截距为b。
图像上的点满足函数 表达式,即当x取某 值时,y的值等于该 点的纵坐标。
通过给定的函数表达 式,可以在坐标系中 画出该函数的图像。
一次函数的性质
一次函数的图像是直线,且斜率 为k。
当k>0时,函数为增函数,即随 着x的增大,y的值也增大;当 k<0时,函数为减函数,即随着
物理现象
物理现象中的许多关系可 以用函数来表示,例如重 力加速度与高度之间的关 系。
化学反应
化学反应中的反应速率和 反应进程可以用函数来表 示,例如反应速率与反应 物浓度的关系。
生物进化
生物进化中的基因频率和 种群数量的变化可以用函 数来表示,例如种群增长 曲线和自然选择的影响。
THANK YOU
正比例函数的定义与图像
正比例函数的定义
递减。
周期性是指函数值按照一定 的周期重复出现。
04
05
对称性是指函数图象是否关 于某条直线对称。
02
一次函数
一次函数的定义
01
一次函数是形如y=kx+b的函数, 其中k和b是常数,k≠0。
02
一次函数表示的是一条直线,当 k>0时,函数图像为上升直线; 当k<0时,函数图像为下降直线 。
一次函数的图像
商家经常使用函数来计算商品打折后 的价格,例如,购买金额超过一定阈 值后,可以享受一定的折扣率。
在物理和体育领域中,物体的运动轨 迹可以用函数来表示,例如抛物线、 直线等。
工资计算
工资计算中,员工的工资往往与工作 时间、职位等级等因素有关,这些因 素之间的关系可以用函数来表示。
函数在数学中的应用
01
一次函数的图像是一 条直线,其斜率为k ,截距为b。
图像上的点满足函数 表达式,即当x取某 值时,y的值等于该 点的纵坐标。
通过给定的函数表达 式,可以在坐标系中 画出该函数的图像。
一次函数的性质
一次函数的图像是直线,且斜率 为k。
当k>0时,函数为增函数,即随 着x的增大,y的值也增大;当 k<0时,函数为减函数,即随着
物理现象
物理现象中的许多关系可 以用函数来表示,例如重 力加速度与高度之间的关 系。
化学反应
化学反应中的反应速率和 反应进程可以用函数来表 示,例如反应速率与反应 物浓度的关系。
生物进化
生物进化中的基因频率和 种群数量的变化可以用函 数来表示,例如种群增长 曲线和自然选择的影响。
THANK YOU
正比例函数的定义与图像
正比例函数的定义
八年级数学 函数与几何图形专题 课件
C y M M T Q D C
18 12
B
D
C
D
C
E
6
( P) E
E
A
P 图1
B
A
N
P 图2
B
0(A)
6
12
18
24
B
x
图3
(1)无论点P在AB边上任何位置,都有 PQ QE(填“>”、“=”、“< ” 号); (2)如图3所示,将纸片ABCD放在直角坐标 系中,按上述步骤一、二进行操作: ①当点P在A点时,PT与MN交于点Q1.Q1点的 坐标是( , ); ②当PA=6厘米时,PT与MN交于点Q2.Q2点 的坐标是( , ); ③当PA=12厘米时,在图3中画出MN.PT (不要求 写画法),并求出MN与PT的交点Q3的坐标;
B
的图象与AB交于C、D两点,P为
D C x
m 双曲线 y 上任意一点,过P作 x
PQ⊥x轴于点Q,PR⊥y轴于点R. O
A
(1)若m+n=10,n为何值时△AOB的面积最大?最大值是 多少?
(2)若SAOC SCOD SDOB , 求n的值。
1 解:( 1 )S AOB m n, m n 10, 得 2 1 1 25 2 SAOB n(10 n) (n 5) 2 2 2 25 当n 5时 SAOB 最大值 = 2 ( 2)过C分别作x轴、y轴的垂线CM、CN 1 S AOC S COD S DOB S AOC= S AOB 3 1 1 1 1 m CM m n CM n 2 3 2 3 2 1 2 同理CN m C m, n 3 3 3 m 1 m 9 点C在y 上 n= n 2 x 3 2 m 3
18 12
B
D
C
D
C
E
6
( P) E
E
A
P 图1
B
A
N
P 图2
B
0(A)
6
12
18
24
B
x
图3
(1)无论点P在AB边上任何位置,都有 PQ QE(填“>”、“=”、“< ” 号); (2)如图3所示,将纸片ABCD放在直角坐标 系中,按上述步骤一、二进行操作: ①当点P在A点时,PT与MN交于点Q1.Q1点的 坐标是( , ); ②当PA=6厘米时,PT与MN交于点Q2.Q2点 的坐标是( , ); ③当PA=12厘米时,在图3中画出MN.PT (不要求 写画法),并求出MN与PT的交点Q3的坐标;
B
的图象与AB交于C、D两点,P为
D C x
m 双曲线 y 上任意一点,过P作 x
PQ⊥x轴于点Q,PR⊥y轴于点R. O
A
(1)若m+n=10,n为何值时△AOB的面积最大?最大值是 多少?
(2)若SAOC SCOD SDOB , 求n的值。
1 解:( 1 )S AOB m n, m n 10, 得 2 1 1 25 2 SAOB n(10 n) (n 5) 2 2 2 25 当n 5时 SAOB 最大值 = 2 ( 2)过C分别作x轴、y轴的垂线CM、CN 1 S AOC S COD S DOB S AOC= S AOB 3 1 1 1 1 m CM m n CM n 2 3 2 3 2 1 2 同理CN m C m, n 3 3 3 m 1 m 9 点C在y 上 n= n 2 x 3 2 m 3
函数、方程、不等式以及它们图像_课件
2019/11/28
29
解: 由于x的任意性,则只有当 T1的时候可能恒成立 ①当 T1时,sik ( n x 1 ) sik n x k () sik nx 恒成立 k2m ,mZ
②当T1时,
sik (n x 1 ) sik n x k () sikn 恒x 成立
20
解:(2)
已知f(x)图像关于x=1对称( xR,都有 2x x 1 )
2 xR有 f(2x)f(x)
2019/11/28
21
解: 又f(x)是R上的偶函数 f(x)f(x) f[2(x) ]f(x) f(2x)f(x)
f(2x)f(x) 即f(x)是以2为周期的周期函数
abc2c,且 ab1c
2019/11/28
11
解: 即a,b是一元二次方程 x2(1c)xc2c0的两个不相等 的根,且两根都大于c,令 f(x)x2(1c)xc2c,则图像与 x轴有两个交点且都在 (c,) 内, 又图像开口向上
2019/11/28
12
解:
函数、方程、不等式 以及它们的图像
2019/11/28
1
函数是中学数学的一个重要概念。函数 的思想,就是用运动变化的观点,分析和 研究具体问题中的数量关系,建立函数关 系,运用函数的知识,使问题得到解决。
2019/11/28
2
和函数有必然联系的是方程,方程
f(x) 0的解就是函数 yf(x) 的图像 与x轴的交点的横坐标,函数 yf(x)
2
f(x)f(y)f1xxyy 。(1)证明: f ( x ) 在 (1,1) 上是奇函数;
2019/11/28
32
(2)对于数列 {x n } ,若
八年级上册数学ppt课件
分式的混合运算和应用
总结词
掌握分式的混合运算法则,能够正确进 行分式的混合运算,解决实际问题。
VS
详细描述
介绍分式的混合运算法则,包括分式的乘 方、通分、约分等,通过例子演示分式的 混合运算过程,让学生理解分式的混合运 算法则和应用。同时,通过实际问题的解 决,让学生理解分式运算的应用价值。
05
奇偶性
函数的奇偶性是指函数是 否具有奇偶性,即函数图 像是否关于原点对称。
凹凸性
函数的凹凸性是指函数图 像是凹形还是凸形。
02
第二章:一元一次不等式与不 等式组
一元一次不等式的概念与解法
总结词:掌握基础 总结词:掌握解法
详细描述:首先需要了解一元一次不 等式的定义,明确一元一次不等式的 形式及其特点,例如一元一次不等式 的定义域和取值范围等。
详细描述
因式分解是指将一个多项式化为几个整式的积的形式,它是数学中重要的恒等 变形,广泛应用于解方程、求根式值等问题的解决中。
因式分解的方法与技巧
总结词
多种方法,需掌握技巧
详细描述
因式分解的方法有提取公因式法、公式法、分组分解法、十字相乘法等,技巧包括拆项、添项、配方等,需要学 生逐步学习并熟练掌握。
介绍分式的基本性质,包括约分、通 分的定义和操作方法,通过例子演示 约分、通分的操作过程,让学生理解 约分、通分的意义和作用。
分式的加减乘除运算
总结词
掌握分式的加减乘除运算法则,能够正确进行分式的加减乘 除运算。
详细描述
介绍分式的加减乘除运算法则,包括同分母分式加减法、异 分母分式加减法、分式的乘除法等,通过例子演示分式的加 减乘除运算过程,让学生理解分式的加减乘除运算法则和应 用。
初中八年级下册数学 《函数的图像》PPT优秀课件
的变化曲线表达了它们之间的函数关系,
其中t是自变量.我们把这条曲线称作 L和t的函数关系的图象. 像这样用图象表示变量之间函数关系
PPT模板:
PPT素材:
PPT背景:
PPT图表:
PPT下载:
PPT教程:
资料下载:
范文下载:
试卷下载:
教案下载:
PPT论坛:
PPT课件:
语文课件: 数学课件:
英语课件: 美术课件:
放水时间t/s
水面下降高度 L/mm
10 20 30 40 50 60 70 80 90 100 5 10 15 19 23 27 30 33 36 38
将表中每对t和L的数据作为点的坐标,在以t为横轴、L为纵轴的 直角坐标系中描出各点,并将描出的点用平滑的曲线一次连接 起来(图10-2).
图10-2利用饮料瓶内水面与放水时间
2021/02/21
5
(6)通过上面的问题,你体会用图象表示函数关 系有什么优点?
用图象可以直观、形象地 刻画变量之间的函数关系 和变化趋势.
2021/02/21
6
下图是某气象站记录的某一天昼夜气温变化的曲线,请根 据此图回答下列问题:
(1)这天6时、8时和20时的气温T各是多少?
新 (2)怎样确定这天某一时刻t的气温T? (3)这条曲线反映的是哪两个变量之间的关系?
馆回家的平均速度是多少?
2021/02/21
11
例1 一台家用淋浴器在使用前,水箱中的注水量是0L.使用时 先向水箱注水,注满水后关闭水源并通电加热,加热完毕时切断 电源,开始淋浴,水匀速放出,直至将水箱中的水用完.在这一过 程中,淋浴器中水箱的贮水量V(L)与时间t(min)的函数图象 如图10-3所示.根据图象回答下列问题:
函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称
八年级函数ppt课件ppt课件
八年级函数ppt课件
CATALOGUE
目 录
• 函数基本概念 • 一次函数与正比例函数 • 反比例函数 • 二次函数及其图像和性质 • 函数在实际问题中应用举例 • 总结回顾与拓展延伸
01
CATALOGUE
函数基本概念
函数定义与性质
函数定义
详细解释函数的定义,包括函数 的概念、定义域、值域等。
实际问题中的综合应用
在某些实际问题中,可能需要同时考虑反比例函数和一次函数的关系。例如,在研究电路中电流、电 压和电阻之间的关系时,可能需要同时考虑欧姆定律和反比例函数来描述这种关系。通过综合应用这 两种函数,可以更全面地理解和解决这类问题。
04
CATALOGUE
二次函数及其图像和性质
二次函数表达式及图像特点
导入
通过实际问题引入最大( 小)值的概念,如利润最 大化、成本最小化等。
建立函数模型
将实际问题转化为函数模 型,明确目标函数和约束 条件。
求解方法
介绍求解最大(小)值问 题的常用方法,如导数法 、不等式法等,并举例说 明其应用。
方案设计类问题解决方法与策略
导入
通过实际问题引入方案设计类问 题的概念,如产品设计、工程规
03
工程中的速率与时间关系
在工程问题中,有时需要计算某个任务在不同速率下完成所需的时间。
当任务量一定时,速率与时间成反比关系。因此,可以用反比例函数来
描述这种关系。
反比例函数与一次函数综合应用
图像交点问题
当反比例函数与一次函数在同一坐标系中作图时,可能会存在交点。这些交点满足两个函数的方程组 ,因此可以通过解方程组来求解交点的坐标。
函数性质
介绍函数的奇偶性、单调性、周 期性等基本性质,并举例说明。
CATALOGUE
目 录
• 函数基本概念 • 一次函数与正比例函数 • 反比例函数 • 二次函数及其图像和性质 • 函数在实际问题中应用举例 • 总结回顾与拓展延伸
01
CATALOGUE
函数基本概念
函数定义与性质
函数定义
详细解释函数的定义,包括函数 的概念、定义域、值域等。
实际问题中的综合应用
在某些实际问题中,可能需要同时考虑反比例函数和一次函数的关系。例如,在研究电路中电流、电 压和电阻之间的关系时,可能需要同时考虑欧姆定律和反比例函数来描述这种关系。通过综合应用这 两种函数,可以更全面地理解和解决这类问题。
04
CATALOGUE
二次函数及其图像和性质
二次函数表达式及图像特点
导入
通过实际问题引入最大( 小)值的概念,如利润最 大化、成本最小化等。
建立函数模型
将实际问题转化为函数模 型,明确目标函数和约束 条件。
求解方法
介绍求解最大(小)值问 题的常用方法,如导数法 、不等式法等,并举例说 明其应用。
方案设计类问题解决方法与策略
导入
通过实际问题引入方案设计类问 题的概念,如产品设计、工程规
03
工程中的速率与时间关系
在工程问题中,有时需要计算某个任务在不同速率下完成所需的时间。
当任务量一定时,速率与时间成反比关系。因此,可以用反比例函数来
描述这种关系。
反比例函数与一次函数综合应用
图像交点问题
当反比例函数与一次函数在同一坐标系中作图时,可能会存在交点。这些交点满足两个函数的方程组 ,因此可以通过解方程组来求解交点的坐标。
函数性质
介绍函数的奇偶性、单调性、周 期性等基本性质,并举例说明。
八年级函数ppt课件ppt
05
CHAPTER
函数的学习方法与技巧
如何理解函数的概念
总结词
理解函数的概念是学习函数的基础,需 要掌握函数的定义、表示方法和性质。
VS
详细描述
首先,要了解函数的基本定义,即函数是 将一个集合的元素按照某种规则映射到另 一个集合的元素。其次,要掌握函数的表 示方法,如解析式、表格和图像等。最后 ,要理解函数的性质,如函数的定义域、 值域、单调性、奇偶性等。
就说y是x的函数。
在函数关系中,x称为自变量,y 称为因变量。
函数的表示方法
01
02
03
解析法
用数学表达式来表示函数 关系,例如 y = 2x + 1。
图象法
通过绘制函数的图象来表 示函数关系,图象上每一 个点代表一个函数的值。
列表法
通过列出一些自变量和因 变量的对应值来表示函数 关系。
函数的性质
。
THANKS
谢谢
二次函数的应用
总结词
二次函数在解决实际问题中的应用
详细描述
二次函数在实际问题中有着广泛的应用,如求最值、解决几 何问题等。
04
CHAPTER
反比例函数
反比例函数的定义
反比例函数
如果一个函数,当自变量x的值增大时 ,函数值y的值反而减小,我们称这样 的函数为反比例函数。
数学表达式
y = k/x (k为常数且k≠0)
frac{b}{2a}right)right)$。
二次函数的图像
总结词
二次函数图像的绘制方法
详细描述
通过代入不同的$x$值,计算对应的$y$值,然后 描点连线,即可绘制出二次函数的图像。
总结词
二次函数图像的开口方向与系数$a$的关系
人教版八年级数学 下册 第十九章 19.1.2 函数的图像 课件(3课时,共69张PPT)
(3)如果水位的变化规律不变,按上述 函数预测,再持续2小时,水位的高度: __y_=_0_.3_×__7_+_3_=_5_._1_(m__)_____. 此时函数图象(线段AB)向 ___________延伸到对应的位置,这时 水位高度约为___5_.1_m______米.
由例可以看出,函数的不同表示法 之间可以__转__化_______.
值范围是: X取全体实数 ; 第一步:从的取值范围中选取一些简洁的数 值,算出的对应值,填写在表格里;
x … -3 -2 -1 0 1 2 …
y … -2.5 -1.5 -0.5 0.51.52.5 …
知识点 用描点法画函数图象 第二步:根据表中数值描点( x ,y);
y=x+0.5
• • • • • •
1、如果A、B两人在一次百米赛跑中, 路程(米)与赛跑的时间t(秒)的关系
如图所示则下列说法正确的是( C)
A. A比B先出发; B. A、B两人的速度相同; C. A先到达终点; D. B比A跑的路程多.
2、用列表法与解析式法表示n边形 的内 角和m(单位:度)关于边数的n函数.
解:列表法:
边数n 3 4 5 …
内角和 m/度 180 360 540
…
解析法:m=(n-2)×180 °,n≥3
大而减小,当x>0时,y随x的增大而增大。
画函数图象的一般步骤:
列表、描点、连线,这种画函数图象 的方法称为描点法。
函数图象的三种表示法
1、描点法画函数图象的一般步骤: (1)_列__表__,(2)_描__点__,(3)_连__线___. 2、表示函数的三种方法分别为:
__解_析__式__法__、___列_表__法__ 、_图__象_法__ .
函数、方程、不等式以及它们图像_课件
2019/10/23
30
解: sik n x k ( ) siknx
k2m k(2m 1)mZ
由①②可知,实数k的取值范围是
{kkm,mZ}
2019/10/23
31
例题5、函数 f ( x ) 在 (1,1) 上有定义,
f ( 1 ) 1 且满足 x,y(1,1)时,有
1
nl im lna(n)nl im 2nlna 0
2019/10/23
24
例题4、已知集合M是满足下列性质的 f ( x ) 的全体:存在非零常数T,对任意 xR,有 f(xT)T(fx)成立。
(1)函数 f(x) x是否属于集合M?说明理由; (2)设函数 f (x) a x (a0,a1)的图像与
y
o c
2019/10/23
x
13
解:
(c 1)2 4(c2 c) 0
1 c
2
c
f (c) 3c2 2c 0
2019/10/23
14
解:
1 c0 3
11c 4 , 8 1c2 1 39
ab(1, 4), a2 b2 (8,1)
2019/10/23
46
解(1):
当 0m1时,f(x1)f(x2)0,
函数在 [, ] 上是减函数
当 m1时, f(x1)f(x2)0, 函数在 [, ]上是增函数
2019/10/23
47
解(2):
由(1)可知,当 0m1时,
f (x) 为减函数, 则由其值域为 [lm o m ( g 1 )l,o m m ( g 1 )]
f(x)logm
人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②底边长为10的三角形的面积S与这边上的高h之间的关 系式;
③某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米, 挂上重物后的长度y(厘米)与所挂重物x(千克)之间的关系式;
解:① s=110t 常量是110,变量是t和s. ② S=5h 常量是5, 变量是h和S. ③ y=20+0.2x 常量是20和0.2,变量是x和y.
波长
λ(m) 300
500
600
1000 1500
频率
ƒ(kHz)1000 600
500
300 200
λƒ=300000
或
ƒ=
300000
结论:任给一个波长λ的确定值,频率ƒ都有唯一 的一个值和它对应
问题4:圆的面积随着半径的增大而增大。如果用r表 示圆的半径,S表示圆的面积,则S与r之间满 足下列关系:
问题2:银行对各种不同的存款方式都规定了
相应的利率,下表是2006年8月中国人 民银行公布的“整存整取”年利率:
存期 三月
x 年利率 1.80 y(%)
六月 2.25
一年 2.52
二年 3.06
三年 3.69
五年 4.14
结论:任给一个存期x的确定值,年利率y都有 唯一的一个值和它对应
问题3:收音机刻度盘上的波长和频率分别是用米(m) 和千赫兹(kHz)为单位标刻的。下面是一些对应的数值:
22
38
t(分)
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
第18章 函数及其图象
18.1 变量与函数
温度T (°C)
问题
8
6
4
2 时间t(时)
0 2 4 6 8 10 12 14 16 18 20 22 24
−2
−4
想一想:在这个变化过程中,
任选时刻t的一个确定值, 温度T有几个值和这个时刻对应?
结论:任给一个时间t的确定值,温度T都 有唯一的一个值和它对应
在某个变化过程中,
可以取不同值的量叫变量。如:T和t,y和x,
ƒ 和λ,S和r。
保持不变的量叫常量。 如:问题3中的300000
和问题4中的
❖在某个变化过程中,有两个变量x和y,对于变 量x的每一个值,变量y都有唯一确定的值和它 对应,我们就说x是自变量,y是因变量。 也称y是x的函数。
做一做,⑴请指出1——4问中的自变量和因变量
r S=———— 2
请完成下表:
半径r(cm) 1
1.5 2
2.6 3.2 …
面积S(cm2) 2.25 4 6.76 10.24 …
可以看出:圆的半径越大,它的面积就越大
结论:任给一个半径r的确定值,面积S都有唯 一的一个值和它对应
想一想:在问题1、2、3、4中,分别有几个可以 取不同值的量?
例题 小明为了表示爷爷晚饭后出门散步、在报亭看报、回
家的过程,绘制了爷爷离家的路程(米)与外出的时 间(分)之间的关系图,请回答问题:
①这个图反映了哪几个变量之间的关系? ②任取变量的一个值,变量有几个值与它对应?是的函 数吗? ③报亭离爷爷家多远?爷爷在报亭看了多长时间的报?
S(米)
400
0
10
⑵下列变化中,哪些y是x的函数?哪些不是?说明理由。
xy=2
x2+y2=10
x+y=5
|y|=3x+1
y=x2-4x+5
★函数的三种表示方法:解析法、列表法、图象法
例题 写出下列问题中的函数关系式,并指出其中的 常量与变量:
①时速为110千米的火车行驶的路程s(千米)与时间t(小 时)之间的关系式;
③某种弹簧原长20厘米,每挂重物1千克,伸长0.2厘米, 挂上重物后的长度y(厘米)与所挂重物x(千克)之间的关系式;
解:① s=110t 常量是110,变量是t和s. ② S=5h 常量是5, 变量是h和S. ③ y=20+0.2x 常量是20和0.2,变量是x和y.
波长
λ(m) 300
500
600
1000 1500
频率
ƒ(kHz)1000 600
500
300 200
λƒ=300000
或
ƒ=
300000
结论:任给一个波长λ的确定值,频率ƒ都有唯一 的一个值和它对应
问题4:圆的面积随着半径的增大而增大。如果用r表 示圆的半径,S表示圆的面积,则S与r之间满 足下列关系:
问题2:银行对各种不同的存款方式都规定了
相应的利率,下表是2006年8月中国人 民银行公布的“整存整取”年利率:
存期 三月
x 年利率 1.80 y(%)
六月 2.25
一年 2.52
二年 3.06
三年 3.69
五年 4.14
结论:任给一个存期x的确定值,年利率y都有 唯一的一个值和它对应
问题3:收音机刻度盘上的波长和频率分别是用米(m) 和千赫兹(kHz)为单位标刻的。下面是一些对应的数值:
22
38
t(分)
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
第18章 函数及其图象
18.1 变量与函数
温度T (°C)
问题
8
6
4
2 时间t(时)
0 2 4 6 8 10 12 14 16 18 20 22 24
−2
−4
想一想:在这个变化过程中,
任选时刻t的一个确定值, 温度T有几个值和这个时刻对应?
结论:任给一个时间t的确定值,温度T都 有唯一的一个值和它对应
在某个变化过程中,
可以取不同值的量叫变量。如:T和t,y和x,
ƒ 和λ,S和r。
保持不变的量叫常量。 如:问题3中的300000
和问题4中的
❖在某个变化过程中,有两个变量x和y,对于变 量x的每一个值,变量y都有唯一确定的值和它 对应,我们就说x是自变量,y是因变量。 也称y是x的函数。
做一做,⑴请指出1——4问中的自变量和因变量
r S=———— 2
请完成下表:
半径r(cm) 1
1.5 2
2.6 3.2 …
面积S(cm2) 2.25 4 6.76 10.24 …
可以看出:圆的半径越大,它的面积就越大
结论:任给一个半径r的确定值,面积S都有唯 一的一个值和它对应
想一想:在问题1、2、3、4中,分别有几个可以 取不同值的量?
例题 小明为了表示爷爷晚饭后出门散步、在报亭看报、回
家的过程,绘制了爷爷离家的路程(米)与外出的时 间(分)之间的关系图,请回答问题:
①这个图反映了哪几个变量之间的关系? ②任取变量的一个值,变量有几个值与它对应?是的函 数吗? ③报亭离爷爷家多远?爷爷在报亭看了多长时间的报?
S(米)
400
0
10
⑵下列变化中,哪些y是x的函数?哪些不是?说明理由。
xy=2
x2+y2=10
x+y=5
|y|=3x+1
y=x2-4x+5
★函数的三种表示方法:解析法、列表法、图象法
例题 写出下列问题中的函数关系式,并指出其中的 常量与变量:
①时速为110千米的火车行驶的路程s(千米)与时间t(小 时)之间的关系式;