TFT显示原理
TFT液晶显示原理
TFT液晶显示原理1.薄膜晶体管技术:薄膜晶体管(Thin-Film Transistor,TFT)是一种采用薄膜材料制作的电子器件,具有微小尺寸和快速响应速度的特点。
在TFT液晶显示器中,每个像素点都需要一个晶体管来控制其亮度和颜色。
晶体管负责将电信号转化为液晶层中对应像素点的光学信号。
TFT液晶显示器的晶体管通常采用硅薄膜晶体管(Usually amorphous silicon,a-Si)制作。
制作方法可以简单地概括为:在玻璃基板上依次沉积绝缘层、硅薄膜、导电层,并完成晶体管的元件结构。
这样,每个像素点都被一个晶体管控制,可以独立地改变像素点的亮度和颜色。
2.液晶显示技术:液晶(Liquid Crystal,LC)是一种介于固体和液体之间的物质状态,具有一定的流动性和透明性。
TFT液晶显示器中常用的液晶材料是向列型液晶(Nematic Liquid Crystal,NLC)。
液晶显示的原理是:利用电场的作用,改变液晶分子的排列状态,从而改变透过液晶层的偏振光的方向,进而控制像素点的亮度和颜色。
液晶分子在无电场作用下呈现螺旋排列结构,电场的作用可以使其产生旋转或倾斜移动,从而使得透过液晶层的偏振光发生改变。
这种光学特性使得液晶分子可以根据电压的大小和方向改变透过偏振片的光的方向,实现显示图像。
TFT液晶显示器中,每个像素点由红、绿、蓝三种基色的液晶分子组成,液晶分子在电场的作用下分别改变透过红、绿、蓝三种基色滤光片的偏振光的方向,从而合成出所需的颜色。
利用液晶分子的电光特性,可以通过适当控制液晶分子的排列方向和电场的大小实现不同亮度和颜色的显示。
总结起来,TFT液晶显示原理是利用薄膜晶体管技术控制液晶层中每个像素点的亮度和颜色,通过改变液晶分子的排列结构和透过偏振光的方向实现显示图像。
TFT液晶显示器因其高分辨率、色彩饱和度和快速响应等特点,在各个领域得到了广泛的应用。
tft液晶屏工作原理
tft液晶屏工作原理
TFT液晶屏是一种由薄膜晶体管(Thin Film Transistor)驱动
的液晶显示技术。
它是一种主动矩阵式显示技术,其工作原理涉及液晶分子、透明电极、薄膜晶体管、光源等组件的相互作用。
工作原理如下:
1. 薄膜晶体管(TFT):TFT是TFT液晶屏的核心组件之一,它用于驱动每个像素点的液晶单元。
TFT将输入信号转换成控制信号,通过控制液晶单元的开关状态来控制每个像素点的亮度和颜色。
2. 透明电极:液晶分子位于两片透明电极之间。
透明电极负责施加电场,改变液晶分子的排列方式,从而改变光线的透过性。
3. 液晶分子:液晶分子是一种介于液相和晶体之间的有机化合物。
它们为长而细长的分子,可以呈现不同的排列方式。
在没有电场作用时,液晶分子的排列方式由于其特殊的物理性质呈现相对无规则的状态。
当电场作用于液晶分子时,它们会按照电场的方向重新排列,从而改变光线的通过程度。
4. 偏振器:TFT液晶屏中通常配有两片偏振器,其中一片是纵向偏振器,另一片是横向偏振器。
它们有助于过滤和调节光线的方向,并确保光线只以特定的方向通过液晶分子,从而形成图像。
5. 光源:TFT液晶屏背后通常有一个光源,如冷光源或LED 背光源,用于提供背光。
背光通过液晶分子的调节,在前面形成可见图像。
当TFT液晶屏工作时,TFT通过电子信号控制液晶的像素点的亮度和颜色,液晶分子根据所施加的电场排列,通过偏振器调节光线的方向,从而形成清晰的图像。
tft显示屏显示原理
tft显示屏显示原理TFT显示屏显示原理TFT液晶显示屏(Thin Film Transistor Liquid Crystal Display)是一种广泛应用于电子产品中的平面显示技术。
它通过利用薄膜晶体管(TFT)来控制液晶分子的排列,从而实现图像的显示。
TFT显示屏具有色彩鲜艳、对比度高、响应速度快等优点,因此被广泛应用于手机、电视、电脑显示器等电子设备中。
TFT液晶显示屏的显示原理基于液晶分子的光电效应。
液晶分子是一种具有有机结构的化合物,它具有两种典型的排列状态:平行排列和垂直排列。
当液晶分子处于平行排列状态时,光线无法通过液晶层,显示屏呈现黑色;当液晶分子处于垂直排列状态时,光线可以通过液晶层,显示屏呈现透明或彩色。
TFT液晶显示屏通过在玻璃基板上加上一层薄膜晶体管阵列来控制液晶分子的排列状态。
薄膜晶体管是一种电子器件,具有开关功能。
当薄膜晶体管受到电压作用时,会改变液晶分子的排列状态。
TFT 显示屏中的每个液晶像素都与一个薄膜晶体管相连,通过控制薄膜晶体管的开关状态,可以改变液晶像素的亮度和色彩。
TFT液晶显示屏的基本组成包括玻璃基板、液晶层、薄膜晶体管阵列和背光源。
玻璃基板是显示屏的基础支撑结构,上面覆盖着液晶层。
液晶层由两层平行排列的玻璃基板组成,中间夹层填充有液晶分子。
薄膜晶体管阵列被制造在其中一层玻璃基板上,用于控制液晶分子的排列。
背光源位于另一层玻璃基板的背面,用于提供背光照明,使得显示屏可以在暗环境下正常显示。
TFT液晶显示屏的工作原理可以简单描述为以下几个步骤:1. 数据传输:显示屏接收到输入信号,将其转换为电信号,通过数据线传输到薄膜晶体管阵列。
2. 信号放大:薄膜晶体管阵列接收到电信号后,将其放大,以便能够控制液晶分子的排列状态。
3. 液晶分子排列:薄膜晶体管阵列的驱动信号作用下,液晶分子的排列状态发生改变,从而控制光线的通过与阻挡。
4. 色彩显示:通过控制液晶分子的排列状态,可以实现对光线的调节,从而显示出不同的颜色。
TFTLCD显示原理及驱动介绍
TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。
它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。
TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。
这些像素点由一层薄膜晶体管(TFT)驱动。
薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。
当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。
TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。
驱动电路通常由一个控制器和一组电荷泵组成。
控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。
电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。
控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。
TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。
驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。
驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。
1.扫描电路:负责控制像素点的扫描和刷新。
扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。
2.数据存储器:用于存储显示数据。
数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。
3.灰度调节电路:用于调节像素点的亮度。
通过调节像素点的电流输出,可以实现不同的亮度效果。
4.像素点驱动电路:负责控制像素点的偏振状态。
像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。
5.控制线路:用于传输控制信号。
控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。
tft lcd 工作原理
tft lcd 工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种常见的显示技术,广泛应用于电子设备中,例如平板电脑、智能手机和电视等。
下面是TFT LCD的工作原理:
1. 液晶层:TFT LCD最关键的部分是液晶层,液晶层由液晶
分子组成,液晶分子可以通过电场的作用改变其在空间中的排列方式。
2. 背光源:TFT LCD需要一个背光源,通常采用LED(Light Emitting Diode)作为背光源。
背光源会在显示器的后面提供
均匀的光源,通过液晶层透过背光源的光来显示图像。
3. 薄膜晶体管阵列:液晶层的每个像素点都包含一个对应的薄膜晶体管。
这些薄膜晶体管阵列是连接在导线网格上的,用于控制液晶层中液晶分子的排列方式。
4. 驱动电路:TFT LCD中的驱动电路负责控制薄膜晶体管阵列,通过在特定像素点上施加电压,改变液晶分子的排列方式。
这样,液晶层就可以根据不同的电压来控制光的透过程度,从而生成不同的颜色和亮度。
5. 控制器:TFT LCD还包含一个控制器,用于接收来自电子
设备的信号,并将其转化为正确的像素点显示在液晶屏上。
控制器通常采用计算机程序或者芯片实现。
总的来说,TFT LCD的工作原理是通过控制驱动电路中的薄
膜晶体管阵列,在液晶层中施加电场,进而控制液晶分子的排列方式,从而控制光的透过程度,最终显示出图像。
TFTLCD工作原理
TFTLCD工作原理
TFT LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶
体管液晶显示器)是最常用的一种液晶显示器,具有体积小、重量轻、耗
电量低、响应速度快等优点,广泛的应用于电脑显示器、手机、电视机等。
TFT LCD 的工作原理如下:
TFTLCD显示器的基本结构是由像素组成的晶圆片上放置了微小的TFT (薄膜晶体管)驱动结构和液晶分子组成的LCD结构。
每个像素都有相应
的TFT结构,以驱动LCD中的液晶分子,完成显示的刷新和更新,从而实
现显示图像内容的转换。
TFT LCD 显示器的工作原理是将具有内含pixel的晶圆片上的每个
TFT晶体管做为一个晶体管四极管(包括电极、源极、漏极和控制极等),利用电压的变化调节液晶分子间的电容,从而影响液晶分子的排列和偏析
程度,从而有效地调节液晶分子的透射率,改变图像的亮度。
1.电信号处理:将接收到的电信号处理成TFT驱动所需的电压。
2.TFT驱动:通过TFT结构生成调整液晶分子电容偏移的电压,从而
改变像素亮度。
3.液晶显示:利用TFT结构调整液晶分子电容的偏移,从而调节液晶
电容释放的光,形成显示图像。
晶圆片上的TFT晶体管负责处理外界接收的信号。
TFT液晶显示原理介绍
偏光板的工作原理( 偏光板的工作原理(2)
4 / 12
TFT型工作原理 TFT型工作原理
偏光板 Polarizer
(如图3)上下两层玻璃主要起到夹住液晶的作用.在下面 如图3)上下两层玻璃主要起到夹住液晶的作用. 3)上下两层玻璃主要起到夹住液晶的作用 的那层玻璃中有薄膜晶体管, 的那层玻璃中有薄膜晶体管, 而上面的那层玻璃则贴有 彩色滤光片(Color 彩色滤光片(Color filter). 这两片玻璃在接触液晶的 那一面,并不是光滑的,而是有锯齿状的沟槽. 那一面,并不是光滑的,而是有锯齿状的沟槽. 这个沟槽 的主要目的是希望长棒状的液晶分子,会沿着沟槽排列. 的主要目的是希望长棒状的液晶分子,会沿着沟槽排列. 如此一来, 液晶分子的排列才会整齐. 如此一来, 液晶分子的排列才会整齐. 因为如果是光滑 的平面, 液晶分子的排列便会不整齐,造成光线的散射, 的平面, 液晶分子的排列便会不整齐,造成光线的散射, 形成漏光的现象.但在实际的制造过程中, 形成漏光的现象.但在实际的制造过程中,并无法将玻璃 作成有如此的槽状的分布, 作成有如此的槽状的分布, 一般会在玻璃的表面上涂布 一层PI(polyimide), 然后再用布去做磨擦的动作, 一层PI(polyimide), 然后再用布去做磨擦的动作,好让 PI的表面分子不再是杂散分布 的表面分子不再是杂散分布, PI的表面分子不再是杂散分布,会依照固定而均一的方 向排列.而这一层PI就叫做配向膜, PI就叫做配向膜 向排列.而这一层PI就叫做配向膜,它的作用就像玻璃的 凹槽一样, 提供液晶分子呈均匀排列的接口条件, 凹槽一样, 提供液晶分子呈均匀排列的接口条件, 让液 晶依照预定的顺序排列. 晶依照预定的顺序排列.
热致型液晶分布
液晶种类
tft-lcd原理与设计
tft-lcd原理与设计
TFT-LCD(Thin-Film Transistor Liquid Crystal Display)是一种液晶显示技术,它使用了薄膜晶体管(Thin-Film Transistor)作为电流控制开关来激活液晶分子,从而实现图像显示。
TFT-LCD 的设计和原理如下:
1. 像素(Pixel):TFT-LCD显示屏是由许多微小的像素组成的。
每个像素由红、绿、蓝三个子像素组成,可以通过控制这三个子像素的亮度来显示不同颜色。
2. 色彩混合:每个子像素可以通过改变透过的光的颜色和强度来显示不同的颜色。
通过控制红、绿、蓝三个子像素的亮度,可以实现各种色彩的混合。
3. 薄膜晶体管阵列(TFT Array):每个像素都有一个对应的薄膜晶体管,它位于液晶分子和电流源之间。
当电流经过薄膜晶体管时,它会改变液晶分子的排列方式,从而改变光的透过性。
4. 透明导电层:液晶屏的上下两侧分别涂有透明导电层,上层导电层是固定的,下层导电层可以通过控制电压的方式改变,用于控制液晶分子的排列。
5. 液晶分子:液晶分子是一种特殊的有机化合物,具有两种排列方式:平行排列和垂直排列。
液晶分子在没有电场作用下是有序排列的,当电场作用于液晶分
子时,它们会改变排列方式从而改变光的透过性。
6. 控制信号:通过控制薄膜晶体管和透明导电层之间的电流,可以产生控制信号来控制液晶分子的排列方式,从而控制光的透过性。
这些控制信号由显示控制器产生并发送给液晶显示屏。
总的来说,TFT-LCD显示屏通过控制薄膜晶体管和透明导电层之间的电流来改变液晶分子的排列方式和透过性,从而实现图像的显示。
tft vgl vgh原理
tft vgl vgh原理
TFT(薄膜晶体管)是一种用于液晶显示屏中的关键技术,它能够控制每个像素点的亮度和颜色。
VGL(负电压发生器)和VGH(正电压发生器)是TFT液晶显示屏中的两种电压信号,它们在TFT工作原理中起着重要作用。
TFT液晶显示屏是由许多小型像素点组成的,每个像素点都有一个对应的薄膜晶体管,这些晶体管通过VGL和VGH电压信号来控制。
VGL和VGH是用来控制液晶分子方向的电压信号,液晶分子的方向决定了光线是否通过,从而形成图像。
VGL产生负电压信号,通常在-5V到-10V之间,它用来控制液晶分子的方向,使其旋转到特定角度,以控制像素点的亮度。
VGH 则产生正电压信号,通常在15V到20V之间,它也用来控制液晶分子的方向,确保像素点的亮度和颜色能够得到正确的显示。
在TFT液晶显示屏中,VGL和VGH信号的精确控制非常重要,它们需要按照特定的时间序列和电压值来工作,以确保液晶分子能够正确地旋转并显示出清晰的图像。
因此,VGL和VGH原理的理解和控制对于TFT液晶显示屏的性能和显示质量至关重要。
总之,TFT液晶显示屏的VGL和VGH原理是通过控制负电压和正电压信号来调节液晶分子的方向,从而实现对每个像素点的亮度和颜色的精确控制,这是液晶显示技术中的重要组成部分。
TFTLCD液晶显示器的工作原理
TFTLCD液晶显示器的工作原理TFTLCD由若干个像素组成,每个像素由红、绿、蓝三个亚像素构成。
每个亚像素由一个薄膜晶体管和一个液晶分子组成。
晶体管负责控制亚像素的亮度,而液晶分子负责确定各亚像素之间的相对光透过率。
当亚像素的亮度和透明度被准确控制时,TFTLCD可以显示高质量的图像。
TFTLCD基本的工作原理如下所述:首先,当传递出一个行扫描信号时,液晶显示器的电路将会寻找并激活该行扫描信号所对应的各个像素。
然后,电荷信号被传递给每一个亚像素,通过薄膜晶体管的控制,来调整亚像素相对于传递的电荷的光强度。
TFTLCD的背光模块是通过液晶材料构成的,它由两块平行的玻璃基板夹心,基板上涂有透明电极。
这些电极连接到导线,与一个控制器相连,通过控制器的输出信号,可以为每个像素提供相对应的电压。
当电压施加到液晶分子上时,分子将排列成其中一种方式,改变光透过的方式。
在TFTLCD中,液晶分子是通过薄膜晶体管来进行控制的。
每一个像素有一个薄膜晶体管和一个液晶分子组成,以控制这个像素的亮度。
薄膜晶体管通常是由硅和金属氧化物构成的。
晶体管的操作由控制电路的信号驱动,这些信号控制晶体管的开关状态,以及电压施加的方式。
在液晶分子层中,液晶分子会受到施加在它们上面的电场的影响。
通过改变电场的方向和强度,液晶分子的取向也会相应改变。
当电场施加在液晶分子上时,液晶分子将在薄膜晶体管的控制下排列成特定的方式,从而改变光的传输方式。
在TFTLCD中,每一个像素的亚像素的排列方式可以改变光的透过率。
当电场施加在像素上时,液晶分子的排列方式将会改变,根据分子的排列方式,光的透过率也将会发生变化。
通过改变不同亚像素排列的方式,TFTLCD可以产生不同亮度和颜色的像素,从而显示出高质量的图像。
综上所述,TFTLCD的工作原理主要涉及到薄膜晶体管和液晶分子的相互作用。
液晶分子通过电场的影响改变光的透过率,而薄膜晶体管通过控制电场的施加方式来控制液晶分子的排列方式。
tftlcd工作原理
tftlcd工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种使用薄膜晶体管技术来驱动液晶显示器的设备。
它由液晶层和玻璃基板构成,液晶层中有许多小的液晶单元,每个单元由一个蓝色、一个绿色和一个红色亚像素组成。
TFT LCD的工作原理可以被简单地描述为以下几个步骤:
1. 信号输入:通过电缆或接口将图像信号输入到TFT LCD。
2. 数据处理:TFT LCD内部的控制电路将图像信号转换为适合驱动液晶显示的信号,并将其发送给相应的液晶单元。
3. 液晶对齐:液晶层中的液晶单元会根据收到的信号进行重新排列,以调整其光透过性。
通过改变液晶单元的排列方式,可以控制光线的透射和阻挡。
4. 色彩显示:每个液晶单元都包含了三个亚像素(蓝色、绿色和红色),它们在组合时可以呈现出各种不同的颜色。
通过调整每个亚像素的透明度,TFT LCD可以显示出不同的色彩。
5. 背光源:在TFT LCD后面通常有一个背光源,用于照亮显示屏。
这种背光源可以是冷阴极灯(CCFL)或LED。
6. 查询刷新:在液晶单元被排列好后,TFT LCD会根据信号逐行刷新显示各个像素,以呈现完整的图像。
TFT LCD的工作原理可以实现图像的高清、色彩鲜明的显示
效果,在电子设备中得到广泛应用,如手机、平板电脑、电视等。
tft工作原理
tft工作原理TFT液晶显示器是一种广泛应用于电子产品中的显示技术,其工作原理是通过控制薄膜晶体管(TFT)来实现像素的开关,从而显示出清晰、色彩丰富的图像。
下面我们来详细了解一下TFT液晶显示器的工作原理。
TFT液晶显示器的工作原理主要包括液晶分子的排列、光的偏振和色彩的显示。
首先,液晶分子在电场的作用下会发生排列,形成不同的分子排列结构,从而改变光的透过程度。
其次,当光线通过液晶层时,液晶分子的排列会导致光线的偏振状态发生改变,进而影响到光的透过和阻挡。
最后,通过控制不同像素点的液晶分子排列和光的偏振状态,可以实现色彩的显示和图像的呈现。
TFT液晶显示器的工作原理涉及到液晶分子的排列和电场的作用,下面我们来详细介绍一下液晶分子的排列和光的偏振过程。
液晶分子是一种具有长形分子结构的有机化合物,其分子在不同的电场作用下会呈现出不同的排列结构。
当电场作用于液晶层时,液晶分子会发生排列,形成平行或垂直排列的结构,从而改变光的透过程度。
这种排列结构的改变可以通过控制电场的强弱和方向来实现,从而实现像素的开关和图像的显示。
光的偏振是指光波在传播过程中振动方向的变化,而液晶分子的排列会影响光线的偏振状态。
当光线通过液晶层时,液晶分子的排列会导致光线的偏振状态发生改变,进而影响到光的透过和阻挡。
通过控制液晶分子的排列结构,可以实现对光线偏振状态的调控,从而实现像素的开关和色彩的显示。
通过对TFT液晶显示器的工作原理进行了解,我们可以更好地理解其在电子产品中的应用和优势。
TFT液晶显示器通过控制液晶分子的排列和光的偏振状态,实现了高清晰度、高对比度和丰富色彩的图像显示,成为了目前电子产品中主流的显示技术之一。
总之,TFT液晶显示器的工作原理是通过控制液晶分子的排列和光的偏振状态来实现像素的开关和图像的显示。
这种技术在电子产品中得到了广泛的应用,为用户带来了清晰、色彩丰富的视觉体验。
希望通过本文的介绍,您对TFT液晶显示器的工作原理有了更深入的了解。
tftlcd驱动原理
tftlcd驱动原理TFTLCD驱动原理解析TFT(Thin-Film Transistor)液晶显示屏是目前最常用的显示技术之一,其驱动原理是通过驱动电子电路控制液晶做电场变化,以实现像素点显示颜色和亮度的变化。
本文将对TFTLCD驱动原理进行详细解析。
TFTLCD驱动原理由两部分组成:图像生成和电压驱动1.图像生成TFTLCD液晶显示屏由许多像素点组成,每个像素点由三个基本颜色通道红(R),绿(G)和蓝(B)构成。
图像生成的第一步是将输入的图像数据转换为红、绿、蓝三个通道对应的灰度值,再由灰度值映射到具体的RGB值,以确定每个像素点的颜色。
该过程中需要使用一种称为查找表的技术,以有效地映射输入图像的像素值到三个通道的比例。
这个查找表中的值是由显示屏的属性和色彩设定决定的。
通过这种方式,可以根据人眼的感知方式,生成最接近输入图像的颜色。
2.电压驱动TFTLCD驱动原理的第二部分是电压驱动,通过控制每个像素点的电压来改变其颜色和亮度。
每个像素点都由一个薄膜晶体管(Thin Film Transistor,简称TFT)控制。
在电平刷新模式下,每个像素点的晶体管都要刷新很多次,在每个刷新周期内,通过在TFT上施加电压来改变晶体管的导通状态。
当TFT导通时,液晶膜上的电荷将通过该晶体管流入公共电平。
TFT导通的时间是通过控制驱动电路的频率和占空比来实现的。
频率越高,像素点的颜色刷新速度越快,可以提高图像的清晰度和稳定性。
占空比则是指TFT导通的时间和总的刷新周期的比值,通过调整占空比,可以改变像素点的亮度。
TFTLCD驱动原理的关键技术是源驱动和栅极驱动。
源驱动器是负责控制TFT的导通时间和电流的驱动电路,栅极驱动器则是负责控制每行像素点的导通时间和颜色的驱动电路。
对于源驱动器,它需要根据每行像素点的亮度和颜色,将对应的电流作为输入信号,通过增幅电路来控制TFT的导通时间。
而对于栅极驱动器,它需要根据每行像素点的导通时间和颜色,将对应的电压作为输入信号,通过驱动电路来生成合适的驱动信号。
TFT液晶显示屏原理
TFT液晶显示屏原理TFT液晶显示屏(Thin-Film Transistor Liquid Crystal Display)是一种广泛应用于电子设备中的显示技术。
相比于传统LCD显示屏,TFT液晶显示屏具有更高的画质和更好的色彩表现能力。
下面将详细介绍TFT液晶显示屏的原理。
TFT液晶显示屏主要由液晶层、驱动电路和背光源组成。
液晶层由两块平行的玻璃基板构成,中间填充着液晶分子。
驱动电路则用于控制液晶层的液晶分子的排布状态,从而实现图像的显示。
背光源则用于照亮像素点,使得图像能够可见。
液晶分子是TFT液晶显示屏的关键组成部分。
液晶分子可以根据电场的变化改变其排布状态,从而控制光的传播行为。
液晶分子有两种常见的排布状态:扭曲向列排布(Twisted Nematic,TN)和垂直排布(Vertical Alignment,VA)。
在TFT液晶显示屏中,液晶分子的排布状态是通过薄膜晶体管(Thin-Film Transistor,TFT)来控制的。
每个像素点都对应着一个TFT晶体管,每个TFT晶体管由一根控制线和一个细小的电容组成。
当控制线上施加电压时,TFT晶体管导通,液晶分子的排布状态发生变化,光的传播路径也发生改变。
具体来说,当液晶分子处于扭曲向列排布状态时,光无法通过液晶层,像素点显示为暗状态。
当液晶分子处于垂直排布状态时,光可以通过液晶层,像素点显示为亮状态。
通过控制每个像素点的TFT晶体管的导通状态,就能够控制液晶层中液晶分子的排布状态,从而实现图像的显示。
此外,TFT液晶显示屏还需要背光源来提供亮度。
背光源通常采用CCFL(冷阴极荧光灯)或LED(发光二极管)等光源,能够照亮整个显示屏。
通过调节背光源的亮度,可以进一步控制图像的显示效果。
总结起来,TFT液晶显示屏的原理是通过控制液晶分子的排布状态和背光源的亮度来实现图像的显示。
液晶分子的排布状态通过TFT晶体管来控制,而TFT晶体管的导通状态则通过驱动电路来控制。
TFT工作原理介绍
TFT的结构
TFT实际上为一种MIS结构(metal-insulatorsemiconductor)
→
6
薄膜晶体管实际上是一种绝缘栅型场效应管, 当栅极施以正电压时,栅极在绝缘层中产生垂 直于表面的电场(相当于电容器),电力线由 栅极指向半导体表面,并在表面处产生感应电 荷,当继续增加电压达到阀值电压(开启电压) 时,源漏间加上电压就会有载流子通过。
TFT的工作原理介绍
TFT LCD工作原理
TFT-“Thin Film Transistor”,即薄膜晶体管 图象如何产生? 显示屏由许多可以发出任意颜色的光线的象素 组成,只要控制各个象素显示相应的颜色就能 达到目的了。在TFT LCD中一般采用背光技术, 为了能精确地控制每一个象素的颜色和亮度就 需要在每一个象素之后安装一个开关,TFT在 LCD的生产过程中即充当一个类似开关的元件。
MIS→MOSFET(MISFET)
分析完MIS结构,我们就可以展开MOSFET的讨论了,因为 TFT实际上与MOSFET的结构极为类似,区别在于用a-Si:H替 代两个背靠背的PN结。
栅极电压Vgs对Id的控制
当栅极悬空或Vgs=0V时 栅极悬空时,漏极和源极之间 未形成导电沟道
此时沟道未形成,即使源漏间加上电压,也只有很少 的漏电流通过
)
If (VD VG VTH )
If (VD VG VTH )
23
VTH
↓
W I D CSiNx n (VG VTH ) 2L
小结
MOSFET依靠两个背靠背的PN结实现关断,而 s 因为a-Si:H的迁移率非常低(~1cm / V .), 导致电导率很低,关态下由此产生两方面影响: 一、关态漏电流很低(类似两个背靠背的pn结 产生的效果,有时经常需要加上反向电压,以达 到更低的漏电) 二、开态由于迁移率没有多晶 硅高,导致响应速度没有多晶硅高。而正是由 于p-Si的迁移率高,关态下漏电流也较a-Si大很 多。所以各有优缺点。
tft的工作原理
tft的工作原理
TFT(薄膜晶体管)是一种广泛应用于显示器、电视和移动设
备屏幕的技术。
它的工作原理如下:
1. 玻璃基板:TFT屏幕最底部的层是玻璃基板,其作为屏幕的支持和保护。
2. 透明导电层:玻璃基板上涂有一层透明的导电物质,通常是氧化铟锡(ITO),它能够传导电流同时保持透明。
3. 灯泡背光:屏幕背后附加一层背光源,通常是冷阴极荧光管(CCFL)或LED。
背光源照亮整个屏幕。
4. 色彩滤光片:透明导电层上面是三个不同色彩的滤光片(红、绿、蓝),每个滤光片对应一个基本颜色。
5. 液晶层:在滤光片上方是液晶层,液晶是一种特殊的有机材料,其分子可以通过电场而改变排列方向。
6. 薄膜晶体管:在液晶层的每个像素点后面,有一个对应的薄膜晶体管。
薄膜晶体管是一种半导体器件,它可以通过控制电流来改变液晶层中的透光度。
7. 数据驱动芯片:每个薄膜晶体管连接到一个数据驱动芯片。
数据驱动芯片接收来自电脑或其他源的信号,并将其转换为液晶层中的电流。
8. 液晶的操控:根据数据驱动芯片发送的电流信号,薄膜晶体管操控液晶分子的排列方向。
液晶分子的排列方向决定了光线穿过的程度,从而决定像素点的亮度和颜色。
9. 显示像素:整个屏幕由许多像素点组成,每个像素点通过调节液晶层的透光度来显示特定的颜色和亮度。
通过以上步骤,TFT屏幕能够显示出各种颜色和图像。
数据经过电路驱动转化为电流,控制每个像素点的亮度和颜色,从而实现高质量的图像显示。
tft彩屏显示原理
tft彩屏显示原理
TFT(薄膜晶体管)彩屏是一种液晶显示技术,可实现高清晰
度和色彩鲜艳的图像。
TFT彩屏的显示原理是通过振荡电压激励液晶分子来控制光的透过与阻挡,从而形成图像。
以下是TFT彩屏的显示原理步骤:
1. 光源发出背光:TFT彩屏背后有一个光源,通常是冷阴极灯或LED,发出均匀的背光。
2. 光通过进光板:背光经过进光板,被均匀地导入液晶层。
3. 液晶分子排列:液晶面板中有液晶分子,它们在无电势作用下呈现无序排列状态。
4. 固定极板:液晶面板上有两个固定极板,它们分别在上下两个平面上,平面内互相垂直。
5. 像素控制:液晶面板每个像素点都有一个TFT(薄膜晶体管)作为控制单元。
每个TFT能够控制一个像素点,其工作
由数字信号控制。
6. 信号传递:图像信号被数字电路处理后,在每个像素点的TFT上形成电压。
7. 电压激励液晶分子:通过每个像素点上的TFT提供的电压,液晶分子的排列状态发生改变。
8. 光透过或阻挡:电压改变后,液晶分子的排列改变,会影响光的透过与阻挡。
当液晶分子排列垂直光线时,光会被阻挡;当液晶分子排列平行光线时,光会透过。
9. 形成图像:不同像素点上的TFT提供的电压不同,液晶分子排列状态也不同,从而实现不同颜色的光透过或阻挡,从而形成图像。
综上所述,TFT彩屏通过控制液晶分子的排列状态,来控制光的透过与阻挡,从而形成图像。
这种显示技术能够实现高清晰度、饱和度和对比度较高的彩色图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因..至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的gate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/60=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate 走线的开关时间约为16.67ms/768=21.7us. 所以在图3 gate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而source driver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于common电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的.而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了.首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dotinversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver 的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢?之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开, 好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inversion与row inversion的缘故. 而common 电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source driver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓Flicker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inversion了. 表2面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversion是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion 面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver 电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver 输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver 仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cgd=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate 走线从打开到关闭的电压为–35伏特的话. 则feed through电压为–35*0.05 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white 的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的common电压的压差恰好等于feed through电压. Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6/0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feed through电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed through电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through 电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gate走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.二阶驱动(Two level addressing)的效应上次跟大家介绍液晶显示器的二阶驱动原理,以及因为feed through电压所造成的影响. 为了解决这些现象, 于是有了三阶驱动甚至于四阶驱动的设计. 接下来我们先针对三阶驱动的原理作介绍.三阶驱动的原理(Three level addressing method)二阶驱动的原理中, 虽然有各种不同的feed through电压, 但是影响最大的仍是经由Cgd所产生的feed through电压. 也因此在二阶驱动时需要调整common 电压, 以改进灰阶品质. 但是由于Clc并非是一个固定的参数, 让调整common电压以便改进影像品质目的不易达成. 因此便有了三阶驱动的设计, 期望在不必变动common电压的情形下, 将feed through电压给补偿回来.三阶驱动的基本原理是这样的, 利用经由Cs的feed through电压, 来补偿经由Cgd所产生的feed though电压. 也就是因为需要利用Cs来补偿, 所以三阶驱动的方法只能使用在面板架构为Cs on gate的方式. 图1就是三阶驱动gate driver电压的波形, 从这个三阶驱动的波形中我们可以知道, 三阶驱动波形跟二阶驱动不一样的是, 它的gate driver驱动波形之中, 会有三种不一样的电压.。