(完整word版)初中数学二次函数专题经典练习题(附答案)
中考 一轮复习 二次函数专题之实际应用问题和线段问题(word版含简单答案)
![中考 一轮复习 二次函数专题之实际应用问题和线段问题(word版含简单答案)](https://img.taocdn.com/s3/m/332f5a14c950ad02de80d4d8d15abe23482f03bd.png)
二次函数专题一,二次函数实际应用问题(经济类)1.某商家投资销售一种进价为每盏30元的护眼台灯,销售过程中发现,每月销售量y (盏)与销售单价x (元)之间的关系可近似的看作一次函数:10700y x =-+,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)要使每月获得的利润为3000元,那么每月的销售单价定为多少元? (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?2.某水果批发商场经销一种水果,如果每干克盈利10元,每天可售出500千克,经市场调查发现.在进货价不变的情况下,若每千克涨价一元.日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,则每千克应涨价多少元? (2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.3.东莞某镇斥资打造夜市网红街,王阿姨在这夜市做起了地摊生意,他以每件40元的价格购进一种商品,在销售过程中发现这种商品每天的销售量y (件)与每件的销售单价x (元)满足一次函数关系:y =﹣2x +140(x >40).(1)若设每天的利润为w 元,请求出w 与x 的函数关系式;(2)若每天的销售量不少于44件,则销售单价定为多少元时,此时利润最大,最大利润是多少? 4.某经销商经销一种封面为建党100周年的笔记本,每本进价为3元,按每本5元出售,每天可售出30本.调查发现这种笔记本销售单价每提高1元,每天的销售量就会减少3本. (1)当销售单价定为多少元时,该经销商每天销售这笔记本的销售利润为105元?(2)当销售单价定为多少元时,才能使该经销商每天销售这种笔记本所得的利润最大?最大利润是多少元?5.524红薯富含膳食纤维,维生素(A ,B ,C ,D ,E )以及钾,铁等10余种微量元素,被营养学专家称为营养均衡的保健食品,深受广大消费者喜爱.某土特产批发店以30元/箱的价格进货.根据市场调查发现,批发价定位48元/箱时,每天可销售500箱,为保证市场占有率,决定降价销售,发现每箱降价1元,每天可增加销量50箱. (1)写出每天的利润w 与降价x 元的函数关系式; (2)当降价多少元时,每天可获得最大利润,为多少? (3)要使每天的利润为9750元,并让利于民,应降价多少元?6.2022年冬奥会即将在北京召开,某网络经销商销售以冬奥会为主题的文化衫,平均每天可售出30件,每件盈利40元.为了尽快减少库存、增加盈利,该经销商采取了降价措施,经过一段时间的销售发现,销售单价每降低1元,平均每天可多售出3件.(1)若降价x元,则平均每天销售数量为件(用含x的代数式表示);(2)若该经销商每天获得利润1800元,则每件商品应降价多少元?(3)若每件盈利不少于24元,不多于36元,求该经销商每天获得的最高利润和最低利润分别为多少?二,二次函数几何综合(线段类)7.如图,已知直线y=﹣23x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣23x2+bx+c经过A、B两点.(1)求这条抛物线的表达式;(2)直线x=t与该抛物线交于点C,与线段AB交于点D(点D与点A、B不重合),与x轴交于点E,联结AC、BC.①当DECD=AEOE时,求t的值;①当CD平分①ACB 时,求ABC的面积.8.已知抛物线y=ax2+bx+3交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0),顶点为点M.(1)请求出抛物线的解析式和顶点M的坐标;(2)如图1,点E为x 轴上一动点,若AME的周长最小,请求出点E的坐标;(3)点F为直线AB上一个动点,点P 为抛物线上一个动点,若BFP为等腰直角三角形,请直接写出点P的坐标.9.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m).(1)求抛物线的解析式.(2)点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E,求线段PE最大时点P 的坐标.10.综合与探究如图,已知点B (3,0),C (0,-3),经过B .C 两点的抛物线y =x 2-bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标.(3)若点E (2,-3),在坐标平面内是否存在点P ,使以点A ,B ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 11.综合与探究如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP PC +的值最小,此时点P 的坐标是 (3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出①BCQ 面积的最大值.(4)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.12.如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点,B ,C 两点的坐标分别为(3,0)和(0,3). (1)直线BC 的解析式为________. (2)求抛物线所对应的函数解析式.(3)①顶点D 的坐标为________;①当0≤x ≤4时,二次函数的最大值为_______,最小值为__________.(4)若点M 是第一象限的抛物线上的点,过点M 作x 轴的垂线交BC 于点N ,求线段MN 的最大值.13.如图,已知抛物线2134y x bx =-++与x 轴交于A 、B 两点,与y 轴交于点C ,若已知B 点的坐标为B (6,0).(1)求抛物线的解析式及其对称轴;(2)在此抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)M 为线段BC 上方抛物线上一点,N 为线段BC 上的一点,若MN ①y 轴,求MN 的最大值;答案第1页,共2页参考答案1.(1)40元;(2)48元时, 3960元 2.(1)涨价5元(2)当涨价为152元时,利润最大,最大利润为6125元 3.(1)w =﹣2x 2+220x ﹣5600(x >40)(2)销售单价定为48元时,利润最大,最大利润是352元4.(1)10元或8元;(2)每本售价定为9元时,利润最大,最大利润是108元 5.(1)()2504009000018w x x x =-++≤≤,(2)当降价4元时,每天可获得最大利润,最大利润为9800(3)应降价5元 6.(1)(30+3x )(2)每件商品应降价20元(3)该经销商每天获得的最高利润和最低利润分别为1875元,1512元7.(1)224233y x x =-++(2)①2;①548.(1)y =-x 2-2x +3;顶点M 的坐标为(-1,4);(2)点E (-37,0);(3)点P 的坐标为(2,-5)或(1,0).9.(1)223y x x =--;(2)P 13(,)22-10.(1)223y x x =--;(2)点D 的坐标为()1,2-;(3)存在,1(2,3)P --,2(6,3)P -,3(0,3)P .答案第2页,共2页11.(1)234y x x =-++;直线BC 的解析式为4y x =-+;(2)35,22P ⎛⎫⎪⎝⎭;(3)8;(4)存在,()3,4或4⎫-⎪⎪⎝⎭或4⎫-⎪⎪⎝⎭.12.(1)3y x =-+ ;(2)2y x 2x 3=-++ ;(3)①()1,4D;①4,-5;(4)9413.(1)抛物线解析式为2134y x x =-++,抛物线对称轴为直线2x =;(2)当P 点坐标为(2,2)时,使得①P AC 的长最小;(3)94。
完整版)初中数学二次函数专题经典练习题(附答案)
![完整版)初中数学二次函数专题经典练习题(附答案)](https://img.taocdn.com/s3/m/d3a78d8364ce0508763231126edb6f1afe007143.png)
完整版)初中数学二次函数专题经典练习题(附答案)1.抛物线$y=-3x^2+2x-1$与坐标轴的交点情况是(A)没有交点。
(C)有且只有两个交点。
(D)有且只有三个交点。
2.已知直线$y=x$与二次函数$y=ax^2-2x-1$的一个交点的横坐标为1,则$a$的值为(C)3.3.二次函数$y=x^2-4x+3$的图象交$x$轴于$A$、$B$两点,交$y$轴于点$C$,则$\triangle ABC$的面积为(B)4.4.函数$y=ax^2+bx+c$中,若$a>0$,$b<0$,$c<0$,则这个函数图象与$x$轴的交点情况是(D)一个在$x$轴的正半轴,另一个在$x$轴的负半轴。
5.已知$(2,5)$、$(4,5)$是抛物线$y=ax^2+bx+c$上的两点,则这个抛物线的对称轴方程是(B)$x=3$。
6.无法正确反映函数$y=ax+b$图象的选项已删除。
7.二次函数$y=2x^2-4x+5$的最小值是$4.5$。
8.某二次函数的图象与$x$轴交于点$(-1,0)$,$(4,0)$,且它的形状与$y=-x$形状相同。
则这个二次函数的解析式为$y=-\frac{1}{25}(x-1)(x-4)$。
9.若函数$y=-x+4$的函数值$y>0$,则自变量$x$的取值范围是$(-\infty,4)$。
10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60.为获得最大利润,销售商应将该品牌电饭锅定价为120元。
11.函数$y=ax^2-(a-3)x+1$的图象与$x$轴只有一个交点,那么$a$的值和交点坐标分别为$(a,0)$和$(\frac{a-3}{2},0)$。
12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽$AB=1.6m$,涵洞顶点$O$到水面的距离为$2.4m$,在图中的直角坐标系内,涵洞所在抛物线的解析式为$y=-\frac{5}{6}(x-2)^2+2.4$。
(完整word版)二次函数精选练习题及答案
![(完整word版)二次函数精选练习题及答案](https://img.taocdn.com/s3/m/d96515b0b307e87100f6963f.png)
二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。
23(2)1y x =+-C 。
23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。
b= -2,c=-1 D 。
b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。
二次函数练习题4套(附答案)
![二次函数练习题4套(附答案)](https://img.taocdn.com/s3/m/970823c21ed9ad51f01df2e6.png)
二次函数练习题4套(附答案)2014人教版九年级数学上册第22章《二次函数》单元测试及答案 (1) 一、选择题(每小题3分,共30分) 1.(2013?兰州中考)二次函数的图象的顶点坐标是() A.(1,3) B.( 1,3) C.(1, 3)D.( 1, 3) 2.(2013?哈尔滨中考)把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是() A. B. C. D. 3.(2013?吉林中考)如图,在平面直角坐标系中,抛物线所表示的函数解析式为 ,则下列结论正确的是() A. B. <0, >0 C. <0, <0 D. >0, <0 4.(2013?河南中考)在二次函数的图象上,若随的增大而增大,则的取值范围是() A. 1 B. 1 C. -1 D. -1 5.二次函数无论取何值,其图象的顶点都在( ) A.直线上 B.直线上 C.x轴上 D.y轴上 6. 抛物线轴交点的纵坐标为() A.-3 B.-4 C.-5 D.-1 7.已知二次函数,当取,(≠)时,函数值相等,则当取时,函数值为() A. B. C. D.c 8.已知二次函数,当取任意实数时,都有,则的取值范围是() A.. C. D. 9.如图所示是二次函数图象的一部分,图象过点二次函数图象的对称轴为给出四个结论:①②③④,其中正确的结论是( ) A.②④ B.①③ C.②③ D.①④ 10.已知二次函数的图象如图所示,其对称轴为直线,给出下列结论:(1) ;(2) >0;(3) ;(4) ;(5) . 则正确的结论是() A.(1)(2)(3) (4) B.(2)(4)(5) C.(2)(3)(4) D.(1) (4)(5) 二、填空题(每小题3分,共24分) 11.(2013? 成都中考)在平面直角坐标系中,直线为常数)与抛物线交于两点,且点在轴左侧,点的坐标为(0,-4),连接 , .有以下说法:①;②当时,的值随的增大而增大;③当-时,;④△面积的最小值为4 ,其中正确的是 .(写出所有正确说法的序号) 12.把抛物线的图象先向右平移 3 个单位长度,再向下平移 2 个单位长度,所得图象的解析式是则 . 13.已知抛物线的顶点为则 , . 14.如果函数是二次函数,那么k的值一定是 . 15.将二次函数化为的形式,则. 16.二次函数的图象是由函数的图象先向(左、右)平移个单位长度,再向(上、下)平移个单位长度得到的. 17.如图,已知抛物线经过点(0,-3),请你确定一个的值,使该抛物线与轴的一个交点在(1,0)和(3,0)之间,你所确定的的值是. 18.如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式 = . 三、解答题(共46分) 19.(6分)已知抛物线的顶点为 ,与y轴的交点为求抛物线的解析式. 20.(6分)已知抛物线的解析式为 (1)求证:此抛物线与x轴必有两个不同的交点; (2)若此抛物线与直线的一个交点在y轴上,求m的值. 21.(8分)(2013?哈尔滨中考)某水渠的横截面呈抛物线形,水面的宽为(单位:米),现以所在直线为轴,以抛物线的对称轴为轴建立如图所示的平面直角坐标系,设坐标原点为 .已知米,设抛物线解析式为 . 第21题图(1)求的值;(2)点(-1,)是抛物线上一点,点关于原点的对称点为点,连接 , , ,求△的面积.22.(8分)已知:关于的方程 (1)当取何值时,二次函数的对称轴是; (2)求证:取任何实数时,方程总有实数根. 23.(8分)已知抛物线与轴有两个不同的交点. (1)求的取值范围; (2)抛物线与轴的两交点间的距离为2,求的值. 24.(10分)心理学家发现,在一定的时间范围内,学生对概念的接受能力与提出概念所用的时间 (单位:分钟)之间满足函数关系式的值越大,表示接受能力越强. (1)若用10分钟提出概念,学生的接受能力的值是多少 ? (2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.参考答案 1.A 解析:因为的图象的顶点坐标为 ,所以的图象的顶点坐标为(1,3). 2.D 解析:把抛物线向下平移2个单位,所得到的抛物线是,再向右平移1个单位,所得到的抛物线是 . 点拨:抛物线的平移规律是左加右减,上加下减. 3.A 解析:∵图中抛物线所表示的函数解析式为,∴这条抛物线的顶点坐标为 .观察函数的图象发现它的顶点在第一象限,∴ . 4.A 解析:把配方,得.∵ -1 0,∴二次函数图象的开口向下.又图象的对称轴是直线,∴当1时,随的增大而增大. 5. B 解析:顶点为当时,故图象顶点在直线上. 6.C 解析:令,得 7.D 解析:由题意可知所以所以当 8.B 解析:因为当取任意实数时,都有 ,又二次函数的图象开口向上,所以图象与轴没有交点,所以 9.B 解析:由图象可知 .当时,因此只有①③正确. 10. D 解析:因为二次函数与轴有两个交点,所以 .(1)正确.抛物线开口向上,所以 0.抛物线与轴交点在轴负半轴上,所以 .又 , (2)错误.(3)错误.由图象可知当所以(4)正确.由图象可知当 ,所以(5)正确. 11.③④解析:本题综合考查了二次函数与方程和方程组的综合应用. 设点A的坐标为( , ),点B的坐标为(). 不妨设 ,解方程组得∴ ( ,- ),B (3,1). 此时, ,∴ .而=16,∴ ≠ ,∴结论①错误. 当 = 时,求出A(-1,- ),B(6,10), 此时 ( )(2 )=16. 由①时, ( )( )=16.比较两个结果发现的值相等.∴结论②错误. 当 - 时,解方程组得出A(-2 ,2),B (,-1), 求出 12, 2, 6,∴ ,即结论③正确. 把方程组消去y得方程,∴ , . ∵ = ?| | OP?| |= ×4×| | =2 =2 , ∴当时,有最小值4 ,即结论④正确. 12.11 解析:把它向左平移3个单位长度,再向上平移2个单位长度得即∴∴∴ 13.-1 解析:故 14. 0 解析:根据二次函数的定义,得,解得 .又∵,∴.∴当时,这个函数是二次函数. 15. 解析: 16.左 3 下 2 解析:抛物线是由先向左平移3个单位长度,再向下平移2个单位长度得到的. 17. (答案不唯一)解析:由题意可知要想抛物线与轴的一个交点在(1,0)和(3,0)之间,只需异号即可,所以 18. 解析:把(-1,0)和(0,-1)两点代入中,得,,∴ . 由图象可知,抛物线对称轴,且,∴,∴ . ∴ = ,故本题答案为. 19.解:∵抛物线的顶点为∴设其解析式为①将代入①得∴故所求抛物线的解析式为即 20.(1)证明:∵ ∴ ∴方程有两个不相等的实数根. ∴抛物线与轴必有两个不同的交点. (2)解:令则解得 21. 分析:(1)求出点A或点B的坐标,将其代入,即可求出a 的值;(2)把点代入(1)中所求的抛物线的解析式中,求出点C 的坐标,再根据点C和点D关于原点O对称,求出点D的坐标,然后利用求△BCD的面积. 解:(1)∵ ,由抛物线的对称性可知, ∴ (4,0).∴ 0=16a-4.∴ a . (2)如图所示,过点C作于点E,过点D作于点F. ∵ a= ,∴ -4.当 -1时,m= × -4=- ,∴ C(-1,- ). ∵点C关于原点O的对称点为点D,∴ D(1, ).∴ . ∴×4× + ×4× =15. ∴△BCD的面积为15平方米. 点拨:在直角坐标系中求图形的面积,常利用“割补法”将其转化为有一边在坐标轴上的图形面积的和或差求解. 22.(1)解:∵二次函数的对称轴是,∴ ,解得经检验是原方程的解. 故时,二次函数的对称轴是 . (2)证明:①当时,原方程变为,方程的解为;②当时,原方程为一元二次方程,,当方程总有实数根,∴整理得,∵时, 总成立, ∴取任何实数时,方程总有实数根. 23.解:(1)∵抛物线与轴有两个不同的交点,∴>0,即解得c < . (2)设抛物线与轴的两交点的横坐标为,∵两交点间的距离为2,∴ .由题意,得 ,解得, ∴,. 24.解:(1)当时, . (2)当时, , ∴用8分钟与用10分钟相比 ,学生的接受能力减弱了; 当时, , ∴用15分钟与用10分钟相比,学生的接受能力增强了.。
初中数学第二十二章二次函数总复习练习题(单元测试卷)附带答案及详细解析
![初中数学第二十二章二次函数总复习练习题(单元测试卷)附带答案及详细解析](https://img.taocdn.com/s3/m/ecd2f4907fd5360cbb1adb50.png)
初中数学第二十二章二次函数数学考试姓名:__________ 班级:__________考号:__________一、单选题(共18题;共36分)1.(2020九上·杭州月考)若点A(3,y1),B(0,y2),C(−2,y3)在抛物线y=x2−4x+k 上,则y1,y2,y3的大小关系是()A. y2>y3>y1B. y2>y1>y3C. y3>y2D. y1>y2>y32.(2020九上·达拉特旗月考)抛物线y=5(x-2)2-3的顶点坐标是()A. (2,-3)B. (2,3)C. (-2,3)D. (-2,-3)3.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+ 4a2−b2化简结果为()4aA. aB. 1C. ﹣aD. 04.若二次函数y=ax2的图象经过点P(2,8),则该图象必经过点A. (2,-8)B. (-2,8)C. (8,-2)D. (-8,2)5.(2017九上·云梦期中)若方程ax2+bx+c=0的两个根是﹣4和2,那么二次函数y=ax2+bx+c 的图象的对称轴是直线()A. x=﹣2B. x=﹣1C. x=0D. x=16.抛物线y=x2-2x+1的顶点坐标是( )A. (1,0)B. (-1,0)C. (-2,1)D. (2,-1)7.(2020九上·商丘月考)关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A. 图象的开口向上B. 当x>1时,y随x的增大而减小C. 图象的顶点坐标是(﹣1,2)D. 图象与y轴的交点坐标为(0,2)8.(2019九下·武冈期中)在下列函数中,其图象与x轴没有交点的是()A. y=2xB. y=﹣3x+1C. y=x2D. y= 1x9.(2018九上·金山期末)将抛物线y=−(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.10.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A. y=(x+1)2+4B. y=(x-1)2+4C. y=(x+1)2+2D. y=(x-1)2+211.将抛物线y=3x2先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为()A. y=3(x+2)2+3B. y=3(x−2)2+3C. y=3(x+2)2−3D. y=3(x−2)2−312.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A. 3B. 4C. 5D. 613.(2017九上·仲恺期中)关于二次函数y=3(x﹣2)2+6,下列说法正确的是()A. 开口方向向下B. 顶点坐标为(﹣2,6)C. 对称轴为y轴D. 图象是一条抛物线(a≠0,c>0)的图象是14.(2019九上·萧山月考)下列各图中有可能是函数y=ax2+c, y=ax()A. B. C. D.15.(2019九上·遵义月考)如图,二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc >0;②b2-4ac<0 ;③2a+b>0 ;④a+b+c>0,其中正确的个数()A. 1B. 2C. 3D. 416.抛物线y=(x+3)2−2可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移3个单位,再向上平移2个单位B. 先向右平移3个单位,再向下平移2个单位C. 先向左平移3个单位,再向下平移2个单位D. 先向右平移3个单位,再向上平移2个单位17.(2017九上·常山月考)已知二次函数y=2(x−3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=3;③其图象顶点坐标为(3,1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A. 1个B. 2个C. 3个D. 4个18.(2018·吉林模拟)二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A. ac+1=bB. ab+1=cC. bc+1=aD. 以上都不是二、填空题(共18题;共20分)19.(2018·长宁模拟)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n 的大小关系是m________n.(填“>”、“<”或“=”)20.(2020九上·吴兴月考)当x=0时,函数y=2x2+1的值为________.21.(2020九上·亳州月考)关于x的函数y=(m−2)x|m|−4是二次函数,则m=________.22.(2020·淮安模拟)把抛物线y=x2向下平移4个单位,所得的抛物线的函数关系式为________.23.(2019九上·闵行期末)抛物线y=x2+3x+2与y轴的公共点的坐标是________.24.(2017九上·孝南期中)抛物线y=x2-3x-4与y轴的交点坐标为________.25.(2018九上·江海期末)把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为________26.(2019九上·万州期末)抛物线y=﹣x2+2x﹣3顶点坐标是________;对称轴是________.27.(2019九上·河西期中)请写出一个对称轴为x=1的抛物线的解析式________.28.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交y=12x2的图象于点A i,交直线y=12x于点B i.则1A1B1+1A2B2+⋯+1A nB n=________.29.(2020九上·德清期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是________.30.(2019九上·衢州期中)如图,在平面直角坐标系xOy中,已知抛物线y=-x(x-3)(0≤x≤3) 在x轴上方部分记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A 2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为________;C n的顶点坐标为________(n为正整数,用含n的代数式表示) .31.(2020·上城模拟)当-1≤a≤ 14时,则抛物线y=-x²+2ax+2-a的顶点到x轴距离的最小值________。
九年级数学二次函数y=ax2k(a≠0)的图像与性质(基础篇)(专项练习)Word版含解析
![九年级数学二次函数y=ax2k(a≠0)的图像与性质(基础篇)(专项练习)Word版含解析](https://img.taocdn.com/s3/m/3fde2ffc29ea81c758f5f61fb7360b4c2e3f2ad5.png)
专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。
(完整word版)二次函数专题训练(正方形的存在性问题)含答案
![(完整word版)二次函数专题训练(正方形的存在性问题)含答案](https://img.taocdn.com/s3/m/4aaf348dddccda38366baf7c.png)
二次函数专题训练(正方形的存在性)1.如图,已知抛物线y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点C,抛物线的极点为 D ,对称轴与x 轴订交于点E,连结 BD .( 1)求抛物线的分析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为极点的四边形为正方形时,求点M 的坐标.2.如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥x 轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在座标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右边的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左边的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.4.(2015 贵州省毕节地域) 如图,抛物线y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,极点M 关于 x 轴的对称点是M′.( 1)求抛物线的分析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)能否存在过A, B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的分析式;若不存在,请说明原因.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.二次函数专题训练(正方形的存在性)6.(2016 广东省茂名市 ) .如图,抛物线 y=﹣ x2+bx+c 经过 A (﹣ 1, 0), B(3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的极点,抛物线的对称轴DE 交 x 轴于点 E,连结 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为极点的四边形是正方形时,恳求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参照答案1.如图,已知抛物线 y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点 C,抛物线的极点为D ,对称轴与 x 轴订交于点 E,连结 BD .( 1)求抛物线的分析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为极点的四边形为正方形时,求点M 的坐标.【解答】解:( 1)∵抛物线y=x2+bx+c 的图象经过点 A ( 1, 0), B(﹣ 3,0),∴,∴,∴抛物线的分析式为y=x2+2x ﹣ 3;( 2)由( 1)知,抛物线的分析式为y=x 2+2x ﹣ 3;∴C( 0,﹣ 3),抛物线的极点 D(﹣ 1,﹣ 4),∴E(﹣ 1, 0),设直线 BD 的分析式为y=mx+n ,∴,∴,∴直线BD 的分析式为y= ﹣ 2x ﹣6,设点 P( a,﹣ 2a﹣ 6),∵ C( 0,﹣ 3), E(﹣ 1, 0),依据勾股定理得,PE2=( a+1)2+(﹣ 2a﹣ 6)2,22 2PC =a +(﹣ 2a﹣ 6+3 ),∵PC=PE,∴( a+1)2+(﹣ 2a﹣ 6)2 =a2+(﹣ 2a﹣ 6+3 )2,∴a=﹣ 2,∴ y= ﹣ 2×(﹣ 2)﹣ 6=﹣ 2,∴P(﹣ 2,﹣ 2),(3)如图,作 PF⊥ x 轴于 F,∴ F(﹣ 2, 0),设 M ( d, 0),∴ G( d, d2+2d ﹣ 3), N(﹣ 2, d2+2d﹣ 3),∵以点 F, N ,G, M 四点为极点的四边形为正方形,必有FM=MG ,∴|d+2|=|d2+2d ﹣ 3|,∴ d= 或 d= ,∴点 M 的坐标为(, 0),(, 0),(, 0),(, 0).2.如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥ x 轴与抛物线交于点N,点 P 在 x 轴上,点Q 在座标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【解答】解:( 1)把 B 、C 两点坐标代入抛物线分析式可得,解得,∴抛物线分析式为y=﹣x2+2x+6 ,∵ y= ﹣x2+2x+6= ﹣(x﹣2)2+8,∴ D(2,8);( 2)如图 1,过 F 作 FG⊥ x 轴于点 G,设 F( x,﹣x2+2x+6 ),则 FG=|﹣x2+2x+6| ,∵∠ FBA= ∠BDE ,∠ FGB= ∠ BED=90°,∴△ FBG ∽△ BDE ,∴=,∵ B(6,0),D(2,8),∴ E( 2,0), BE=4 ,DE=8 , OB=6 ,∴ BG=6 ﹣ x,∴=,当点 F 在 x 轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点 F 在 x 轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F 点坐标为(﹣ 3,﹣);综上可知 F 点的坐标为(﹣1,)或(﹣3,﹣);( 3)如图 2,设对角线MN 、 PQ 交于点 O′,∵点 M 、 N 对于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2, 2n),则 M 坐标为( 2﹣ n,n),∵点 M 在抛物线 y= ﹣ x2+2x+6 的图象上,∴ n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴知足条件的点Q 有两个,其坐标分别为(2,﹣ 2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右边的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左边的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.【解答】解:( 1)把 A (﹣ 1, 0),B ( 3, 0)代入 y=ax 2+bx ﹣ 3,得:,解得,故该抛物线分析式为:y=x 2﹣2x﹣ 3;(2)由( 1)知,抛物线分析式为: y=x 2﹣2x﹣ 3=( x﹣ 1)2﹣ 4,∴该抛物线的对称轴是 x=1 ,极点坐标为( 1,﹣ 4).如图,设点 M 坐标为( m, m2﹣2m﹣ 3),此中 m> 1,∴ME=| ﹣ m2+2m+3|,∵M 、 N 对于 x=1 对称,且点 M 在对称轴右边,∴点 N 的横坐标为 2﹣ m,∴MN=2m ﹣ 2,∵四边形MNFE 为正方形,∴ME=MN ,∴|﹣ m2+2m+3|=2m ﹣ 2,分两种状况:①当﹣ m2+2m+3=2m ﹣ 2 时,解得: m1= 、 m2=﹣(不切合题意,舍去),当 m= 时,正方形的面积为( 2 ﹣2)2=24 ﹣ 8 ;②当﹣ m2 3 4=2﹣(不切合题意,舍去),+2m+3=2 ﹣ 2m 时,解得: m =2+ , m当 m=2+ 时,正方形的面积为[2 (2+ )﹣ 2]2=24+8 ;综上所述,正方形的面积为24+8 或 24﹣ 8 .( 3)设 BC 所在直线分析式为y=px+q ,把点 B (3, 0)、C( 0,﹣ 3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=x﹣ 3,设点 M 的坐标为( t, t2﹣ 2t﹣ 3),此中 t <1,则点 N( 2﹣ t, t2﹣2t﹣ 3),点 D ( t, t﹣ 3),∴MN=2 ﹣ t﹣t=2 ﹣2t, MD=|t 2﹣ 2t﹣ 3﹣ t+3|=|t2﹣3t|.∵ MD=MN ,∴ |t2﹣ 3t|=2﹣ 2t,分两种状况:①当 t2﹣ 3t=2﹣ 2t 时,解得 t 1=﹣ 1, t2=2 (不切合题意,舍去).二次函数专题训练(正方形的存在性)②当 3t﹣ t2=2﹣ 2t 时,解得3 2(不切合题意,舍去).t = , t =综上所述,点 M 的横坐标为﹣ 1 或.4.(2015 贵州省毕节地域 ) 如图,抛物线 y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,极点M 关于 x 轴的对称点是M′.( 1)求抛物线的分析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)能否存在过A, B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的分析式;若不存在,请说明原因.剖析:(1)依据待定系数法,可得函数分析式;( 2)依据轴对称,可得M′的坐标,依据待定系数法,可得AM′的分析式,依据解方程组,可得B点坐标,依据三角形的面积公式,可得答案;( 3)依据正方形的性质,可得P、 Q 点坐标,依据待定系数法,可得函数分析式.解答:解:( 1)将 A 、 B 点坐标代入函数分析式,得,解得,抛物线的分析式y=x 2﹣ 2x﹣ 3;( 2)将抛物线的分析式化为极点式,得 y= ( x﹣1)2﹣ 4, M点的坐标为( 1,﹣ 4), M′点的坐标为( 1, 4),设AM′的分析式为 y=kx+b ,将 A 、M′点的坐标代入,得,解得,AM′的分析式为y=2x+2 ,联立 AM′与抛物线,得,解得,C点坐标为( 5,12). S△ABC = ×4×12=24;( 3)存在过 A ,B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形,由 ABPQ 是正方形, A (﹣ 1, 0) B ( 3, 0),得P( 1,﹣ 2), Q( 1, 2),或 P(1, 2), Q( 1,﹣ 2),将 A 点坐标代入函数分析式,得a(﹣ 1﹣ 1)2﹣ 2=0 ,解得 a=,抛物线的分析式为y=(x﹣1)2﹣2,②当 P( 1, 2)时,设抛物线的分析式为 y=a( x﹣ 1)2+2,将 A点坐标代入函数分析式,得 a(﹣ 1﹣ 1)2+2=0 ,解得 a=﹣,抛物线的分析式为y=﹣(x﹣1)2+2,综上所述: y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ 为正方形.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠ FBA=∠ BDE时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.剖析( 1)由点 B 、C 的坐标利用待定系数法即可求出抛物线的分析式,再利用配方法将抛物线分析式变形成极点式即可得出结论;( 2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0, m),由相像三角形的判断及性质可得出点F′的坐标,依据点B、F′的坐标利用待定系数法可求出直线BF 的分析式,联立直线BF 和抛物线的分析式成方程组,解方程组即可求出点 F 的坐标;( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.依据抛物线的对称性联合正方形的性质可得出点P、 Q 的地点,设出点Q 的坐标为( 2, 2n),由正方形的性质可得出点M 的坐标为(2﹣n, n).由点 M 在抛物线图象上,即可得出对于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:( 1)将点 B ( 6,0)、 C( 0, 6)代入 y=﹣x2+bx+c 中,得:,解得:,∴ 抛物线的分析式为y= ﹣x2+2x+6 .∵ y= ﹣x2+2x+6= ﹣(x﹣2)2+8,∴点 D 的坐标为( 2, 8).(2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0,m),如图 1 所示.∵∠ F′BO=∠ FBA= ∠ BDE ,∠ F′OB=∠ BED=90°,∴△ F′BO∽△ BDE ,∴.∵点 B (6, 0),点 D( 2, 8),11∴点 E( 2, 0),BE=6 ﹣ 4=4 , DE=8 ﹣ 0=8 ,OB=6 ,∴OF′=?OB=3,∴点 F′(0, 3)或( 0,﹣ 3).设直线 BF 的分析式为y=kx±3,则有 0=6k+3 或 0=6k﹣ 3,解得: k= ﹣或k=,∴直线 BF 的分析式为y=﹣x+3 或 y=x﹣ 3.联立直线 BF 与抛物线的分析式得:① 或② ,解方程组①得:或(舍去),∴ 点F的坐标为(﹣1,);解方程组②得:或(舍去),∴ 点F的坐标为(﹣3,﹣).综上可知:点 F 的坐标为(﹣ 1,)或(﹣ 3,﹣).( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.∵点 M 、 N 对于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点 Q 在抛物线对称轴上,设点 Q 的坐标为(2, 2n),则点 M 的坐标为( 2 ﹣ n, n).∵点 M 在抛物线 y= ﹣x2+2x+6 的图象上,∴ n=﹣+2( 2﹣ n) +6,即 n2+2n ﹣ 16=0,解得: n1= ﹣ 1 , n2 =﹣﹣1.∴点 Q 的坐标为(2,﹣ 1)或( 2,﹣﹣ 1).6. (2016 广东省茂名市 ) 】.如图,抛物线 y= ﹣ x2 +bx+c 经过 A (﹣ 1,0), B( 3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的极点,抛物线的对称轴DE 交 x 轴于点 E,连结 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为极点的四边形是正方形时,恳求出点M 的坐标.剖析( 1)利用待定系数法求出过A, B,C 三点的抛物线的函数表达式;12( 2)连结 PC、PE,利用公式求出极点 D 的坐标,利用待定系数法求出直线BD 的分析式,设出点P 的坐标为( x,﹣ 2x+6 ),利用勾股定理表示出PC2和 PE2,依据题意列出方程,解方程求出x 的值,计算求出点 P 的坐标;(3)设点 M 的坐标为( a, 0),表示出点 G 的坐标,依据正方形的性质列出方程,解方程即可.解答解:( 1)∵抛物线 y= ﹣x2+bx+c 经过 A (﹣ 1, 0), B ( 3, 0)两点,∴,解得,,∴ 经过A,B,C三点的抛物线的函数表达式为y= ﹣ x2+2x+3 ;( 2)如图 1,连结 PC、PE, x= ﹣=﹣=1,当x=1 时, y=4 ,∴点 D 的坐标为( 1, 4),设直线 BD 的分析式为: y=mx+n ,则,解得,,∴ 直线BD的分析式为y= ﹣ 2x+6,设点 P 的坐标为( x,﹣ 2x+6),则PC2=x 2+(3+2x ﹣ 6)2,PE2=( x﹣ 1)2+(﹣ 2x+6 )2,∵PC=PE,∴x2+(3+2x ﹣6)2=(x﹣1)2+(﹣2x+6 )2,解得, x=2,则 y= ﹣2×2+6=2 ,∴点 P 的坐标为( 2, 2);(3)设点 M 的坐标为( a, 0),则点 G 的坐标为( a,﹣ a2 +2a+3),∵以 F、M 、 G 为极点的四边形是正方形,∴ FM=MG ,即 |2﹣ a|=|﹣ a2 +2a+3|,当 2﹣ a=﹣ a2+2a+3 时,整理得,a2﹣ 3a﹣1=0 ,解得, a=,当2﹣ a=﹣(﹣ a2+2a+3)时,整理得, a2﹣ a﹣5=0 ,解得, a= ,∴当以 F、M 、G 为极点的四边形是正方形时,点 M 的坐标为(,0),(,0),(,0),(, 0).13。
(完整版)初中数学二次函数试题及答案
![(完整版)初中数学二次函数试题及答案](https://img.taocdn.com/s3/m/091ac80a0508763230121274.png)
一、选择题(每题3分,共30分)1. 下列关系式中,届丁二次函数的是(x 为自变量)() _1。
_ 1A. '*B..「•C.「LD ; - ! !2. 函数y=x 2-2x+3的图象的顶点坐标是() A. (1 , -4) B.(-1 , 2) C. (1 , 2) D.(0, 3)3. 抛物线y=2(x-3)2的顶点在() A.第一象限 B.第二象限C. x 轴上D. y 轴上4. 抛物线* 丁 +冠斗的对称轴是() A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是()A. ab>0, c>0B. ab>0, c<0C. ab<0, c>0D. ab<0, c<06. 二次函数y=ax 2+bx+c 的图象如图所示,贝U 点 .象限() A. 一 B. 二 C. 三 D. 四 已知二次函数 y=ax 2+bx+c (a 丰0)的图象的顶点 图象交x 轴丁点A (m , 0)和点B,且m>4,那么 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是()9. 已知抛物线和直线E 在同一直角坐标系中的图象如图所示,抛物线的对 称轴7.如图所示, P 的横坐标是4, AB 的长是()A. 4+m C. 2m-8B. m D. 8-2m为直线x=-1 , P l(X1, y i), P2(X2, y2)是抛物线上的点,P3(X3, y3)是直线£上的点,且-1<X1<X2, X3<-1,则y i, y2, y3的大小关,系是()A. y1 <y2<y3B. y2<y3<y 1 ;''顼\ \芝C. y3<y1<y2D. y2<y1<y3 :10. 把抛物线A = 的图象向左平移2个单位,再向上平■移3个单位,所得的抛物线的函数关系式是()A.L—B. - / J如- D.-二、填空题(每题4分,共32分)11. 二次函数y=X2-2X+1的对称轴方程是.12. 若将二次函数y=X2-2X+3配方为y=(X-h)2+k的形式,贝U y=.13. 若抛物线y=X2-2X-3与X轴分别交丁A、B两点,则AB的长为14. 抛物线y=X2+bX+c,经过A(-1 , 0), B(3, 0)两点,则这条抛物线的解析式为.15. 已知二次函数y=ax2+bx+c的图象交x轴丁A、B两点,交y轴丁C点, 且△ ABC 是直角三角形,请写出一个符合要求的二次函数解析式16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在1不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面 m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0, 3)的抛物线的解析式为.和(:*18. 已知抛物线y=x2+x+b2经过点 4 ,则y i的值是.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)319. 若二次函数的图象的对称轴方程是a,并且图象过A(0, -4)和B(4,0)(1)求此二次函数图象上点A关丁对称轴对称的点A '的坐标;(2)求此二次函数的解析式;20. 在直角坐标平■面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x 轴丁点A(XI, 0)、B(x2, 0),且(X I+1)(X2+1)=-8.(1) 求二次函数解析式;(2) 将上述二次函数图象沿x轴向右平■移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求z\POC的面积.21. 已知:如图,二次函数y=ax2+bx+c的图象与x轴交丁A、B两点,其中A点坐标为(-1, 0),点C(0, 5),另抛物线经过点(1, 8), M为它的顶点.(1) 求抛物线的解析式;(2) 求/\ MCB 的面积,△ MCB.22. 某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件, 而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.答案与解析: 一、选择题1. 考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求 .法二,将二次函数解析式由 一般形式转换为顶点式,即 y=a(x-h)2+k 的形式,顶点坐标即为 (h , k), y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1, 2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数 y=2(x-3)2的顶 点为(3, 0),所以顶点在x 轴上,答案选C.4.考点:数形结合,二次函数 y=ax 2+bx+c 的图象为抛物线,其对称轴为抛物线 "-丁 +枣一',直接利用公式,其对称轴所在直线为5.考点:二次函数的图象特征.抛物线与y 轴交点坐标为(0, c)点,由图知,该点在x 轴上方,」> 0答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的 符号特征.解析:由图象,抛物线开口方向向下,,-':.-一 > o,又《0,.,一 > 0,抛物线对称轴在y 轴右侧,*抛物线与y 轴交点坐标为(0, c)点,由图知,该点在 x 轴上方,解析:解析: 由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,——> 又:队 < 0,「一 ab < 0,在第四象限,答案选 D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a丰0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交xM丁点D,所以A、B两点关丁对称轴对称,因为点A(m , 0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,一小<o, &《a <o 2摩所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴丁(0, 0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1 ,且-1<x1<x2,当x>-1时,由图象知,y 随x的增大而减小,所以y2<y1;乂因为x3<-1,此时点P3(x3, y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线+做+ - 1矿+3的图象向左平移2个单位得到尸=-2折+ 1)+3 ,再向上平移3个单位得到乃-23 + W+6 .答案选C.、填空题11.考点:二次函数性质.汗二一攵二一己二1解析:二次函数y=x2-2x+1,所以对称轴所在直线方程*2答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0 的两个根,求得x1=-1, x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.1 —b+4=0解析:因为抛物线经过A(-1 , 0), B(3, 0)两点,曾死解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交丁两点,与y轴有交点,及△ ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.M提示L a3 +a-Fb3a3+a+1 +b3 =O r- (a+y)J+b a=0)答案:- 4三、解答题19.考点:二次函数的概念、性质、图象,求解析式解析:(1)A' (3, -4)b 3■-- =—2a 2l$a + 4b+ c =仁=—4(2)由题设知:L•■-y=x2-3x-4 为所求(3)20.考点:二次函数的概念、性质、图象,求解析式 .解析:(1)由已知x i, x2是x2+(k-5)x-(k+4)=0的两根、+ 与=—(k- 5)乂(x i + 1)(x2+1)=-8x1x2+(x1+x2)+9=0. .-(k+4)-(k-5)+9=0. . k=5•■-y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0 时y=-5. .C(0, -5), P(2, -9)■- =]"罚=5a=-l解得=>抛物线的解析式为c=5(2)令y=0,得(x-5)(x+1)=0 , x i=5 , x2=-1••• B(5, 0)由y = -x a+4x+5 = -(x-2)a+9,得M(2 , 9)作ME ± y轴丁点E,21.解:(1)依题意:a- b + c - 0,-c = 5a4b + c-8则"I I可得,△ MCB =15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润X销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-X-2.5)这时商品的销售量是(500+200X)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.则y= (1S5 - jr - 2.5)(500+2001)=(11-为〔5。
初中数学二次函数综合题及答案(经典题型)印.pdf
![初中数学二次函数综合题及答案(经典题型)印.pdf](https://img.taocdn.com/s3/m/d6239a3625c52cc58bd6beb8.png)
选择题: 1、y=(m-2)xm2- m 是关于 x 的二次函数,则 m=( )
A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数 y=ax2+bx+c(a≠0)模型的是( )
A 在一定距离内,汽车行驶的速度与行驶的时间的关系
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
a
b
=
b+c a+c
A -1 B 1
ቤተ መጻሕፍቲ ባይዱ
c
=
a+b 1
C
2
的值是( )
1
D-
2
-1 0
x
8、已知一次函数 y= ax+c 与二次函数 y=ax2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的(
x )
y
y
y
y
x
A
B
x
x
x
C
D
二填空题: 13、无论 m 为任何实数,总在抛物线 y=x2+2mx+m 上的点的坐标是————————————。 16、若抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=2,最小值为-2,则关于方程 ax2+bx+c=-2的根为—
且交点 M 始终位于抛物线上 A、C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大
值.
y
y
l:x=n
M
A
A
O
B
D
C x
O
B
C
N
x
D
6、如图所示,在平面直角坐标系中,四边形 ABCD 是直角梯形,BC∥AD,∠BAD=90°,BC 与 y 轴相交于点 M,且 M 是 BC
九年级数学二次函数专项训练含答案-精选5份
![九年级数学二次函数专项训练含答案-精选5份](https://img.taocdn.com/s3/m/bb748157a88271fe910ef12d2af90242a895abef.png)
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,10t﹣5t2=0,解得t=0或t=2,∴球抛出后经2秒回到起点;(2)当h=1.8时,10t﹣5t2=1.8,解得t=0.2或t=1.8,∴0.2秒或1.8秒后球离起点的高度达到1.8m;(3)球离起点的高度不能达到6m,理由如下:若h=6,则10t﹣5t2=6,整理得5t2﹣10t+6=0,Δ=(﹣10)2﹣4×5×6=﹣20<0,∴原方程无实数解,∴球离起点的高度不能达到6m.19.解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.20.解:(1)设一次函数的关系式为y=kx+b,由题图可知,函数图象过点(25,50)和点(35,30).把这两点的坐标代入一次函数y=kx+b,得,解得,∴一次函数的关系式为y=﹣2x+100;(2)根据题意,设当天玩具的销售单价是x元,由题意得,(x﹣10)×(﹣2x+100)=600,解得:x1=40,x2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w=(x﹣10)×(﹣2x+100),整理得:w=﹣2(x﹣30)2+800;∵﹣2<0,∴当x=30时,w有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.21.解:(1)设直线AB的解析式为y=px+q,把A(4,0),B(0,2)代入得,,解得,∴直线AB的解析式为y=﹣x+2;把A(4,0),B(0,2)代入y=﹣x2+bx+c得,,解得;∴抛物线解析式为y=﹣x2+x+2;(2)∵MN⊥x轴,M(m,0),点D在直线AB上,点N在抛物线上,∴N(m,﹣m2+m+2),D(m,﹣m+2),∴DN=﹣m2+2m,DM=﹣m+2,∵DN=3DM,∴﹣m2+2m=3(﹣m+2),解得m=3或m=4(舍),∴N(3,2).(3)如图,作点B关于x轴的对称点B′,∴OB=OB′,B′(0,﹣2),∵∠AOB=∠AOB′=90°,OA=OA,∴△AOB≌△AOB′,∴∠OAB′=∠OAB,∴∠BAB′=2∠BAC,∵A(4,0),B′(0,﹣2),∴直线AB′的解析式为:y=x﹣2,过点B作BP∥AB′交抛物线于点P,则∠ABP=∠BAB′=2∠BAC,即点P即为所求,∴直线BP的解析式为:y=x+2,令x+2=﹣x2+x+2,解得x=2或x=0(舍),∴P(2,3).22.解:(1)将点A(3,﹣2),点C(0,﹣5)代入y=x2+bx+c,∴,解得,∴y=x2﹣2x﹣5,∴M(1,﹣6);(2)平移后的函数解析式为y=(x﹣1)2﹣6+m,∴平移后的顶点坐标为(1,m﹣6),∴抛物线的顶点在x=1的直线上,设直线CA的解析式为y=kx+b,∴,∴,∴y=x﹣5,当x=1时,y=﹣4,∴﹣4<m﹣6<﹣2,解得2<m<4;(3)存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形,理由如下:当y=﹣2时,x2﹣2x﹣5=﹣2,解得x=﹣1或x=3,∴B(﹣1,﹣2),∴AB=4,∵BE:EA=3:1,∴AE=1,∴E(2,﹣2),设P(t,t﹣5),Q(x,x2﹣2x﹣5),①当BE为平行四边形的对角线时,,解得或,∴Q(,)或(,);②当BP为平行四边形的对角线时,,解得或,∴Q(,)或(,);③当BQ为平行四边形的对角线时,,此时无解;综上所述:Q点坐标为(,)或(,)或(,)或(,).九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()。
初中数学二次函数经典习题【含详细答案】
![初中数学二次函数经典习题【含详细答案】](https://img.taocdn.com/s3/m/2fb4284b5fbfc77da269b1e2.png)
二次函数经典习题1.已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为()A.y=x2+2x+1B.y=x2+2x-1C.y=x2-2x+1D.y=x2-2x-12.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A. abc<0, b2-4ac>0B. abc>0, b2-4ac>0C. abc<0, b2-4ac<0D. abc>0, b2-4ac<03.如果关于x的方程x2-4x+2m=0有两个不相等的实数根,那么m的取值范围是.4.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是( )A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠05.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为7.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.8.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()9.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:-6--2--2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.10.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B,D的点Q,使△BDQ中BD边上的高为2,若存在求出点Q的坐标;若不存在请说明理由.11.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.1A、2B、3m<2 4D、5C解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=-1时,y2=-x2+2x=-82+2×8=-32+16=-16.x=8时,y3∵-16<-6<-2,∴y3<y1<y2.故选C.6 k=0或k=-1.7解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x8解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.10 解:(1)设二次函数的解析式为y=a(x-1)2+4.∵点B(3,0)在该二次函数的图象上,∴0=a(3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x2+2x+3.∵点D在y轴上,所以可令x=0,解得:y=3.∴点D的坐标为(0,3).设直线BD的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1.∴直线BD的解析式为y=-x+3.(2)设点P的横坐标为m(m>0), 则P(m,-m+3), M(m,-m2+2m+3), PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).11解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
人教版初中数学九年级二次函数(经典例题含答案)
![人教版初中数学九年级二次函数(经典例题含答案)](https://img.taocdn.com/s3/m/cafc22506d85ec3a87c24028915f804d2a16877a.png)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
二次函数专题训练(正方形的存在性问题)含答案(可编辑修改word版)
![二次函数专题训练(正方形的存在性问题)含答案(可编辑修改word版)](https://img.taocdn.com/s3/m/a66f9d64b52acfc788ebc909.png)
1.如图,已知抛物线y=x2+bx+c 的图象经过点A(l,0),B(﹣3,0),与y 轴交于点C,抛物线的顶点为D,对称轴与x 轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF⊥x 轴于F,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F,N,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.2.如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2+bx﹣3 过点A(﹣1,0),B(3,0),点M、N 为抛物线上的动点,过点M 作MD∥y 轴,交直线BC 于点D,交x 轴于点E.过点N 作NF⊥x 轴,垂足为点 F(1)求二次函数y=ax2+bx﹣3 的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;(3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M 的横坐标.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c 与x 轴交于A(﹣1,0),B(3,0)两点,顶点M 关于x 轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB 的面积;(3)是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5.(2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c 与x 轴交于点A,点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ,请直接写出点Q 的坐标.6.(2016 广东省茂名市) .如图,抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E,连接BD.(1)求经过A,B,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F、M、G 为顶点的四边形是正方形时,请求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参考答案1.如图,已知抛物线y=x2+bx+c 的图象经过点A(l,0),B(﹣3,0),与y 轴交于点C,抛物线的顶点为D,对称轴与x 轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF⊥x 轴于F,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F,N,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.【解答】解:(1)∵抛物线y=x2+bx+c 的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD 的解析式为y=mx+n,∴,∴,∴直线BD 的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x 轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M 四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d= 或d=,∴点M 的坐标为(,0),(,0),(,0),(,0).2.如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ,请写出点Q 的坐标.【解答】解:(1)把B、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F 作FG⊥x 轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴= ,当点F 在x 轴上方时,有=,解得x=﹣1 或x=6(舍去),此时F 点的坐标为(﹣1,);当点F 在x 轴下方时,有=﹣,解得x=﹣3 或x=6(舍去),此时F 点坐标为(﹣3,﹣);综上可知F 点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ 交于点O′,∵点M、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2,2n),则M 坐标为(2﹣n,n),∵点M 在抛物线y=﹣x2+2x+6 的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+ 或n=﹣1﹣,∴满足条件的点Q 有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2+bx﹣3 过点A(﹣1,0),B(3,0),点M、N 为抛物线上的动点,过点M 作MD∥y 轴,交直线BC 于点D,交x 轴于点E.过点N 作NF⊥x 轴,垂足为点 F(1)求二次函数y=ax2+bx﹣3 的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;(3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M 的横坐标.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得,故该抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).如图,设点M 坐标为(m,m2﹣2m﹣3),其中m>1,∴ME=|﹣m2+2m+3|,∵M、N 关于x=1 对称,且点M 在对称轴右侧,∴点N 的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE 为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2 时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8 ;②当﹣m2+2m+3=2﹣2m 时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8 ;综上所述,正方形的面积为24+8或24﹣8.(3)设BC 所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC 的函数表达式为y=x﹣3,设点M 的坐标为(t,t2﹣2t﹣3),其中t<1,则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.∵MD=MN,∴|t2﹣3t|=2﹣2t,分两种情况:①当t2﹣3t=2﹣2t 时,解得t1=﹣1,t2=2(不符合题意,舍去).②当3t﹣t2=2﹣2t 时,解得t3=,t2=(不符合题意,舍去).综上所述,点M 的横坐标为﹣1 或.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c 与x 轴交于A(﹣1,0),B(3,0)两点,顶点M 关于x 轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB 的面积;(3)是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B 点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P、Q 点坐标,根据待定系数法,可得函数解析式.解答:解:(1)将A、B 点坐标代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x﹣3;(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,M 点的坐标为(1,﹣4),M′点的坐标为(1,4),设AM′的解析式为y=kx+b,将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,联立AM′与抛物线,得,解得,C 点坐标为(5,12).S△ABC=×4×12=24;(3)存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形,由ABPQ 是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),①当顶点P(1,﹣2)时,设抛物线的解析式为y=a(x﹣1)2﹣2,将A 点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a= ,抛物线的解析式为y=(x﹣1)2﹣2,②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将A 点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,综上所述:y=(x﹣1)2﹣2 或y=﹣(x﹣1)2+2,使得四边形APBQ 为正方形.5.(2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c 与x 轴交于点A,点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ,请直接写出点Q 的坐标.分析(1)由点B、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF 与y 轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF 的解析式,联立直线BF 和抛物线的解析式成方程组,解方程组即可求出点F 的坐标;(3)设对角线MN、PQ 交于点O′,如图2 所示.根据抛物线的对称性结合正方形的性质可得出点P、Q 的位置,设出点Q 的坐标为(2,2n),由正方形的性质可得出点M 的坐标为(2﹣n,n).由点M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c 中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D 的坐标为(2,8).(2)设线段BF 与y 轴交点为点F′,设点F′的坐标为(0,m),如图1 所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF 的解析式为y=kx±3,则有0=6k+3 或0=6k﹣3,解得:k=﹣或k=,∴直线BF 的解析式为y=﹣x+3 或y=x﹣3.联立直线BF 与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F 的坐标为(﹣1,);解方程组②得:或(舍去),∴点F 的坐标为(﹣3,﹣).综上可知:点F 的坐标为(﹣1,)或(﹣3,﹣).(3)设对角线MN、PQ 交于点O′,如图2 所示.∵点M、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线对称轴上,设点Q 的坐标为(2,2n),则点M 的坐标为(2﹣n,n).∵点M 在抛物线y=﹣x2+2x+6 的图象上,∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,解得:n1=﹣1,n2=﹣﹣1.∴点Q 的坐标为(2,﹣1)或(2,﹣﹣1).6.(2016 广东省茂名市) 】.如图,抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E,连接BD.(1)求经过A,B,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F、M、G 为顶点的四边形是正方形时,请求出点M 的坐标.分析(1)利用待定系数法求出过A,B,C 三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D 的坐标,利用待定系数法求出直线BD 的解析式,设出点P 的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P 的坐标;(3)设点M 的坐标为(a,0),表示出点G 的坐标,根据正方形的性质列出方程,解方程即可.解答解:(1)∵抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C 三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1 时,y=4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y=mx+n,则,解得,,∴直线BD 的解析式为y=﹣2x+6,设点P 的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,﹣a2+2a+3),∵以F、M、G 为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3 时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a= ,∴当以F M、G、为顶点的四边形是正方形时点,M 的坐标(0,)(0,)(0,)(,0).为,,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数总复习经典练习题
1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( )
(A)没有交点. (B)只有一个交点.
(C)有且只有两个交点. (D)有且只有三个交点.
2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( ) (A)2. (B)1. (C)3. (D)4.
3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( ) (A)6. (B)4. (C)3. (D)1.
4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( )
(A)没有交点.
(B)有两个交点,都在x轴的正半轴.
(C)有两个交点,都在x轴的负半轴.
(D)一个在x轴的正半轴,另一个在x轴的负半轴.
5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( )
(A)x=
a
b
. (B)x=2. (C)x=4. (D)x=3.
6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax+b图象的只可能是
( )
7.二次函数y=2x2-4x+5的最小值是______.
8.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与y=-x2形状相同.则这个二次函数的解析式为______.
9.若函数y=-x2+4的函数值y>0,则自变量x的取值范围是______.
10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:
销量(个) 80 100 110 100 80 60
为获得最大利润,销售商应将该品牌电饭锅定价为 元.
11.函数y =ax 2
-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______.
12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽 1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.
13.(本题8分)已知抛物线y =x 2
-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.
14.(本题8分)抛物线y =ax 2
+2ax +a 2
+2的一部分如图3所示,求该抛物线在y 轴左侧与
x 轴的交点坐标.
15.(本题8分)如图4,已知抛物线y =ax 2
+bx +c (a >0)的顶点是C (0,1),直线l :y =-ax +3与这条抛物线交于P 、Q 两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q 的坐标.
16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月
图3
y
x
O
1
图4
P
Q
y
x
O
到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数.
(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?
18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图4-②所示的直角坐标系中.
(1)直接写出图4-②中点B1、B3、B5的坐标;
(2)求图4-②中抛物线的函数表达式;
(3)求图4-①中支柱A2B2、A4B4的长度.
19、如图5,已知A(2,2),B(3,0).动点P(m,0)在线段OB上移动,过点P作直线l与x轴垂直.
(1)设△OAB中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(2)试问是否存在点P,使直线l平分△OAB的面积?若有,求出点P的坐标;若无,请说明理由.
更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:
图4-①
B
A
5
A
4
A
3
1
A
2
答案:
一、1.B 2.D 3.C 4.D 5.D 6.B 二、7.3 8.y =-x 2
+3x +4 9.-2<x <2 10.130 11.a =0,(13-
,0);a =1,(-1,0);a =9,(13,0) 12.2154
y x =- 13.抛物线的顶点为(1,-3),点B 的坐标为(0,-2).直线AB 的解析式为y =-x -2 14.依题意可知抛物线经过点(1,0).于是a +2a +a 2
+2=0,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为(-3,0)
15.(1)依题意可知b =0,c =1,且当y =2时,ax 2
+1=2①,-ax +3=2②.由①、②解得a =1,
x =1.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5)
16.设降价x 元时,获得的利润为y 元.则依意可得y =(45-x )(100+4x )=-4x 2
+80x +4500,即y =-4(x -10)2
+4900.故当x =10时,y 最大=4900(元)
17.(1)将(1,2)和(2,6)代入y =ax 2
+bx ,求得a =b =1.故y =x 2
+x ;(2)g =33x -150-y ,即g =-x 2
+32x -150;(3)因y =-(x -16)2
+106,所以设施开放后第16个月,纯收益最大.令
g =0,得-x 2+32x -150=0.解得x x ≈16-10.3=5.7(舍去26.3).当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资
18.(1)1(30)B -,0,3(030)B ,
,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,
把3(030)B ,
代入得(030)(030)30y a =-+=. 130
a =-
∴. ∵所求抛物线的表达式为:1
(30)(30)30
y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302
y =-
-+=. 3350A B =∵,拱高为30,
∴立柱444585
20(m)22
A B =+=. 由对称性知:224485
(m)2
A B A B ==. 四、
19.(1)当0≤m ≤2时,S =
212m ;当2<m ≤3时,S =12×3×2-1
2
(3-m )(-2m +6)=-m 2+6m -6.(2)若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB
的面积等于3,故当l 平分△OAB 面积时,S =
32.213
22
m ∴.解得m .故存在这样
的P 点,使l 平分△OAB 的面积.且点P 的坐标为,0).。